DINAMICA DE INVENTARIOS Y DINERO
BAJO COMPETENCIA MONOPOLISTICA
Y SALARIOS DE EFICIENCIA*

GUILLERMO ESCUDE**

I. Introducción

En este trabajo construimos un modelo IS-LM dinámico basado en la idea de que las empresas mantienen inventarios de productos terminados que actúan como un "colchón" absorbente de posibles desequilibrios en el mercado de productos.

El papel de los inventarios como amortiguador de los desequilibrios de corto plazo en los mercados de productos parece estar subyacente en el modelo macroeconómico de los libros de texto. Ya en su General Theory Keynes afirmaba:

Recent American experience has also afforded good examples of the part played by fluctuations in the stocks of finished and unfinished goods -"inventories" as it is becoming usual to call them- in causing the minor oscillations within the main movement of the Trade Cycle. Manufacturers, setting industry in motion to provide for a scale of consumption which is expected to prevail some months

(*) Este trabajo se inició mientras el autor estaba como Visiting Scholar en la Universidad de California - Berkeley en el período 1986-87, con una beca de la Organización de Estados Americanos. Se agradecen los comentarios de Albert Fishlow al primer borrador, así como los de los participantes en el Seminario del Centro de Investigaciones Económicas del Instituto Torcuato Di Tella.

(**) Instituto Torcuato Di Tella - CONICET.
later, are apt to make major misallocations, generally in the direction of running a little ahead of the facts. When they discover their mistake they have to contract for a short time to a level below that of current consumption so as to offset the absorption of the excess inventories. (Keynes, 1936, p. 332).

También debe aceptarse la existencia de un ciclo corto de inventarios que se superpone al ciclo económico más «usual» con la inversión en activos fijos. Uno de los pioneros en el estudio de los ciclos de inventarios fue Lloyd Metzler, quien señala:

Empirical studies of fluctuations in American economic activity have revealed at least two types of business cycles. First, there are the major movements of output and employment which are generally associated with variations in the demand for such important types of investment as production plants and equipment. In addition to the major cycle, a shorter and less severe cycle, having a duration of three to three and one half years, is also apparent in economics statistics for the United States. While this short cycle has never been clearly understood, there has been a tendency in recent years to attribute it to fluctuations in the demand for business inventories (Metzler, 1973, Factors governing the length of inventory cycles).

En un estudio reciente, Metzler modeliza explícitamente un ciclo de inventarios basado en el supuesto de que existe un rezago entre un cambio en el volumen de ventas y los cambios en los planes de producción de las empresas. En ese trabajo, los precios no juegan ningún papel. La justificación que da Metzler es que su teoría se aplica principalmente a los mercados de competencia imperfecta en los que es usual encontrar costos marginales constantes a lo largo de un amplio intervalo de producción. En este caso, afirma,

"Un desplazamiento en el ciclo de demanda es probablemente no altere el precio en un grado obvio, excepto tal vez en que tal desplazamiento sea anticipado o se produzca una reducción sustancial en la elasticidad de demanda. En tales casos el ciclo del volumen futuro de ventas, un producto típico de calidad de tendencia principalmente sobre el volumen esperado que se está produciendo a un precio particular" (Metzler (1973), The length of inventory cycles).
En el presente trabajo también se supone que existe competencia imperfecta. Sin embargo, se parte de un marco que admite los ajustes de precio por parte de las empresas debido a que los desplazamientos en la curva de demanda esperada normalmente implican cambios en la elasticidad de demanda. De tal modo, las empresas ajustan tanto la cantidad como el precio.

Se supone que el sector productivo está compuesto por empresas monopolísticamente competitivas a la Chamberlin. Cada empresa tiene su mercado de clientela basado en la diferenciación de su producto a los ojos de los consumidores. Además, cada empresa se considera a sí misma muy pequeña con respecto al conjunto de sus rivales, por lo cual, al estimar la demanda agregada que le permitirá determinar su propio precio, tiene una expectativa del nivel general de precio que no está influenciada por su propio precio. En el corto plazo del modelo, la empresa puede tener expectativas que a la postre resulten erróneas. Sin embargo, en el largo plazo del modelo las expectativas deben resultar correctas, teniéndose así lo que para Chamberlin sería un equilibrio de corto plazo.

Otro tema que el presente trabajo retoma de la reconsideración moderna de la macroeconomía keynesiana es el del funcionamiento del mercado de trabajo. Como se recordará en su General Theory Keynes basó su crítica de la economía “clásica” en el rechazo del supuesto de que los trabajadores negociaban sus salarios reales con sus empleadores. Supuso que, en realidad, negociaban su salario nominal y no eran muy conscientes del nivel de precios, ya que “ningún sindicato soñaría con hacer huelga cada vez que sube el costo de vida”. Por otro lado, Keynes aceptó el supuesto de competencia perfecta en la determinación de la demanda de trabajo por parte de las empresas, por lo cual mantenía la vigencia del “primer postulado de la economía clásica”, según el cual, dado el stock de capital y la tecnología, el volumen de empleo sólo podía aumentar si disminuía el salario real. En definitiva, lo que posteriormente se dio en llamar “ilusión monetaria” por parte de los trabajadores se constituía en uno de los anclas mayores de la teoría keynesiana.

En este trabajo basamos el funcionamiento del mercado de trabajo en la idea que los trabajadores de las empresas monopolísticas negociaban con sus empleadores lo que consideran una participación “justa” en los ingresos netos de las empresas. De tal modo, los trabajadores
logran obtener una parte de los “beneficios monopólicos”. La empresa representativa determina tanto el precio como el salario maximizando beneficios. Pero al determinar el salario tiene en cuenta la “restricción de equidad” que le plantean los trabajadores. Un salario real demasiado bajo puede implicar altos costos debido a un innumerables de factores que inciden sobre la productividad del trabajo y que los directivos no están en condiciones de controlar. Estos factores incluyen las huelgas, el trabajo a desgano, el trabajo “a reglamento” y hasta el sabotaje, según las circunstancias sociales y políticas del país. El conocimiento más o menos preciso por parte de los empleadores de la relación de fuerzas con los trabajadores los hace tomar en cuenta, como restricción, las exigencias laborales en el momento de tomar sus decisiones de precios, salarios y volumen de producción.

La visión de la economía que está implícita en este trabajo es que el sector productivo está compuesto por (al menos) dos sectores: un sector monopolístico, o concentrado, y un sector competitivo, precio-aceptante. El comportamiento de este último se parece bastante al de un modelo de competencia perfecta. De manera análoga, se visualiza al mercado de trabajo como descompuesto en dos sectores: un sector formal asociado con el sector industrial concentrado que normalmente está más sindicalizado, y un sector informal menos sindicalizado, asociado con el sector industrial competitivo. No es necesario aclarar que en lugar de dos sectores claramente diferenciados, puede pensarse más bien en un espectro que va desde las empresas más grandes y más dotadas de poder monopólico hasta las más pequeñas y precio-aceptantes.

Para lograr una representación “realista” de la economía sería deseable poder modelar tal diversidad de sectores en forma explícita. Sin embargo, como el objetivo principal de este trabajo es integrar la fijación de precios con la dinámica de los inventarios y del dinero, se ha preferido simplificar todo lo posible la estructura de la producción sin sacrificar por ello un mínimo de realismo. La postura adoptada en el trabajo es que si, en aras de la simplificación, dejamos de lado a uno de los dos grandes sectores mencionados (o, si se quiere, nos concentramos en una de las puntas del espectro), es más probable que reflejemos mejor las propiedades cualitativas de la economía si dejamos de lado al sector competitivo que si dejamos de lado al sector monopolístico. Es por ello que en el trabajo que sigue la industria está compuesta exclusivamente
por empresas monopolísticas.

En la sección II se reseña las características generales del modelo. La sección III presenta los supuestos básicos sobre la producción, los insumos y el salario y se estudia la determinación del salario. En la sección IV se presenta la política de inventarios de las empresas así como la estimación de la demanda y la determinación de precio y cantidad. La sección V analiza los mercados de activos financieros y las expectativas sobre el nivel general de precios. En la sección VI se formula al modelo en su conjunto y se analiza su funcionamiento. En la sección VII se estudian las consecuencias de diversas perturbaciones. La sección VIII generaliza el modelo para el caso en que existen títulos públicos. Por último, el Apéndice analiza la cuestión de la estabilidad.

II. Exposición preliminar del modelo.

Bajo competencia monopolística, cada empresa fija su precio tomando como dado el precio promedio esperado de las restantes empresas. En el muy corto plazo, sin embargo, las expectativas de precios no tienen por qué verse confirmadas. Para descartar los errores de pronóstico sistemáticos, suponemos que el precio promedio esperado se ajusta según la regla de las expectativas adaptativas, o sea, el precio esperado se forma en cada instante ajustando el del instante anterior al error de pronóstico incurrido. Tal supuesto implica la existencia de inercia en la formación de las expectativas de precio.

Consideramos que tal inercia es realista en un contexto en el cual cada empresa sabe que el nivel general de precios es determinado por las decisiones individuales de muchas empresas, cada una de las cuales toma como punto de referencia su expectativa con respecto al resultado de las decisiones conjuntas si bien le resulta más vital su relación particular con su propia clientela. Es la necesidad de mantener y consolidar dicha relación la que torna a la fijación de precios una cuestión particularmente delicada pudiendo dar lugar a un comportamiento que no es necesariamente el de maximizar los beneficios de muy corto plazo. Es así como cada empresa tenderá a alterar su precio sólo esporádicamente, si bien el período de fijación de precios, puede acortarse con mayores niveles de inflación. Como cada empresa sabe que en cada período sólo una fracción de la totalidad de empresas alterará su precio, es razonable que exista inercia en el mecanismo de formación
de expectativas.

Si bien un tratamiento detallado exigiría modelar explícitamente la contribución de cada empresa a la formación del nivel general de precios, en este trabajo adoptamos un enfoque más sencillo que, pensamos, también transmite tanto el proceso de fijación de precios de las empresas como la interacción en la formación de las expectativas. En primer lugar, nos mantenemos fieles al supuesto simplificador y manejable de que las empresas maximizan beneficios de corto plazo. En segundo lugar, suponemos que cuando la empresa toma su decisión de precio y nivel de producción, tiene un nivel de precios esperado según el cual estima la demanda para el período. De un período de decisión a otro, la empresa ajusta su nivel de precios esperado tratando de corregir su error pasado. En el largo plazo del modelo, cada empresa ve confirmadas sus expectativas sobre el nivel general de precios.

En términos del tiempo calendario, el largo plazo del trabajo es relativamente breve. Se supone que la tasa proporcional de inversión es exógena. Si bien las respuestas de las principales variables endógenas a las perturbaciones exógenas pueden originar ciclos de inventarios, estos son más breves que el ciclo económico usual. Sobre todo en un sistema económico cerrado, éste se relaciona más con los cambios en la inversión y el crédito que con las variaciones de inventarios.

Por el lado de la demanda, suponemos que la empresa representativa conoce la función de demanda agregada y que su pronóstico del nivel de la demanda agregada sólo puede estar errado debido a un error en el pronóstico del nivel de precios. Suponemos que la demanda agregada de largo plazo depende inversamente de la tasa de interés y directamente del salario real. La justificación del último supuesto puede basarse en las diferentes propensiones a consumir por parte de individuos cuyas principales fuentes de ingreso son, respectivamente, los salarios y los intereses y beneficios. Sin embargo, ello no es modelado de manera explícita.

Se supone también que las empresas mantienen inventarios. Si en el corto plazo pueden existir desequilibrios en el mercado de productos y deseamos modelar tales desequilibrios explícitamente, tenemos al menos dos alternativas. O bien debemos admitir la posibilidad de que exista racionamiento por cantidades, o bien debemos introducir los inventarios. Por supuesto, ambos mecanismos juegan un papel importante en la realidad económica, prevaleciendo el racionamiento por canti-
dades en los mercados de bienes perecederos o de servicios (no almacenables). Sin embargo, en aras de la simplicidad, restringimos el racionamiento por cantidades al mercado de trabajo, en el cual hay siempre oferta excedente, y restringimos los inventarios al mercado de bienes. Obsérvese que si introdujéramos explícitamente al sector competitivo, los desempleados del sector monopolístico pasarían a formar parte del sector competitivo, el cual podría incluir a los cuentapropistas.

La demanda restringida de los trabajadores desempleados no afecta a la consistencia del modelo porque no modelamos el lado de la demanda partiendo de las preferencias de los agentes individuales. En su lugar, simplemente postulamos una función de demanda agregada, puede concebirse a ésta como incorporando la demanda restringida de los trabajadores racionados.

Por otro lado, si los inventarios absorben el exceso de oferta de bienes, es necesario considerar en forma explícita la política de inventarios de las empresas. La manera más fácil de proceder es suponer que éstas tienen un coeficiente de producto inventario deseado que proviene de la experiencia pasada. Un enfoque más detallado podría consistir en suponer que las empresas tienen preferencias con respecto a la acumulación de inventarios y la distribución de bienes, determinándose ambos en forma endógena (G. Escoff (1985)). En el trabajo, se sigue el camino más sencillo.

El papel de absorción de los desequilibrios que juegan los inventarios hace necesario distinguir entre acumulación deseada e indeseada de inventarios. Las empresas intencionalmente ajustan sus inventarios para alcanzar su coeficiente deseado de producto-inventario. Sin embargo, la posibilidad del desequilibrio en el mercado de bienes produce acumulación o desacumulación indeseada de inventarios. La tasa de cambio de los inventarios es la suma de los dos componentes: el intencional y el indeseado. Además, la demanda agregada de bienes es influen-

(1) Por "demanda restringida", nos referimos al concepto derivado de la acción de "decisión dual" de Clower. Según el cual, los agentes que son restringidos por cantidades en un mercado reutilizan sus demandas para los respectos mercados, produciéndose un "desbordamiento" de la demanda desde el primer mercado hacia los últimos. El trabajador que no logra vender la cantidad de servicios laborales que desea según su demanda "fraccionada", reformula (y restringe) su demanda de bienes producidos para acomodarla a su restricción presupuestaria efectiva.
ciada por la acumulación deseada de inventarios por parte de las empresas, y debe ser tomado en cuenta al formular la función de demanda agregada esperada.

La parte monetaria del modelo es la más convencional. En la mayor parte del trabajo, se supone que existen dos activos financieros: el dinero y los préstamos a las empresas. La tasa nominal de interés se ajusta de manera instantánea para mantener a ambos mercados de activos financieros en equilibrio. Por lo tanto, los mercados de activos componen el único sector de precios completamente flexibles en el corto plazo. Los mercados de activos financieros dan lugar a la curva LM. En la sección VIII reformulamos el modelo introduciendo un tercer activo financiero consistente en préstamos al gobierno (o títulos públicos).

El gobierno financia sus gastos emitiendo dinero. A su vez, las empresas financian su capital circulante tomando préstamos de las familias. Estas mantienen su riqueza bajo la forma de acciones, préstamos y dinero. Suponemos que la tenencia de acciones, equivalente en valor al stock de capital fijo, es exógena. Por lo tanto, la decisión relevante de las familias en cuanto a su tenencia de riqueza es su distribución entre dinero y préstamos. La tasa de interés nominal se ajusta como para asegurar que las familias distribuyan su riqueza líquida entre dinero y préstamos en las proporciones exactas necesarias como para que la demanda de capital circulante de las empresas se vea satisfecha. Suponemos que los tenedores de riqueza tienen las mismas expectativas sobre el nivel general de precios que tienen las empresas y los trabajadores.

Por el lado del mercado de bienes, la curva que juega el papel de la IS en el corto plazo no constituye la condición de equilibrio del mercado de bienes. En cambio, consiste en las combinaciones de niveles de producción y tasas de interés que reflejan las decisiones de las empresas para cada tasa de interés que enfrentan. Para cada tasa de interés dada, la empresa elige el nivel de producción que iguala al ingreso marginal con el costo marginal y determina el precio a fijar según la función de demanda que percibe. Esta combinación de precio y cantidad, sin embargo, no necesariamente despeja el mercado en el corto plazo debido a la posibilidad de que la empresa erre en su pronóstico de ventas. Sólo en el largo plazo del modelo, cuando se verifican las expectativas de precios y los inventarios alcanzan sus niveles deseados, la curva que representa la decisión de las empresas en el plano tasa de
interés-producto implica la igualdad entre la oferta y la demanda de productos.

En el período transitorio entre una perturbación exógena y el nuevo equilibrio de largo plazo, todas las variables endógenas están cambiando, impulsadas por los ajustes dinámicos que tienen lugar en las expectativas de precios y el nivel de inventarios.

En cada período de tiempo las empresas utilizan cantidades variables de trabajo y capital circulante y mantienen una cantidad constante de capital fijo. Ellas determinan sus insumos de trabajo y capital circulante según sus expectativas de demanda y de costo. En aras de la sencillez, suponiendo que el capital circulante es siempre proporcional a los costos salariales. Por ello, el costo unitario de cada empresa depende crucialmente de la productividad del trabajo esperada y de la tasa de interés.

El nivel de actividad puede variar en el corto plazo debido a perturbaciones de oferta o de demanda. Las tasas de interés actúan desde ambos costados. Por un lado, se tiene el usual efecto contractivo de las mayores tasas sobre la demanda (ya sea a través de la inversión, de la demanda de vivienda o de la demanda de bienes de consumo durables). Por otro lado, las mayores tasas implican mayores costos de circulación para las empresas, ejerciendo un efecto contractivo sobre la producción. Por lo tanto, las tasas de interés ejercen su influencia sobre el nivel de actividad en la misma dirección a través de ambos canales

Sin embargo, las variaciones en la tasa de interés tienen efectos opuestos sobre la fijación de precios si ellas se transmiten a través de la demanda o a través de la oferta. Mientras que los mayores costos de circulación tienden a ser transmitidos al menos parcialmente a los precios en un contexto de competencia monopolística, el efecto contractivo por el lado de la demanda hace a las empresas más cautelosas en sus previsiones de demanda y, por lo tanto, en sus decisiones de fijación de precios. El resultado neto sobre los precios puede ser ambiguo. El proceso laboral es un fenómeno social. La productividad de los trabajadores depende de su esfuerzo, y ésta es una variable que ellos determinan y que sólo puede ser controlada de manera muy imperfecta por la dirección. Suponemos que existe una relación directa entre el salario real esperado por los trabajadores y la magnitud de esfuerzo que despliegan en el proceso laboral. Por lo tanto, como en muchos de los modelos de "salarios de eficiencia" (Stiglitz (1976), Yellen (1984)), las
empresas maximizadoras de beneficios deben fijar un salario nominal que minimiza sus costos laborales unitarios esperados, tomando en cuenta la relación existente entre el costo por trabajador y la productividad por trabajador, relación que podemos denominar “restricción de equidad” (fairness constraint).

Las empresas también fijan los precios, vendiendo cada una un producto diferenciado en un mercado de clientela (customer market; A. Okun, (1981)). Para fijar el precio de su producto, cada empresa maximiza sus beneficios esperados sujeta a la restricción de su función de ventas esperadas. Esta restricción depende crucialmente del nivel general de precios que se espera durante el período. Como en muchos modelos recientes de competencia monopolística (Nishimura (1986), Akerlof y Yellen (1985), Weitzman (1985)), la empresa individual se considera a sí misma lo suficientemente pequeña como para no afectar significativamente, el nivel general de precios mediante su decisión de fijación de precios. Cada empresa fija su precio con información imperfecta con respecto a la estructura de la demanda y de la oferta y con respecto a las expectativas de las demás empresas. Pero cada una sabe que puede influenciar la demanda de su producto mediante su decisión de fijación de precio.

Abordaremos la completa cuestión de la imperfección informacional de cada empresa de una manera un tanto simplista, aunque debe observarse que existen enfoques más rigurosos. Vamos a suponer que todas las empresas son iguales, pero no lo saben. Este supuesto representa una forma muy particular de expresar el hecho de que todas las empresas son diferentes, aunque ninguna de ellas sabe exactamente cómo su situación difiere de la de las demás. Por lo tanto, tendremos una empresa “representativa”, que tiene “expectativas representativas” con respecto a las condiciones de la demanda y del costo. Sin embargo, debido a la imperfección de su información, la empresa desconoce el hecho de que su propia decisión será asimismo la decisión de todas las demás empresas.

Cada empresa sabe que la demanda de su producto es sensible a la divergencia entre su precio y el precio promedio de los bienes competidores. También sabe que la demanda depende del ingreso real de sus clientes, de la distribución funcional del ingreso, y de la estructura social. Para simplificar, nosotros suponemos que la empresa representativa percibe correctamente las formas funcionales tanto de la demanda
de su producto como de la restricción de equidad de sus trabajadores. Por lo tanto, la imperfección de su información se reduce a su ignorancia del hecho de que el precio que decida fijar será a posteriori el nivel general de precios.

En el corto plazo la empresa puede tener expectativas equivocadas con respecto al nivel general de precios. Sin embargo, suponemos que gradualmente ajusta su nivel general de precios esperado como para corregir la discrepancia histórica. Por lo tanto, en el “largo plazo” de nuestro modelo (que puede no ser un plazo muy largo en tiempo real), las expectativas se ven confirmadas.

Los desequilibrios de corto plazo debidos a la incorrección de las expectativas pueden crear discrepancias entre la demanda esperada y la efectiva. Si suponemos que la demanda agregada de hecho depende del salario real, de la tasa de interés y de un conjunto de parámetros estructurales (que pueden incluir a la tasa de inversión así como el gasto público), siempre que la empresa representativa fija su precio por encima del nivel general de precios esperado, el salario real resulta menor de lo esperado (debido a que el nivel general de precios resulta ser igual al precio determinado por la empresa en cuestión). Esta discrepancia tiende a hacer que la demanda agregada sea menor de lo esperado.

Sin embargo, existe también una influencia opuesta que tiende a hacer que la demanda agregada sea mayor de lo esperado. Esta influencia radica en que cada empresa recorta su producción porque, debido a que espera que su precio esté por encima del promedio, piensa que habrá sustitución de su producto por los productos de las demás empresas en las canastas de consumo. Como todas las empresas son iguales, todas proceden de este modo, por lo cual no se produce sustitución alguna y la demanda agregada que enfrenta cada empresa tiende a ser mayor de lo esperado.

Estas dos influencias opuestas sobre el error de pronóstico de la demanda agregada torna incierto al signo del error. Un nivel general de precios mayor del esperado puede producir tanto un exceso de demanda como un exceso de oferta de bienes, según los valores de los parámetros de la función de demanda efectiva agregada y los valores de las variables endógenas.

Los desequilibrios del mercado de productos generan desequilibrios de inventarios. Suponemos que la empresa representativa mante-
ne inventarios de bienes terminados en volúmenes suficientes como para permitirle absorber los desequilibrios de expectativas. La empresa tiene un cociente descendente entre el nivel de producción y el volumen de los inventarios de bienes terminados. Cuando existe discrepancia entre el cociente real y el deseado, la empresa ajusta su decisión de producción como para ir corrigiendo gradualmente la diferencia. Por lo tanto, el mercado de productos se despeja sólo en el "largo plazo", cuando tanto el nivel general de precios esperado es igual al vigente como el cociente de producción-inventarios es igual al deseado. La corrección gradual de estos dos errores inter-relacionados genera un movimiento dinámico que (en caso de haber estabilidad) logra el equilibrio en el mercado de bienes en el largo plazo.

Los inventarios de bienes terminados representan beneficios potenciales (no distribuidos). En equilibrio, tales inventarios son puramente voluntarios. Sin embargo, cuando hay desequilibrio en el mercado de bienes, las empresas pueden tener acumulación o desacumulación indeseada de inventarios, lo cual se traduce necesariamente en una discrepancia entre los beneficios (distribuidos) esperados y reales. Esto significa que el mantenimiento de inventarios de productos terminados son siempre financiados mediante beneficios retenidos. Sería relativamente sencillo modificar el modelo para suponer que el mantenimiento de inventarios deseados son financiados mediante préstamos de las familias.

III. Las restricciones tecnológicas y sociales y la determinación del salario

Suponemos que la función de producción de la empresa representativa es

$$ Q = F [e, N, K^*] = \min \{ f (e) N, K^* \} \tag{1} $$

donde Q es la producción (neta), N es el número de horas-hombre empleadas, e es un índice de eficiencia laboral, $f(e)$ es la productividad media de los trabajadores empleados (que es función creciente de la eficiencia), y K^* es el capital circulante (o capital de trabajo). Según nuestro supuesto simplificador, el capital circulante es una fracción fija del costo salarial. Por lo tanto, el capital circulante medido en términos de
 unidades de trabajo es \(K^* = bN \), donde \(b \) es un coeficiente de stock-flujo. La función de producción (1) se reduce, entonces, a

\[
Q = N \cdot \min \{ f(e), b \} \tag{1'}
\]

Para ser concretos, vamos a suponer que

\[
f(e) = f^2 - 1/e
\]

donde \(f \) es una constante positiva tal que \(f^2 < b \). Por lo tanto, (1') se transforma en

\[
Q = N(f^2 - 1/e). \tag{2}
\]

Según esta ecuación, la productividad media es función creciente del esfuerzo ejercido y no puede ser mayor que \(f^2 \) aunque el esfuerzo au-
mentara sin límite. El parámetro f puede servirnos de indicador de la situación tecnológico-administrativa. Las mejoras técnicas permiten aumentar la productividad media sin necesidad de aumentar el nivel de esfuerzo.

La parte de arriba de la Figura 1 representa la curva de productividad media. Obsérvese que un aumento en f desplaza a la curva hacia arriba y hacia la izquierda, haciendo aumentar la productividad media de los trabajadores empleados para cada nivel de eficiencia laboral dado.

Es difícil monitorizar el proceso laboral. Los directivos de la empresa saben cuántos trabajadores contratan y la extensión de la jornada laboral. Sin embargo, les resulta difícil controlar la cantidad de trabajo realmente realizado. La motivación humana es uno de los temas más complejos y menos comprendidos de la vida social (J.K. Galbraith (1971)). Y es la motivación adecuada, ya sea la que tiene que ver con el sentido del deber cumplido, ya sea la que tiene que ver con la zanahoria y el garrote, la que puede hacer que los hombres ejerzan su inteligencia y su destreza como componentes elementales de la maquinaria productiva.

Si es difícil comprender la compleja cuestión de la motivación, más difícil aún es representarla analíticamente. A los efectos de este trabajo, resumiremos todos los aspectos psicológicos, sociales y aún políticos que subyacen al proceso laboral en la variable de eficiencia laboral (o, simplemente, esfuerzo), e. Suponemos que son los trabajadores, ya sea individual o colectivamente, los que determinan el valor de e, y que las empresas sólo pueden tener influencia indirecta sobre su valor. Para ello, procuran modificar las variables que sí controlan directamente y que inciden motivacionalmente sobre los trabajadores, induciéndolos a cooperar en el esfuerzo productivo. Tales variables pueden tener que ver con las condiciones de trabajo o con su retribución monetaria o espiritual.

Para simplificar todo lo posible, sin por ello sacrificar los rasgos esenciales de lo que arriba dijimos, vamos a suponer que el nivel de esfuerzo ejercido depende del salario real esperado y de la productividad media. Cuanto mayor es la productividad media del proceso productivo y cuanto mayor es el esfuerzo requerido en él, mayores son las exigencias salariales. En definitiva, vamos a suponer que la relación entre la eficiencia laboral y el salario esperado tiene la siguiente forma funcional:
\[W/P^* = \frac{f}{(u^2 - e)} \]
\[(3) \]

donde \(W \) es la tasa salarial, \(P^* \) es el nivel general de precios esperado, \(f \) es el coeficiente de productividad media de (2) y \(u \) es un coeficiente que indica el máximo nivel de eficiencia concebible (cuya concreción requeriría un salario real esperado de magnitud infinita).

En el lado derecho de la Figura 1 se representa a la curva de equidad. Obsérvese que suponemos que \(1/f^2 < u^2 \) (o sea, \(uf > 1 \)). Si no fuera así, la restricción de equidad sería incompatible con la tecnología. También podemos señalar que \(1/u \) puede interpretarse como un indicador de la "combati-vidad" de los asalariados. Cuando \(u \) disminuye, la curva de equidad se desplaza hacia la izquierda y hacia arriba, haciendo necesariamente un mayor nivel de salario real (esperado) para cada nivel de esfuerzo. Análogamente, los trabajadores pro- \(\text{curan compartir los beneficios de las mejores técnicas. Por ello, cuando } f \text{ aumenta, la curva de equidad se desplaza hacia arriba y se requiere un mayor salario real.} \]

Suponemos que la empresa tiene una percepción correcta de la relación entre el salario real esperado, la productividad media y la eficiencia laboral. Por ello, al determinar el salario nominal que ha de abono- nar, toma a la restricción de equidad, (3), en cuenta. A partir de (2) y (3) se deduce que el costo laboral esperado por unidad de producto es

\[\frac{NW}{QP^*} = h(e) = \frac{cf}{f(u^2 - e)(ef^2 - 1)} \]
\[(4) \]

La Figura 2 representa la función de costo laboral unitario.
La empresa determina tanto el salario como el precio de su producto y el nivel de producción maximizando sus beneficios esperados:

\[R = PQ - (1+br) WN \]

y tomando como dados a la tasa de interés real, \(r \), a la función de costo laboral unitario esperado, (4), y a la función de ventas esperadas que trataremos en la sección siguiente. Sea \(K \) la cantidad de capital fijo invertido en el proceso productivo, o sea, la “capacidad instalada”. Puede expresarse el beneficio real esperado por unidad de capital fijo en la forma

\[\frac{R}{KP^*} = q[p - h(e)(1+br)], \]

(5)

donde hemos definido el coeficiente producto-capital fijo, \(q = Q/K \), y el error de pronóstico de precio, \(p = P/P^* \), de la empresa representativa.

Sea cual sea la función de ventas esperadas de la empresa, ésta siempre estará interesada en minimizar su costo laboral unitario esperado. Por lo tanto, siempre fijará el salario nominal que corresponde al nivel de eficiencia laboral que minimiza \(h(e) \). Ello se debe a que la empresa se considera insignificante con respecto al conjunto de la industria y, por lo tanto, estima que el salario que fije no incide significativamente sobre el nivel salarial general ni sobre la demanda.

En el caso de nuestras funciones específicas, es fácil comprobar que el nivel de esfuerzo que minimiza al costo unitario es \(e = u/f \). En tal caso, el costo laboral unitario real esperado es

\[\frac{WN}{QP^*} = f/(uf - 1)^2 \equiv a, \]

(6)

mientras que el salario real esperado es

\[\frac{W}{P^*} = \frac{f}{u(u-1/f)} \]

(7)

y la productividad media es
Q/N = f(f - 1/u).

(7')

Veamos ahora las consecuencias de los cambios en las exigencias de los trabajadores y en la técnica. Un aumento en las exigencias laborales, como se ve en el lado izquierdo de la Figura 3, comprime a la curva del costo laboral unitario de manera tal que su punto mínimo se ubica a la izquierda y por encima del originario. Por ello, el costo laboral unitario aumenta (lo cual se deduce de (6)), y el nivel de esfuerzo disminuye. Además, (7') nos indica que se resiente la productividad media de los trabajadores empleados. Por último, por (7), el salario real esperado aumenta.

Si la técnica se vuelve más productiva, se ve en la parte derecha de la Figura 3 que la curva de costo laboral unitario se expande de ma-
nera tal que su punto mínimo se ubica por debajo y a la izquierda de su lugar originario. Ello indica que el costo laboral unitario disminuye a pesar de que también disminuye el nivel de esfuerzo. Por (7'), se comprueba que la productividad media de los trabajadores empleados aumenta. Y de (7) se deduce que si $uf > 2$, el salario real esperado aumenta.2

En base a las consideraciones precedentes, en lo sucesivo representaremos al costo laboral unitario esperado mediante la constante a. Sin embargo, debe siempre tenerse presente que tal constancia es sólo válida para un lapso de tiempo lo suficientemente corto como para que el parámetro de equidad, u, no sea cuestionado por las empresas o modificado por los trabajadores y el parámetro de productividad, f, no sea modificado por los cambios tecnológicos o las perturbaciones de oferta.

IV. Expectativas de ventas y fijación de precio y cantidad.

Dado a, la empresa determina el precio de su producto y el nivel de producción que maximiza su beneficio esperado. Para ello, toma como dados el nivel general de precios que espera, P^*, y su función de ventas esperadas.

Suponemos que cada empresa tiene suficientes inventarios de bienes terminados como para hacer frente a volúmenes inesperados de ventas. La señal fundamental que la empresa recibe de su entorno es el nivel de ventas. Cuando las ventas son mayores que lo esperado, las empresas tienen una desacumulación no deseada de inventarios. En tal caso, ajustan su producción para hacer frente a la demanda no esperada y también ajustan sus expectativas de ventas futuras. Para simplificar, nosotros tomamos el supuesto extremo de que la empresa conoce la función de demanda que enfrenta, aunque pueda tener un pronóstico incorrecto del nivel general de precios. Por lo tanto, las empresas erran en su pronóstico de ventas si y sólo si erran en su pronóstico del nivel general de precios.

2 En cambio, si $1 < uf < 2$, la caída en el esfuerzo conduce a una caída en el salario real. Por supuesto, el caso $uf > 2$ es el relevante si el significado de la restricción de equidad es que los trabajadores procuran ganar para sí una parte del aumento en la productividad.
Sea $c(w/p, r, 1)$ la propensión marginal a consumir a partir del ingreso real agregado, Y. Suponemos que esa función depende del nivel del salario real $W/P = w/p$ (donde $w \equiv W/P^*, p \equiv P/P^*$), y de la tasa de interés real, r. La empresa hace un pronóstico de ventas sobre la base del precio que fija, P, dado su nivel general de precios esperado, P^*, pues se considera a sí misma lo suficientemente pequeña como para no afectar a P^* significativamente.

La función de ventas esperadas de la empresa también toma la forma de una propensión a consumir, pero esta vez a partir del ingreso real agregado esperado, Y^*. Por nuestro supuesto simplificatorio, la empresa conoce la forma funcional de la propensión marginal a consumir pero como desconoce que todas las empresas son iguales, no es consciente de que el precio que fije, P, será necesariamente igual al nivel general de precios. Por lo tanto, la propensión marginal esperada es $c(w, r, p)$, la cual puede diferir de la verdadera, $c(w/p, r, 1)$ siempre que p difiera de la unidad.

Suponemos que la propensión a consumir depende del salario real esperado, de la tasa de interés real y de la posición de precio que la empresa espera tener con respecto a sus competidores. Obsérvese que el salario nominal que debe figurar en esa propensión es el nivel general, el cual podría diferir del salario nominal que fija la empresa representativa. Podría, por lo tanto, distinguirse el salario nominal general esperado por la empresa de el particular que la empresa representativa fija.

En tal caso, sería posible suponer que existe un ajuste paulatino en el nivel de salario nominal general esperado de manera tal de ir corrigiendo la discrepancia con el salario nominal promedio. Para ello, podría repetirse el razonamiento dado antes en el sentido que el nivel general de salarios es necesariamente igual al salario nominal que fija la empresa representativa por el hecho de que todas las empresas son iguales aunque no lo saben.\(^3\)

\(^3\) En la versión más general sugerida en el texto, la función de la propensión marginal a consumir esperada podría ser $c(w, r, p, \omega)$, donde $\omega = W^*P^*_0$. $P = P/P^*$, $\omega = W/W^*$ y W^* es el salario promedio esperado. El error de pronóstico del salario nominal de la empresa, ω, jugaría un papel similar al que juega el error de pronóstico del nivel de precios P.
Para no complicar el modelo más de lo que resulta manejable nos abstendremos de suponer un ajuste adaptativo en el salario nominal y, en su lugar, supondremos que tal ajuste es instantáneo. Por ello, el salario nominal general esperado es siempre igual al salario nominal efectivo en cada una de las empresas.

Pero es importante señalar que, en cualquier caso, cuando la empresa fija el salario de manera tal de maximizar beneficios, su variable de control es el salario de su propia empresa, mientras que el salario que figura en la restricción de ventas es el nivel general esperado del salario real. Como suponemos que la empresa se considera insignificante con respecto a la totalidad de la industria, no toma en cuenta la influencia de su propio salario sobre el nivel general. Es por ello que para fijar un salario maximizador de beneficios la empresa sólo necesita minimizar su costo laboral por unidad de producto, como hicimos en la sección precedente.

Resumiendo, la empresa individual fija P en casa período sobre la base de un nivel general de precios, P^*, que espera con certeza, desconociendo que P será necesariamente el nivel general de precios. Cabe acotar que es posible construir un modelo más detallado, en el cual las empresas no son necesariamente idénticas y en el cual el nivel general de precios es un promedio de los precios fijados por las empresas individuales. (M. Weitzman (1986)).

La demanda agregada esperada está compuesta por la suma de las demandas esperadas por las empresas individuales y se origina en la demanda de las familias para consumo, $c(w, r, p)Y^*$, la demanda de las empresas y del gobierno para inversión, $I = iK$ (donde i es la tasa proporcional de inversión, K/K, que tomamos como exógena), la demanda de las empresas para la acumulación deseada de inventarios, $x = S^*$ (donde S representa a los inventarios existentes en el instante t), y la demanda para consumo del gobierno $G = gK$. En definitiva, la demanda agregada esperada es

$$Q = (i + g)K + c(w, r, p)Y^* + x$$

(8)

Las empresas realmente producen esta cantidad, pues para ellas la demanda esperada es una restricción a la cual se ajustan plenamente.

(4) Un punto encima de una variable representa la derivada con respecto al tiempo.
Sin embargo, como el precio verdadero puede diferir del esperado, la demanda verdadera también puede diferir de la esperada. Por un lado, la verdadera propensión a consumir resulta ser $c(w/p, r, 1)$, la cual difiere de $c(w, r, p)$ siempre que p sea diferente de 1. Por otro lado, el ingreso real, Y, puede diferir del esperado, Y^*. Por último, es posible que exista acumulación o desacumulación no deseada de inventarios. Todos estos factores están interrelacionados, como veremos a continuación.

El ingreso real esperado que vamos a tomar como relevante para la determinación del gasto esperado, Y^*, está compuesto por salarios, intereses y beneficios distribuidos esperados. En términos nominales tenemos:

$$Y^*P^* = WN (1+br) + (P^*Q - WN (1+br) - P^*x) = P^*(Q - x)$$

Como tanto los salarios como los intereses constituyen costos para las empresas, y como no estamos teniendo en cuenta los impuestos, el ingreso real esperado es igual a las ventas esperadas, $Q - x$.

Los beneficios distribuidos efectivos pueden diferir de los beneficios distribuidos esperados si hay acumulación o desacumulación no deseada de inventarios. Sea ux la tasa de variación no deseada de inventarios. Luego, el ingreso real efectivo es $Y = Y^* + ux$, ya que la acumulación de inventarios (ya sea ésta deseada o no) no se transfiere en un ingreso a partir del cual sea posible gastar si ella es financiada mediante beneficios no distribuidos, como nosotros suponemos. Por lo antedicho podemos expresar el ingreso nominal efectivo como

$$YP = WN (1+br) + (PQ - WN(1+br) - Px - Pu x) =
= P (Q - x - ux).$$

Como las empresas realmente producen la cantidad dada por (8), y las divergencias entre la oferta y la demanda se traducen en variaciones indeseadas de inventarios, ux, podemos expresar la cantidad producida en forma alternativa

$$Q = (i+g) K + c(w/p, r, 1) Y + x + ux.$$ \tag{9}

De (8) y (9), obtenemos una expresión para la tasa indeseada de acumu-
La expresión de inventarios:

\[u_x = c(w, r, p) Y^* - c(w/p, r, 1) Y. \]

Como indica esta expresión, las discrepancias entre el consumo esperado y el efectivo se convierten en variaciones no deseadas de inventarios. Además, sustituyendo las expresiones dadas para \(Y^* \) e \(Y \), luego de reordenar se obtiene

\[u_x = f(w, r, p) (Q - x) \tag{10} \]

donde

\[f(w, r, p) = \frac{c(w, r, p) - c(w/p, r, 1)}{1 - c(w/p, r, 1)} \]

Por otro lado, mediante (8) y la expresión dada para \(Y^* \) puede obtenirse una expresión para las ventas esperadas:

\[Q - x = (i + g)K/[1 - c(w, r, p)] \tag{11} \]

Por lo tanto, insertando (11) en (10), se obtiene

\[u_x = g(w, r, p) (i + g) K \tag{12} \]

donde

\[g(w, r, p) = \frac{f(w, r, p)}{1 - c(w, r, p)} \]

g(.) es lo que podemos denominar un multiplicador de desequilibrio. Nos dice que múltiplo de la demanda exógena se convierte en variación indeseada de inventarios. Como podría esperarse, ya que sólo estamos considerando desequilibrios de expectativas que atañen al nivel de precios, \(g(w, r, 1) = 0 \) para todo \(w \) y \(r \).

En cuanto a la determinación de la tasa deseada de variación de inventarios, \(x \), vamos a suponer que la empresa trata de ajustar su coeficiente inventario-capital fijo según la discrepancia entre un coe-
ficiente deseado de producto-inventario y el coeficiente existente. O sea, siempre que el coeficiente producto-inventario, Q/S, resulte superior al coeficiente deseado (exógeno), t, la empresa procura aumentar su coeficiente inventario-capital fijo, S/K, según

\[(S/K) = (S/K). k (Q/S - t)\]

donde \(k\) representa la velocidad de ajuste. Como estamos considerando ahora la variación \textit{deseada} de inventarios, de la última expresión resulta\(^5\)

\[x = k(Q - tS) + iS\] \hfill (13)

Como la variación total de inventarios es igual a la suma de la variación deseada, (13), y la variación no deseada, (12), se tiene

\[\dot{S} = k(Q - tS) + iS + g(w, r, p) (i + g) K\] \hfill (14)

Sea \(s = S/K\) el cociente inventario-capital fijo. Luego, diferenciando \(s\) y utilizando (14), obtenemos una de nuestras ecuaciones dinámicas básicas:

\[\dot{s} = k(q - ts) + g(w, r, p) (i + g).\]

Además, introduciendo (13) en (11) (y dividiendo por \(K\)) obtenemos la expresión que representa la restricción de demanda que toman en cuenta las empresas al tomar su decisión de precio y cantidad:

\[q (1 - k) = \frac{i + g}{1 - e(w, r, p)} - (kt - i) s.\] \hfill (15)

Antes de proseguir, conviene detenernos para imponer algunas restricciones sobre los parámetros \(i, t\) y \(k\). En primer lugar, vamos a suponer que \(t > i\) debido a que normalmente en una economía los inventarios deseados son relativamente reducidos con respecto al producto, de manera que \(t\) puede ser bastante elevado.

En segundo lugar, vamos a suponer que \(kt - i > 0\). Este supuesto debe al tipo de comportamiento que deseamos reflejar mediante

\(^5\) Obsérvese que \((K/S) (S/K) = (1/S)\dot{S} - (1/K)K\)
(13). Supongamos que partimos de una situación en que K, S y Q todos crecen a la tasa i y las empresas tienen el coeficiente producto-inventarios deseado, t. Si, por ejemplo, se produjera una perturbación de demanda que redujera el nivel de los inventarios, se producirían dos efectos en (13). Por un lado, se generaríía un ajuste positivo de inventarios, dado por el término k (Q - tS), que pasaría a ser positivo. Por otro lado, se reduciría el crecimiento básico de inventarios, dado por el término iS. Al suponer que kt > i, estamos suponiendo que predomina el primer efecto, de modo que la tasa de cambio deseada de inventarios, x, aumentaría. Y, por lo tanto, la tasa proporcional de crecimiento de inventarios, x/S, se tornaría mayor que i.

En tercer lugar, vamos a suponer que k < 1, o sea, que la velocidad de ajuste de inventarios no es excesivamente elevada. En (15), podemos ver que, debido al supuesto kt - i > 0, una disminución de inventarios, al generar una acumulación deseada de inventarios genera una mayor demanda, por lo cual el término q(1 - k) debe aumentar. Si k fuera mayor que uno, q debería reducirse para que q (1 - k) aumentara. Ello se debe a que cuando k es mayor que uno, la acumulación deseada de inventarios que genera una disminución de los mismos, si eleva a q, eleva aún más la acumulación deseada de inventarios, impiéndiendo el restablecimiento de la oferta con la demanda. Sólo si k es menor que uno se mantiene la propiedad deseada de que una disminución en los inventarios genera una acumulación deseada de inventarios que eleva la oferta estimada por las empresas.

Para simplificar, vamos a suponer que el multiplicador esperado tiene la siguiente forma lineal

\[\frac{1}{1 - c(w, r, p)} = c_0 + c_1 w - c'r - c''p \]

En tal caso, podemos reescribir la restricción de demanda (15) bajo la forma:

\[q = (i' + g') (c - c'r - c''p) - t's \]

(16)

donde

\[c \equiv c_0 + c_1 w, \quad i' \equiv i/(1 - k), \quad g' \equiv g/(1 - k) \]

\[t' \equiv (kt - i)/(1 - k). \]
Por las restricciones impuestas, todos estos coeficientes son positivos.

Análogamente, el multiplicador efectivo es

\[
\frac{1}{1 - c(w/p, r, 1)} = c_0 + c_1 \frac{w}{p} - c' r - c''
\]

Puede verificarse que, bajo tales definiciones de los multiplicadores, \(g(.) \) se reduce a

\[
g(w, p) = c_1 w(1 - 1/p) + c''(1 - p).
\]

En (17) podemos apreciar claramente las dos influencias opuestas que inciden sobre el multiplicador de desequilibrio. Supongamos que \(p \) es mayor que la unidad, o sea, que las empresas fijaron un precio superior al que esperaban. En ese caso, el salario real resulta inferior al esperado. Esta influencia hace que el consumo sea menor al esperado y, por lo tanto, que haya una acumulación no deseada de inventarios. Ello se refleja en el primer término (positivo) del lado derecho de (17).

Por otro lado, el hecho de que cada empresa haya fijado un precio superior al nivel general esperado hizo que cada una esperara una demanda inferior a la de las demás empresas y, por lo tanto, redujera su producción. Como todas proceden de igual manera, el conjunto produce menos, lo cual reduce la acumulación no deseada de inventarios. Esta influencia se refleja en el segundo término (negativo) del lado derecho de (17). El efecto neto es indeterminado y depende de cada caso concreto. Debe tenerse presente que, como cada empresa determina el salario nominal dado por (7) (pues, por suposición, todas enfrentan las mismas condiciones laborales y tecnológicas), en (16) \(w \) es constante. Por lo tanto, \(g(.) \) depende solamente de \(p \) a no ser que varíe alguno de los parámetros que inciden en la determinación de \(w (u y f) \).

El objetivo de la empresa representativa, en definitiva, consiste en maximizar el beneficio real esperado (distribuido o no) por unidad de capital fijo

\[
R/Kp^* = q[p - a(1 + br)]
\]

bajo la restricción (16), y tomando como dada la tasa de interés real,
r. Obsérvese que, como K y P* están dadas en el período unitario (en el instante, en nuestra versión de tiempo continuo), la empresa representativa está, en definitiva, determinando P y Q. En la Figura 4 puede visualizarse la situación de la empresa representativa.

Figura 4

Como la empresa es precio aceptante en lo que refiere a la tasa de interés y el costo laboral real esperado está determinado como una constante, el costo marginal de la empresa es constante. Por otro lado, como la función de demanda esperada (16) es lineal, la curva de ingreso marginal es lineal, decreciente y tiene una pendiente igual al doble de la pendiente de la curva de demanda. La condición de primer orden para la maximización de beneficios (que el costo marginal sea igual al ingreso marginal) y el precio resultante (de la función de demanda), dan las siguientes ecuaciones:

\[DQ \quad 2q = (i' + g') [(c - ac'') - (abc'' + c')r] - t' s \]

\[DP \quad 2c''p = (c + ac'') + (abc'' - c') r - [t'/(i' + g')]s. \]

Un aumento en la tasa de interés hace que la producción de cada empresa baje por dos razones: a) el incremento en el costo (tanto
medio como marginal) del capital circulante y b) la caída en el ingreso marginal debido a la caída en la demanda agregada. Sin embargo, el efecto sobre el nivel de precios es indeterminado, dependiendo del signo de \((abc'' - c')\). Pues, por un lado, las empresas tienden a pasar al menos una parte del mayor costo de su capital circulante al precio y, por otro lado, la menor demanda asociada a la mayor tasa de interés hace que las empresas moderen su precio.

V. Los mercados de activos financieros y las expectativas

A diferencia del tratamiento de desequilibrio que hemos utilizado para el mercado de bienes, vamos a suponer que los mercados de activos financieros están siempre en equilibrio. La tasa de interés nominal se ajusta en forma instantánea como para equilibrar la cantidad de riqueza líquida que las familias desean mantener en la forma de préstamos a las empresas con las necesidades de capital circulante de las empresas. Supongamos que los balances que se ven más abajo representan a la estructura de activos y pasivos de la economía.

\[
\begin{array}{c|c|c}
\text{Empresas} & \text{Familias} & \text{Gobierno} \\
PK & V & Kg \\
WK^* & L & M = M_f + M_e \\
PS & II_{nd} & \\
M_e & \\
\end{array}
\]

Las empresas financian sus inversiones en capital fijo vendiendo acciones. Como suponemos que la tasa de inversión es exógena, lo mismo debemos suponer con respecto a la tasa de emisión de acciones. Además, suponemos que no hay bolsa de valores, por lo cual la compra de una acción equivale a una participación de largo plazo en los beneficios de las empresas. Por otra parte, las empresas financian su capital circulante, \(K^*\), mediante préstamos de las familias, \(L\). Por último, las empresas también mantienen inventarios, \(S\), que son financiados mediante beneficios no distribuidos, \(II_{nd}\).

Las familias son las propietarias de las empresas, por lo cual las acciones existentes, \(V\), constituyen una parte de su riqueza. El resto, que denominaremos \textit{riqueza líquida}, está constituido por los prés-
tamos que les hacen a las empresas y sus tenencias monetarias.

Por su parte, el gobierno también realiza inversiones productivas, manteniendo en consecuencia un stock de capital fijo, K_g. Suponemos que el gobierno incrementa su stock de capital fijo a la misma tasa que las empresas, o sea, i. Consecuentemente, el gobierno mantiene siempre una proporción constante, α, del stock de capital fijo total, K. Por consiguiente, la inversión total de la economía puede descomponerse del siguiente modo:

$$ I = I_c + I_g = i(K_f + K_g) = i(1 - \alpha)K + \alpha K = iK. $$

Las familias pueden distribuir su riqueza líquida entre tenencias de dinero (M_h), y préstamos a las empresas (L). Sea r_n la tasa nominal de interés y sea $\theta(r_n)$ la fracción de su riqueza líquida que las familias desean mantener en la forma de dinero. Entonces, como la riqueza líquida de las familias es $M_h + L$, se tiene

$$ M_h = \theta(r_n)(M_h + L) $$

en todo instante.\(^6\)

Por otro lado, las empresas demandan préstamos para cubrir sus necesidades de capital circulante, el cual consiste en la cantidad de dinero que necesitan para efectuar sus transacciones normales. Como el capital circulante es, por hipótesis, $bWN = abP*Q$, se tiene

$$ M_f \equiv I = abP*Q \tag{19} $$

De las dos ecuaciones precedentes obtenemos

$$ M = M_h + M_f = \frac{1}{1 - \theta(r_n)}abP*Q \tag{20} $$

\(^6\) Obsérvese que es la tasa de interés nominal la variable que determina la composición de las carteras de activos. Ello se debe a que la tasa de rendimiento real de un préstamo es la tasa de interés real, r, mientras que la tasa de rendimiento real de la tenencia de dinero es menos la tasa de inflación esperada, $\pi_e = -\pi*P*$. Por lo tanto, si suponemos que la diferencia entre las dos tasas de rendimiento real es lo que determina la composición de las carteras, $r - (\pi*) = r - P* = \pi_e$, es la variable determinante. En una versión más general de la ecuación de equilibrio de carteras de las familias tomaremos a ℓ como función de ambas tasas de rendimiento real tomadas en forma individual, o sea, $\ell(r, \pi_e) = \ell(r_n - \pi_{e,*} - \pi_{e,\ell}).$
Para ser concretos, vamos a suponer que

$$\ell(\bar{r}_n) = 1 - \bar{r}_n,$$

donde \(\lambda \) es una constante positiva. Definamos, además, el stock de dinero real esperado por unidad de capital fijo, \(m = M/P^*K \). Luego, después de dividir por \(K' \) y simplificar, (20) se convierte en

$$LM \quad q = (1/\lambda)b mr_n$$

El gobierno tiene un gasto de inversión, \(I_g = P\cdot dK_g/dt = \alpha dPK \), y un gasto de consumo, \(C_g = gPK \), los cuales financia mediante la emisión de dinero. Esto implica que la restricción financiera del gobierno está dada por

$$\dot{M} = (\alpha i + g) PK.$$

Por lo tanto, la tasa proporcional de emisión monetaria, \(\mu \equiv M/M, \) es

$$EM \quad \mu = (\alpha i + g) p/m.$$

El último elemento de nuestro sistema es la ecuación de ajuste del nivel general de precios esperado. Suponemos que el nivel de precios esperado se va ajustando de manera que en el largo plazo las expectativas se verifiquen. Por lo tanto, en el largo plazo se tiene un pronóstico correcto, no sólo del nivel de precios sino también, de la tasa de inflación.

¿Cuál es la tasa de inflación de largo plazo? En el largo plazo deseamos tener un estado de crecimiento proporcional de todas las variables reales. Como \(K \) crece a la tasa \(i, \) \(M/P \) (que en el largo plazo es igual a \(M/P^* \)) también debe crecer a esa tasa en el largo plazo. La tasa de crecimiento de \(M/P \) es \(\mu - \pi, \) donde hemos definido a la tasa de inflación \(\pi \equiv P/P. \) En el largo plazo, entonces, debe ser \(\pi^* = \mu^* - \pi^7. \) Por consiguiente, la tasa de crecimiento de \(M \) en el largo plazo determina cuál será la tasa de inflación.

Si bien en el largo plazo las expectativas deben realizarse, durante un período transitorio (que puede ser arbitrariamente largo) el

(7) Adoptaremos una convención notacional que una estrella en una variable endógena minúscula significa su valor de equilibrio de largo plazo.
nivel de precios esperado se va ajustando adaptativamente de manera de ir corrigiendo la discrepancia entre el nivel de precios esperado y el verdadero, mientras que la tasa de inflación esperada va tendiendo asintomáticamente hacia la diferencia entre la tasa de emisión monetaria y la tasa de crecimiento. En concreto, tenemos la siguiente ecuación de ajuste:

\[\dot{P} = v(P - P^*) + P^* (\mu - \alpha) \]

(23)

donde \(v\) es la velocidad de ajuste, (23) implica que la tasa esperada de inflación, \(\pi_c \equiv \dot{P}^*/P^*\), es

\[\pi_c = \mu - \alpha + v(p - 1) \]

Una ecuación adicional está dada por la relación entre la tasa de interés nominal y la tasa de interés real

\[r_n = r + \pi_c \]

Por último, si diferenciamos la definición de \(m\) e introducimos TI, obtenemos la ecuación de ajuste monetario:

\[\dot{m} = vm (1 - p) \]

VI. El modelo en su conjunto y su funcionamiento

A continuación se listan las ecuaciones que componen el modelo.

Determinación de precio

\[2c'P = (e + ac'') + hr - r''s \]

Determinación de cantidad

\[2q = (i' + g')(e - ac'') - (abc'' + c')r - r's \]

Equilibrio en los mercados de activos

\[q = (\cdot/ab) m_{rn} \]
Tasa de interés nominal

\[r_n = r + \pi_e \]

Tasa de inflación

\[\pi_e = \mu - i + \nu(p - 1) \]

Tasa de emisión monetaria

\[\mu = (\alpha i + g)p/m \]

Ajuste de inventarios

\[s = k(q - ts) + g(p)(i + g) \]

Ajuste monetario

\[m = \nu m(1 - p) \]

donde

\[p \equiv P/P^*, \quad w \equiv W/P^* \quad q \equiv Q/K, \quad s \equiv S/K, \quad m \equiv M/P^* K, \]

\[i \equiv K/K \quad c \equiv c_0 + c_1 w \quad h \equiv \frac{abc''}{c'} \]

\[g(p) \equiv c_1 w(1 - 1/p) + c''(1 - p) \quad i' \equiv i/(1 - k) \]

\[g' \equiv g/(1 - k), \quad t' \equiv (kt - i)/(1 - k), \quad t'' \equiv t'/(i' + g'). \]

Este sistema de ocho ecuaciones determina las trayectorias de las ocho variables, \(m, s, q, p, r_n, r, \pi_e, \mu \) dados sus valores iniciales. En cada período (que por conveniencia tomamos como infinitesimal), las empresas determinan el precio y la cantidad a producir según DP y DQ, tomando como dado su cociente de inventarios-capital fijo, \(s \), así como la tasa de interés real. Por otro lado, la tasa de interés nominal se ajusta en cada período como para satisfacer LM, manteniendo así en equilibrio tanto al mercado de dinero como al mercado de préstamos.
Por IN, la tasa de interés nominal debe ser igual a la tasa de interés real más la tasa de inflación esperada. Por TI, la tasa de inflación esperada depende directamente de la tasa de emisión monetaria, la cual, por EM, depende del gasto público a financiar.

A medida que transcurre el tiempo, se ajustan la producción de inventarios y las expectativas de precios. Tales ajustes dan lugar a los ajustes del cociente de inventarios-capital fijo, s, y del cociente de dinero real esperado-capital fijo, m, que están plasmados en las dos ecuaciones dinámicas, AS y AM.

Suponiendo que exista una solución estacionaria, y que la convergencia es estable, se desprende de AM que en una solución de largo plazo p debe ser igual a uno, es decir, las expectativas de precio deben verse confirmadas. Por lo tanto, las expectativas de venta de las empresas también se ven confirmadas y no existe desequilibrio en el mercado de bienes. En consecuencia, g(p) = g(1) = 0, y todo el ajuste de inventarios es voluntario. Además, por AS, q debe ser igual a ts, o sea, las empresas tienen el cociente producto-inventario deseado (Q/S = t).

1. El estado estacionario

Analicemos, en primer término, el funcionamiento de largo plazo del modelo. Puede comprobarse que en el estado estacionario las ecuaciones estáticas se reducen a

\[\text{DP}^* \ 2c'' = (c + ac'') + hr^* - r''q^*\]

\[\text{DQ}^* \ 2q^* = i''[c - ac'' - (abc'' + c') r^*]\]

\[\text{LM}^* \ abq^* = \gamma m^*r^*\]

\[\text{IN}^* \ r^*_n = r^* + \pi^*\]

\[\text{TI}^* \ \pi^* = \mu^* - i\]

\[\text{EM}^* \ \mu^*m^* = (\alpha i + g)\]

donde \(i'' \equiv (i + g) t/(t - i)\)
Cabe observar que las primeras dos ecuaciones determinan los valores de largo plazo de \(q \) y \(r \). Dados \(q^* \) y \(r^* \), las restantes ecuaciones determinan \(m^* \), \(r_n^* \), \(\pi^* \) y \(\mu^* \). Por lo tanto, el sistema se descompone en una parte real y una parte monetaria.

Cuando la tasa de emisión monetaria de largo plazo es igual a la tasa de crecimiento de la economía, la tasa (tanto esperada como efectiva) de inflación de largo plazo es nula. En ese caso, como \(M \) y \(K \) evolucionan de manera tal que \(M/K \) es constante, en definitiva \(LM^* \) sólo determina el nivel general de precios del estado estacionario. En otras palabras, la Teoría Cuantitativa del Dinero rige en el largo plazo. Sin embargo, tanto en el corto como en el largo plazo, el nivel de precios es determinado según el comportamiento maximizador de beneficios de las empresas y sus expectativas de demanda.

Por supuesto, en general la tasa de emisión de largo plazo puede ser diferente de la tasa de crecimiento pues ella es endógena y depende del gasto público a financiar. Si es menor, deberá haber deflación de precios en el estado estacionario. Y, viceversa, si la tasa de emisión es mayor que la tasa de crecimiento, deberá haber inflación en el estado estacionario. Como \(m^* \) es constante, si \(M \) y \(K \) están creciendo a tasas diferentes la tasa de crecimiento de \(P \) debe compensar la diferencia entre las tasas de crecimiento de esas dos variables, determinándose así la tasa de inflación.

Para resolver la parte monetaria del sistema de largo plazo, resulta conveniente sustituir \(IN^* \), \(TI^* \) y \(EM^* \) en \(LM^* \), obteniéndose:

\[
(ab/1) \, q^* = (\alpha i + g) + (r^* - i)m^* \quad \text{LM}_0^*
\]

Esta ecuación determina \(m^* \), una vez dados \(q^* \) y \(r^* \) por la parte real del sistema. A su vez, con \(m^* \) pueden obtenerse sucesivamente \(\mu^* \), \(\pi^* \) y \(r_n^* \) mediante las ecuaciones \(EM^* \), \(TI^* \) y \(IN^* \), respectivamente.

Para graficar la parte monetaria del sistema, conviene reemplazar \(IN^* \) en \(LM^* \), obteniéndose

\[
(ab/1)q^* = m^*(r^* + \pi^*). \quad \text{LM}_1^*
\]

Si tomamos \(\pi^* \) y \(m^* \) como constantes (a los efectos del gráfico), podemos graficar esta ecuación en un cuadrante \(q - r \), junto con \(DP^* \) y \(DQ^* \). En la Figura 5 se grafican las rectas \(DP^* \), \(DQ^* \) y \(LM^* \).
Se tomó allí $h = a b c'' - c'$ como negativo. La intersección de DP^* y DQ^* determina a r^* y q^*. LM^* debe pasar necesariamente por esa intersección.

La ordenada al origen de LM^* indica la magnitud de π^* y la inversa de su pendiente indica la magnitud de $\frac{1}{a b} m^* \pi^*$. Además, LM^* corta al eje q en $(\frac{1}{a b}) m^* \pi^*$, magnitud indicadora del impuesto inflacionario real, $m^* \pi^*$. El gráfico también permite visualizar la magnitud de la tasa de emisión monetaria y de la tasa de interés nominal, ambas de largo plazo. Además, desplazando la recta LM^* en forma paralela y hacia abajo una distancia i (representando, entonces, la ordenada al origen la tasa de emisión monetaria), la recta corta al eje q en $(\frac{1}{a b}) m^* \mu^*$, magnitud indicadora del señorazgo real, $m^* \mu^*$. La diferencia entre el señorazgo y el impuesto inflacionario puede denominarse el señorazgo no inflacionario.
Enfocando la atención sobre la parte real del sistema, es interesante observar la relación de largo plazo entre los coeficientes que inciden sobre la determinación del salario real esperado (o sea, el coeficiente de combatividad, 1/u y el coeficiente tecnológico, f), la tasa de interés, y los beneficios unitarios.

Utilizando DP* y DQ*, puede obtenerse el coeficiente producto-capital, la tasa de interés real y los beneficios reales unitarios, todos de largo plazo:

\[
q^* = \frac{\gamma (c-c')abc'' - c''(1-a) c'}{abc'' - k'c'} \tag{24a}
\]

\[
r^* = \frac{c''(1-a) - k'(c-c'')}{abc'' - k'c'} \tag{24b}
\]

\[
1 - a(1 + br^*) = k'. \frac{(c-c')ab - (1-a)c'}{abc'' - k'c'} \tag{24c}
\]

donde
\[k' = (1-k)t/(t-1) = 1 - (kt - i)/(t - 1).\]

Una primera observación que podemos hacer con respecto a estas fórmulas es que ni la tasa de interés real de largo plazo ni los beneficios reales unitarios de largo plazo dependen de los gastos de consumo del gobierno, g. Tales variables dependen fundamentalmente de los costos laborales unitarios, a, del coeficiente que indica la influencia del salario real sobre el consumo, c, así como de muchos otros de los parámetros del modelo. En cambio, el coeficiente producto-capital de largo plazo sí depende (positivamente) de los gastos de consumo del gobierno.

Recordemos de la sección III que cuando 1/u aumenta, también aumentan tanto el salario real esperado, w, como el costo laboral unitario, a. A su vez, como \[c = c_0 + c_1 w,\] también aumenta la propensión media a consumir de largo plazo. Por lo tanto, se desprende de la expresión dada para la tasa de interés de largo plazo que esta debe disminuir ante las mayores exigencias salariales de los trabajadores. Sin embargo, los efectos de los mayores reclamos laborales sobre los beneficios unitarios y sobre el coeficiente producto-capital son ambiguos.
Por último, recordemos que los aumentos en el coeficiente tecnológico, f, hacen también aumentar el salario real esperado. Sin embargo, como también hacen disminuir el costo salarial unitario, el efecto sobre r^*, q^* y $1-a(1+br^*)$ es ambiguo.

2. El corto y mediano plazo.

Para analizar el sistema fuera del estado estacionario, es conveniente también reducir su dimensionalidad. Para ello puede procederse en forma análoga a lo que hicimos en el caso del largo plazo. Eliminamos r_n, μ, π_c de LM utilizando IN, EN y TI, respectivamente. El sistema resultante es

\[
\begin{align*}
2c''p &= (c + ac'') + hr - t''s & \text{DP} \\
2q &= (i' + g') \left[c - ac'' - (abc'' + c')r \right] - t's & \text{DQ} \\
(ab/l)_q &= (ai + g)p + [r - i + v(p - 1)]m & \text{LM}_0 \\
\dot{s} &= k(q - ts) + g(p) (i + g) & \text{AS} \\
\dot{m} &= v(m (1 - p)) & \text{AM}
\end{align*}
\]

Consideremos primero las ecuaciones estáticas DP, DQ y LM, que determinan los efectos de impacto (o de corto plazo) de las medidas de política (y de otras perturbaciones) sobre las variables endógenas no sujetas a ecuaciones de ajuste dinámico, p, q y r. Tales ecuaciones están representadas en la Figura 6. Para graficar la recta LM se elimina p de la ecuación LM$_0$ utilizando la ecuación DP.

Definiremos el corto plazo como un plazo lo suficientemente corto como para que s y m no hayan tenido tiempo de reaccionar a la influencia de AS y AM. En el plazo intermedio, tales variables se ajustan y desplazan a las curvas de la figura. En el largo plazo, las variables s y m dejan de ajustarse pues se ha alcanzado el estado estacionario en el cual la producción, el stock de capital fijo, el stock de dinero real y los inventarios todos crecen a la tasa constante i mientras que el nivel general de precios también puede estar creciendo (o decreciendo) pero no necesariamente a esa tasa.
Dados r y s, DP y DQ determinan el precio y la cantidad fijados por las empresas. Recordemos que las ecuaciones DQ y DP son simplemente las que provienen de la condición de primer orden de maximización de beneficios. El coeficiente h (≡ abc"−c"), que determina el signo de la influencia directa de la tasa de interés sobre el precio, da el signo de la pendiente de la curva PD. Tal pendiente es importante para la determinación de algunos de los signos de los multiplicadores de corto plazo (y para el análisis de estabilidad del Apéndice).

Como se pone de manifiesto en la Figura 6, las rectas DP y DQ
dependen de s y la curva LM depende tanto de s como de m. También hemos graficado allí la recta TI, que es combinación de las ecuaciones TI y EM, y depende de m. Por supuesto, estas rectas también dependen de otros parámetros, como el salario real esperado, la tasa de interés, los coeficientes de la demanda agregada, la elasticidad interés de la
demanda de dinero de las familias como proporción de su riqueza líquida y el coeficiente de capital circulante de las empresas. Pero el interés de la dependencia de las curvas con respecto a s y m radica en que éstas últimas varían endógenamente a medida que transcurre el tiempo según las ecuaciones de ajuste AS y AM, desplazando así a las curvas.

Cuando alguno de los parámetros exógenos es perturbado, las rectas LM y DQ se desplazan de sus situaciones de largo plazo, determinando así los valores de corto plazo de r y q. También es posible que se desplacen las rectas DP y TI. Sin embargo, luego del impacto inicial, la dinámica de las expectativas de precios y de la acumulación deseada de inventarios comienzan a operar, lo cual modifica los valores de m y s, y, por lo tanto, desplaza aún más a las rectas, hasta que, eventualmente, convergen hacia sus (nuevas) ubicaciones de largo plazo.

3. La dinámica.

Si, en lugar de eliminar p de las ecuaciones estáticas, eliminamos r, obtenemos dos ecuaciones en p y q que pueden resolverse para expresar a esas variables en función de s y m (así como de todos los parámetros). Al reemplazar esas expresiones en las dos ecuaciones dinámicas, obtenemos un sistema dinámico susceptible de ser graficado en un cuadrante s-m, como se ve en la Figura 7. Tal sistema tiene la siguiente forma:

\[
\dot{s} = k[q(s,m) - ts] + g(p(s,m)) (i + g)
\]

\[
\dot{m} = vm[1 - p(s,m)]
\]

Los valores de equilibrio de largo plazo, o solución estacionaria, del sistema deben anular a las derivadas con respecto al tiempo. Por la forma de AM* es evidente que es necesario que en un equilibrio de largo plazo sea p = 1 (pues descartamos la posibilidad m = 0, que sólo podría tener lugar si el nivel de precios o el stock de capital fijo fuera infinito). Como ello implica que todas las expectativas de precio se ven confirmadas, lo mismo sucede con las expectativas de ventas. Por lo tanto, no hay variación indeseada de inventarios, o sea, g(p) = g(1) = 0, como puede apreciarse en (17). En tal caso, se ve en AM* que q(s,m)
= ts, o sea, en la solución de largo plazo el cociente producto-inventario, \(Q/S \equiv q/s \), es el deseado.

Figura 7

En la Figura 7, las flechitas indican las direcciones de movimiento de las variables en los cuatro sectores definidos por las dos rectas. La curva trazada da una idea del movimiento de las variables cuando se parte de un punto particular. El movimiento puede ser convergente a la solución estacionaria o puede no serlo, según que exista o no exista estabilidad.

Hay diversos casos posibles según los signos de \(h \) y de \(r^* - i \). Se demuestra en el Apéndice que para un stock monetario (positivo) tenga el efecto usual de desplazar la recta LM hacia la derecha es necesario que \(r^* - i \) sea positivo. Además, se ve allí que si tanto \(r^* - i \) como \(h \) son positivos el equilibrio de largo plazo es inestable. También se demuestra en el Apéndice que si \(r^* - i \) es positivo y \(h \) es negativo, para tener estabilidad es necesario que \(g'(1) \equiv c_1 w - c'' \) sea negativo. Esto significa que en el estado estacionario un aumento en el error de pronóstico de precios, \(p \), genera una desacumulación no deseada de inventarios.

Para restringirnos al caso económicamente relevante y estable,
entonces, vamos a suponer que en el estado estacionario, la tasa de interés real es mayor que la tasa de crecimiento, que el efecto directo de la tasa de interés real sobre los precios es negativo y que el efecto de una subestimación en el nivel general de precios (p > 1) da lugar a una desacumulación no deseada de inventarios. El último supuesto significa que predomina la moderación en la decisión de producción de las empresas individuales ante la creencia de que van a perder ventas a “la competencia” sobre la sobreestimación del poder adquisitivo de los asalariados. En el caso analizado, las trayectorias de desequilibrio resultan convergentes y cíclicas en el sentido contrario a las agujas del reloj.

VII. Efectos de diversas perturbaciones.

A continuación vamos a estudiar los efectos de corto y de largo plazo de diversas perturbaciones a las variables exógenas del sistema. En general, vamos a suponer que tales modificaciones son conocidas en forma instantánea por todos los agentes económicos.

Para tener el sabor del funcionamiento del modelo, comenzaremos analizando dos perturbaciones bastante ad hoc. En primer lugar, tomaremos el caso de una disminución repentina de los inventarios de bienes terminados de las empresas. Ello podría deberse, por ejemplo, a una destrucción física debido a una catástrofe. En segundo lugar, tomaremos el caso de un aumento repentino de los saldos monetarios reales de las familias. Tal sería el caso de los “billetes lanzados desde helicópteros”, al cual son adeptos muchos economistas monetarios.

En ninguno de estos dos casos se verían modificados en forma duradera las ecuaciones de comportamiento que hemos definido. En particular, no se verían modificadas las ecuaciones que definen el estado estacionario. Pero la perturbación inicial sí daría lugar a un efecto de impacto y a una dinámica que impulsaría a las variables a retornar a sus valores de equilibrio de largo plazo.

En el primer caso, la disminución en s afectaría a las decisiones de producción y precio de las empresas. Pues, como éstas necesitan recuperar sus niveles de inventarios, deben producir más y elevar sus precios. De tal modo, en la Figura 6 se desplaza la recta DP hacia la izquierda y las rectas DQ y LM hacia la derecha. Por lo tanto, aumen-
tan el coeficiente producto-capital fijo y el error de pronóstico de precios. El efecto sobre la tasa de interés real es indefinido, dependiendo de cual de las rectas DQ y LM sea más afectada. La mayor producción de las empresas en aras de recuperar sus niveles de inventarios las hace demandar más financiación para su capital circulante. Pero el error de pronóstico de precios genera expectativas inflacionarias, haciendo aumentar la tasa de interés nominal, por lo cual las familias están dispuestas a economizar en sus saldos monetarios aumentando su oferta de fondos. Por último, el error de pronóstico de precios hace revisar hacia arriba el nivel de precios esperado, disminuyendo así la masa monetaria real esperada, m.

En el plano de fases de la Figura 7, ninguna de las isoclinas se ven afectadas por la destrucción de inventarios, por lo cual el punto de equilibrio permanece intacto. Lo que ocurre es que el punto que representa el estado de la economía se desplaza horizontalmente hacia la izquierda. A partir de allí se inicia el movimiento dinámico, comenzando por una gradual recuperación del coeficiente inventarios-capital fijo y una gradual disminución del coeficiente masa monetaria real esperada-capital fijo.

En el caso del shock monetario, la curva LM se desplazaría hacia la derecha, haciendo aumentar el coeficiente producto-capital fijo y disminuir la tasa de interés. La disminución en la tasa de interés, hace prever mayor demanda de bienes, por lo cual las empresas aumentan sus precios. También planean aumentar sus inventarios. Sin embargo, el error de pronóstico del nivel general de precios en que cada una incurre las lleva a esperar individualmente una menor demanda debido a la pérdida de clientes (hacia las demás empresas), por lo cual efectivamente incurren en pérdida de inventarios debido a que la desacumulación involuntaria resulta ser mayor que la acumulación planeada.

Por el lado monetario, el error de pronóstico del nivel general de precios lleva a las empresas a ajustar hacia arriba su nivel de precios esperado, por lo cual disminuye la masa monetaria real esperada (con respecto al capital fijo). La reducción en s y en m inicia la trayectoria dinámica convergente y cíclica.

1. Sustitución de inversión privada por inversión pública.

Consideremos los efectos de un incremento en α, la participa-
ción del gobierno en la inversión (y en el stock de capital fijo). Ante una reducción en la inversión privada, el gobierno podría aumentar la inversión pública (y simultáneamente nacionalizar algunas empresas), dando lugar a un incremento en α, sin que se modifique la tasa de inversión global de la economía i.

Como α no figura ni en DP* ni en DQ*, la parte real del sistema no sería afectada. Por consiguiente, q* y r* no se ven modificados. Sin embargo, la mayor inversión pública debe ser financiada mediante una mayor emisión monetaria. El efecto sobre la tasa de emisión (y, por TI*, sobre la tasa de inflación), dependerá de lo que suceda con m*, como se ve en EM*. Por LM*, comprobamos que el signo de r*—i es determinante del efecto sobre m*. Como estamos suponiendo que r* > i, m* debe disminuir.

A su vez, la Figura 5 nos dice cuál es el efecto sobre la tasa de inflación. Como m* disminuye, también debe disminuir el ángulo que forma la recta LM* con el eje r. Por otro lado, la recta LM* debe seguir pasando por la intersección de DP* y DQ*. Por lo tanto, se desprende del gráfico que la tasa de inflación debe aumentar. Además, el impuesto inflacionario real debe aumentar con respecto al stock de capital (m*π* aumenta)

Lo que ocurre es que cuando r* > i, la mayor emisión monetaria, al hacer disminuir la masa monetaria real, hace aumentar la tasa de emisión monetaria tanto por el mayor numerador como por el menor numerador. Con ello aumenta también la tasa de inflación y la tasa de interés nominal. Es esta mayor tasa de interés nominal la que incentiva a las familias a economizar sus saldos monetarios, aumentando sus préstamos a las empresas y haciendo así disminuir la base del impuesto inflacionario. Por ende, la tasa de inflación debe aumentar no sólo debido a que hay un mayor gasto público para financiar sino también debido a que desciende la base del impuesto inflacionario.

Pasemos ahora a los efectos de corto plazo de un aumento en α. Nuevamente, ni DP ni DQ se ven afectadas en lo inmediato. Por LM0, vemos que la recta LM se desplaza en forma paralela hacia la derecha debido a que aumenta la tasa de inflación esperada. Por lo tanto, q aumenta y r disminuye en el corto plazo. A su vez, la disminución en la tasa de interés real, al hacer prever mayor demanda, hace que las empresas aumenten sus precios.

En la Figura 8 representamos los efectos de un incremento en
α. La recta LM desplazada por el efecto de corto plazo está dibujada con trazo punteado. En el diagrama de fase, las dos isoclinas se desplazan hacia la derecha debido a los efectos de la perturbación sobre r, q y p. En el cuadrante sudeste se representa adicionalmente la ecuación TI. Esta se desplaza inicialmente por el incremento en α y posteriormente se desplaza aún más debido a la disminución en m*. La situación intermedia de TI permite obtener la tasa de inflación esperada luego del impacto sobre el eje π. Obsérvese que la ordenada al origen de la LM de corto plazo no indica la tasa de inflación esperada de corto plazo (a diferencia de lo que sucede con la LM de largo plazo).

Figura 8
La mayor producción provocada por la inyección de liquidez que implica el aumento en la financiación monetaria de un mayor gasto público desequilibra al cociente producto-inventarios, lo cual requiere un ajuste deseado de inventarios. Sin embargo, el mayor nivel de precios generado por la disminución en la tasa de interés (y la consecuente menor demanda agregada esperada) hace que cada empresa modere sus expectativas individuales de ventas, revisando consecuentemente hacia abajo su meta de producción. Ello produce una desacumulación no planeada de inventarios que predomina sobre la acumulación planeada, haciendo que disminuya el nivel efectivo de inventarios (en relación con el stock de capital fijo).

Por otro lado, en cuanto transcurre un pequeño intervalo de tiempo, los agentes económicos se percatan del aumento habido en el nivel general de precios y comienzan a ajustar su nivel de precios esperado, P^*. Esto implica que comienzan a esperar inflación, lo cual abre una brecha entre la tasa real de interés y la nominal.

El aumento de precios hace descender la masa monetaria real. Como ahora comienza a esperarse inflación de precios, también comienza a descender la masa monetaria real esperada, aunque no tan rápidamente como la verdadera debido al rezago del nivel de precios esperados con respecto al verdadero, como se evidencia en un aumento de p.

Gráficamente, la disminución paulatina en la recta DP hacia la izquierda y a la recta DQ hacia la derecha. La recta LM también se ve afectada pero de manera incierta. Por un lado, la baja en la oferta monetaria real esperada, luego del aumento inicial, tiende a desplazarla hacia la izquierda. Por el otro lado, el aumento en la tasa de inflación esperada y, por lo tanto, en la tasa de interés nominal, tiende a desplazar hacia la derecha. La razón de esto último es que la mayor tasa de interés nominal hace aumentar el costo de oportunidad de mantener dinero, o sea, aumenta la oferta de préstamos de las familias a las empresas. El equilibrio en el mercado de dinero, por lo tanto, exige también una mayor demanda por parte de las empresas. Y como éstas demandan préstamos para financiar su capital circulante, es necesario que aumente la producción.

Como dijimos arriba, el aumento inicial en la masa monetaria hace bajar la tasa de interés real y aumentar el nivel de precios, abriéndose así una brecha entre el nivel general de precios y el esperado. Esa
brecha genera un error de pronóstico de ventas. Bajo nuestros supuestos \(g'(1) < 0 \), se subestima las ventas, por lo cual se produce una desacumulación indeseada de inventarios. También se produce un deseo de aumentar inventarios por parte de las empresas, pues, ante la mayor producción, aumentó el cociente producto-inventario con respecto al deseado \((t) \). Sin embargo, nosotros suponemos que predomina la desacumulación no deseada sobre el ajuste positivo planeado de los inventarios. Por ello, se produce una desacumulación neta de inventarios.

Tanto el cociente masa monetaria real esperada-capital fijo como el cociente inventarios-capital fijo siguen descendiendo. Eventualmente, \(s \) es lo suficientemente pequeño como para que ese el ajuste de inventarios. Ello debe a que el ajuste deseado de inventarios ha ido creciendo gradualmente por el aumento en \(q \) y la disminución en \(s \).

Por ello, en algún punto el ajuste \textbf{deseado} de inventarios exactamente compensa la desacumulación \textbf{no deseada} de inventarios, de manera que el efecto neto es nulo. Como en ese punto \(s \) ha dejado de ajustarse, la curva DP ha dejado de desplazarse hacia la izquierda, y la curva DQ ha dejado de desplazarse hacia la derecha. Por lo primero, \(p \) llegó a su máximo y a partir de ese punto comienza a cerrarse la brecha entre el nivel de precios esperado y el verdadero. Como \(p \) llegó a su máximo la desacumulación indeseada de inventarios tiene un mínimo.

Cuando se llega a ese punto, sin embargo, aún existe desequilibrio en las expectativas de precios: \(p \) sigue siendo mayor que uno. Eso implica que el nivel de precios esperado sigue retrasado con respecto al real, y bien esa brecha comienza a cerrarse. Por lo tanto, se sigue previendo inflación y \(m \) continúa descendiendo. Esto vuelve a desequilibrar a los inventarios pero ahora en la dirección contraria. Pues partiendo de una situación estacionaria para \(s \) (y, por lo tanto, para el ajuste deseado de inventarios), al disminuir \(p \) también disminuye la desacumulación no deseada de inventarios. Por lo tanto, a partir de ese instante comienza a predominar la acumulación deseada de inventarios y \(s \) comienza a aumentar.

Ahora \(m \) disminuye mientras \(s \) aumenta. Eventualmente se llega nuevamente a \(p = 1 \), o sea, a una situación estacionaria para \(m \). Sin embargo, sigue habiendo acumulación neta de inventarios, por lo cual \(p \) sigue disminuyendo y se hace ahora menor que uno. Por ello, \(m \) comienza ahora a aumentar. El proceso cíclico continúa hasta que las variables \(s \), \(p \), \(q \) y \(r \) todas vuelven a sus niveles iniciales de equilibrio.
de largo plazo. En la situación final, sólo las variables monetarias, m, μ y π han cambiado.

2. Sustitución de inversión privada por consumo público.

Consideremos ahora los efectos de una reducción en la tasa de inversión, i, que el gobierno compensa mediante un aumento en los gastos de consumo, g, de igual magnitud. Como en el caso anterior, la parte real de la economía no se ve afectada en el largo plazo. Pues i y g siempre figuran en las ecuaciones DP y DQ bajo la firma $i + g$, que no se ve modificado. Sin embargo, siempre que una parte de la disminución en la inversión tenga lugar en el sector privado, la condición de equilibrio en los mercados de activos sí se ve modificada, pues aumenta el gasto público como proporción del stock de capital fijo, $\alpha i + g$. Esto afecta a m^*.

Como en el caso anterior, puede observarse en LM_0 que m^* disminuye sí y sólo si $r^* > i$. En la Figura 5 podemos apreciar nuevamente que si m^* disminuye, deben aumentar tanto la tasa de inflación como la razón impuesto inflacionario-capital fijo de largo plazo.

Además, el efecto de corto plazo también consiste en incrementar la tasa de inflación esperada, desplazando así la recta LM en forma paralela hacia la derecha. Por lo tanto, todo lo que hemos dicho con respecto a la dinámica en el caso anterior es válido para éste. La única diferencia consiste en que ahora en el estado estacionario final todas las variables reales, K, Q, S, M/P, K^* estarán creciendo a una tasa menor que en la situación original. En ambos casos aumentará la tasa de inflación. Puede comprobarse que este aumento será mayor en el caso de una sustitución de gastos de inversión por gastos de consumo sí y sólo si $m^* > \alpha$.

3. Aumento en la oferta de préstamos de las familias

Si α aumenta, baja la demanda de dinero como proporción de la riqueza de las familias para cada nivel de la tasa nominal de interés. Por lo tanto, las familias están dispuestas a ofrecer una mayor proporción de su riqueza en préstamos a las empresas. En otras palabras, las familias se vuelven más sensibles en su decisión de cartera a la tasa de interés del mercado. Ello podría deberse a una reducción
en el riesgo percibido sobre los préstamos a las empresas.

Aquí tenemos otro caso en que en el largo plazo no se ve afectada la parte real de la economía. Sin embargo, como en los dos casos precedentes, la razón dinero real-capital fijo, \(m^* \), disminuye. Como las necesidades de financiamiento del sector público no se han modificado, el gobierno debe aumentar la tasa de emisión monetaria, pues con una menor base imponible, necesita una mayor tasa de emisión para recaudar el mismo impuesto inflacionario. La mayor tasa de emisión monetaria implica una mayor tasa de inflación de largo plazo.

En la Figura 5 podemos ver que si \(m^* \) disminuye, \(\pi^* \) aumenta. También aumenta la intersección de \(LM^* \) con el eje de las abscisas, pero esta vez tal aumento no indica directamente un aumento en el impuesto inflacionario pues \(t \) ha cambiado. Sin embargo, es fácil comprobar que el impuesto inflacionario aumenta siempre que exista una tasa de crecimiento positiva en la economía. Como la necesidad de financiamiento del gobierno no ha cambiado, se requiere el mismo señorazgo real que antes, \(\mu^* m^* = \alpha + g \). Pero el crecimiento de la economía permite un señorazgo no inflacionario, \(im^* \). Como las familias han reducido sus tenencias monetarias reales, es necesario que aumente el impuesto inflacionario (\(\pi^* m^* = \mu^* m^* - im^* \)) para compensar la reducción en el señorazgo no inflacionario.

El efecto de corto plazo de un aumento en \(t \) nuevamente se concentra en la recta \(LM \), la cual gira sobre su ordenada al origen hacia la derecha. Como resultado, nuevamente baja la tasa de interés real y aumentan \(q \) y \(p \). Si bien el gasto real del gobierno no ha cambiado, el aumento en el nivel de precios implica mayores necesidades de financiación. Por lo tanto, es necesario que aumente la tasa de emisión monetaria y la tasa de inflación esperada. A partir de allí el proceso es exactamente igual a los ya descriptos.

4. Un incremento en la tasa de inversión.

Consideraremos ahora un incremento en la tasa de inversión. Esta vez, a diferencia de los tres casos precedentes, la parte real del sistema es afectada. Como \(DP^* \) se desplaza hacia la izquierda y \(DQ^* \) hacia la derecha, \(q^* \) disminuye y \(r^* \) aumenta. La disminución en \(q^* \) implica una disminución proporcional en \(s^* \) pues las empresas deben mantener el cociente producto-inventario descanso de largo plazo, \(t \).
A diferencia de los efectos reales, los efectos monetarios de una mayor tasa de inversión son ambiguos. Por LM, podemos apreciar que el efecto sobre \(m^* \) es ambiguo. Si \(r^* - i > 0 \), como estamos suponiendo, es condición necesaria y suficiente para que \(m^* \) disminuya, que \(r^* - i \) aumente o sea, que \(r^* \) increase más que \(i \). En ese caso, la tasa de expansión monetaria tiene que aumentar, pues, por un lado, aumenta el gasto público en inversión (a financiarse mediante impuesto inflacionario) y, por otro lado, disminuyen los saldos monetarios reales. Pero aún así, el efecto de largo plazo sobre la tasa de inflación es ambiguo. Pues el aumento en la tasa de crecimiento implica un mayor señorazgo no inflacionario. La tasa de inflación de largo plazo sólo aumenta si la tasa de expansión monetaria crece más que la tasa de crecimiento. En la Figura 9 hemos representado el caso en que tanto \(m^* \) como \(\pi^* \) disminuyen.

En cuanto a los efectos de corto plazo, el incremento inicial en \(i \) afecta a las tres curvas: DP, DQ y LM. DP se desplaza hacia la izquierda y DQ hacia la derecha, debiéndose ambos desplazamientos a la influencia de \(i \) sobre el coeficiente de \(s \). La mayor demanda de inversión hace que las empresas aumenten sus precios y aumenten la producción.

Por otro lado, la curva LM se ve afectada a través de la tasa de inflación esperada. El aumento en \(i \) afecta a la tasa de emisión monetaria en forma directa a través del mayor gasto público en inversión y en forma indirecta a través del error de pronóstico de precios. Sin embargo, el efecto sobre \(p \) es ambiguo, debido a que es posible, ante el desplazamiento hacia la derecha de DQ, aumente \(r \), ejerciendo una influencia compensadora sobre el efecto directo de \(i \). Si predominara el efecto directo de \(i \) sobre \(p \), ambas influencias harían aumentar la tasa de emisión monetaria. Además, la tasa esperada de inflación también aumentaría debido al ajuste esperado de precios, luego del incremento original en el nivel de precios (y el consiguiente error de pronóstico). Sin embargo, el incremento en la tasa de inversión también ejerce una influencia negativa sobre la tasa de inflación esperada debido al incremento en el señorazgo no inflacionario.

Supongamos que predomina el efecto negativo sobre la tasa de inflación esperada. En ese caso, la recta LM se desplaza hacia la izquierda y, debido al desplazamiento hacia la derecha de DQ, aumenta la tasa de interés real en el corto plazo con un efecto incierto.
sobre q.

En la Figura 9 hemos graficado el caso particular en que las dos influencias opuestas sobre p se compensan, de manera que p se mantiene igual a la unidad en el corto plazo. Además, se supone que predomina el efecto directo de i sobre la tasa de inflación esperada, de manera que ésta disminuye. Como p no es afectado por el cambio, tampoco se desplaza la isoclina $m = 0$ en la parte derecha del gráfico. La dinámica es esencialmente similar a la de los casos anteriores.

Figura 9
5. Un incremento en el gasto de consumo público.

En el largo plazo, un aumento en g desplaza hacia la derecha tanto a DP^* como a DQ^*. Ya hicimos notar, sin embargo, que r^* no se ve afectada por los cambios en g. Por lo tanto, q^* necesariamente aumenta.

El efecto sobre m^* es nuevamente indeterminado. Si $r^* - i > 0$, vemos en LM_0^* que el efecto sobre m^* tiene el mismo signo que el efecto sobre $abq^* - L(\alpha i + g)$. Ambos términos de esta expresión aumentan. Observemos que si multiplicamos la expresión por PK, obtenemos

$$WK^* - L(\alpha g + C_g)P$$

o sea, el capital circulante menos el gasto público multiplicado por P.

El incremento en los gastos de consumo del gobierno, C_g, requiere financiación monetaria y, por lo tanto, un mayor señorazgo real. El mayor señorazgo se traduce en una mayor provisión de recursos monetarios. Sin embargo, el aumento en la producción implica mayores necesidades de capital circulante por parte de las empresas. Si esta mayor demanda de fondos es menor que la mayor oferta, aumenta la tasa de interés nominal y m^* disminuye.

En caso de disminuir m^*, la tasa de emisión monetaria y la tasa de inflación deben aumentar en el largo plazo. Si m^* aumenta, la tasa de emisión monetaria y la tasa de inflación aumentarán si y sólo si el señorazgo real, $\alpha i + g$, aumenta más que m^*. En la Figura 10 hemos supuesto que m^* disminuye ante el aumento en g.

En el corto plazo, nuevamente se desplaza DP hacia la izquierda y DQ hacia la derecha a través del coeficiente de s. Pero esta vez la recta LM se desplaza inequívocamente hacia la derecha, debido al mayor señorazgo real y al efecto indirecto del aumento en g sobre p (dado r). Esto implica que q aumenta también en el corto plazo, si bien el efecto sobre r es ambiguo.

Si predomina el efecto del desplazamiento de DQ sobre el del desplazamiento de LM, r aumenta. Esto ejerce un efecto contrapuesto sobre p, siendo el resultado neto ambiguo. Sin embargo, si p aumenta o permanece igual, sabemos que la tasa de emisión monetaria y la tasa de inflación esperada aumentan. Si, además, aumenta r.

también aumenta la tasa de interés nominal.

En la Figura 10, hemos graficado el caso particular en que p y r aumentan en el corto plazo, aunque sus efectos en la isocлина \(\dot{s} = 0 \) se compensan, por lo cual esta no se desplaza en el diagrama de fases. El incremento en p, sin embargo, requiere un aumento en

Figura 10

![Diagrama 1](image1)

![Diagrama 2](image2)
s para volverlo a la unidad, por lo cual la isoclinas \(m = 0 \) se desplaza hacia la derecha. En este caso particular, inicialmente disminuye \(m \) debido al aumento en \(p \). Esa disminución tiene una influencia negativa sobre \(q \) y \(p \), predominando el último efecto sobre el ajuste de inventarios. O sea, si bien declina el ajuste deseado de inventarios, el aumento en \(p \) hace aumentar la acumulación no deseada de inventarios de manera que el efecto neto es el de una acumulación de inventarios.

VIII. Introducción de títulos públicos.

En esta sección vamos a complicar levemente la estructura de los pasivos del gobierno para permitir la financiación mediante emisión de títulos públicos. Tal modificación permite incorporar el principal instrumento de política monetaria: las operaciones de mercado abierto. El objetivo de esta sección es mostrar cómo puede modificarse el modelo planteado para incorporar los préstamos de las familias al gobierno. No pretendemos hacer un análisis exhaustivo del modelo resultante, pero sí creemos que será de utilidad indicar cómo puede modificarse el modelo para incorporar un sector monetario levemente más complejo.

Los balances de los tres sectores de la economía serán los siguientes:

<table>
<thead>
<tr>
<th>Empresas</th>
<th>Familias</th>
<th>Gobierno</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_{Ke}) (V)</td>
<td>(V)</td>
<td>(K_{g}) (M = M_{e} + M_{f})</td>
</tr>
<tr>
<td>(M_{e} = WK) (* L)</td>
<td>(L)</td>
<td>(B)</td>
</tr>
<tr>
<td>(PS) (II_{nd})</td>
<td>(B)</td>
<td>(M_{f})</td>
</tr>
</tbody>
</table>

donde \(B \) es el valor nominal de los títulos públicos, que consisten en préstamos de las familias al gobierno. Las familias pueden ahora mantener su riqueza líquida en la forma de dinero, préstamos a las empresas y préstamos al gobierno. Para simplificar, vamos a suponer que los préstamos a las empresas y los préstamos al gobierno son sustitutos perfectos para las familias, o sea, ellas son totalmente indiferentes en cuanto a la distribución de sus préstamos entre las empresas y el gobierno.
Por el lado del mercado de bienes, es necesario ahora tomar en cuenta el ingreso proveniente de los intereses sobre los préstamos al gobierno. El ingreso nominal esperado y el efectivo son ahora, respectivamente:

\[Y^*p^* = (Q - x)p^* + rB \] \((25) \)

\[YP = (Q - x - ux)p + rB \]

Por lo tanto, la acumulación no deseada de inventarios, es

\[ux = c(w, r, p) Y^* - c(w/p, r, 1) Y. \]

Introduciendo las expresiones anteriores y reordenando, se obtiene

\[ux = f(w, r, p) (Q - x) + f_0 (w, r, p) rB/P \] \((26) \)

donde \(f(.) \) está definido igual que en la sección IV y

\[f_0 (w, r, p) = \frac{c(w, r, p) p - c(w/p, r, 1)}{1 - c(w/p, r, 1)} \]

Introduciendo (25) en (8), reordenando y utilizando la misma definición del multiplicador, se obtiene

\[Q - x + rB/P = [(i+g)K + rB/P] (c-c' r-c''p). \] \((27) \)

Y reintroduciendo esta expresión en (26) obtenemos la expresión definitiva para la acumulación no deseada de inventarios:

\[ux = g(w, r, p) (i+g)K + g_0 (w, r, p) rB/P \] \((28) \)

donde \(g(.) \) está definido como antes y

\[g_0 (.) = g(.) + f_0 (.) - f(.). \]

En consecuencia, teniendo en cuenta la hipótesis de ajuste de-
seado de inventarios (13), obtenemos la nueva ecuación de ajuste de inventarios:

\[\dot{s} = k(q - st) + g(.) (i + g) + g_0 (.) rb / p \]

donde \(b \equiv B / P * K \). Además, introduciendo (13) en (27) y dividimos por \(K(1-k) \), obtenemos la nueva ecuación de demanda esperada por parte de las empresas:

\[q = (i' + g' + rb') (c - c' r - c'' p) - rb' - t s \] \(29\)

donde \(b' \equiv b / (1 - k) \).

Por el lado monetario, la riqueza de las familias es ahora \(M_f + L + B \), por lo cual su decisión de cartera viene dada por:

\[M_f = \varpi (r_n) (M_f + L + B). \]

Utilizando la definición de las tenencias monetarias de las empresas (19), se obtiene la siguiente expresión:

\[M = M_f + M_e = \frac{1}{1 - \varpi (r_n)} ab P * Q + \frac{(r_n)}{1 - \varpi (r_n)} B. \] \(30\)

Sea \(\gamma \) la proporción de sus pasivos que el gobierno mantiene en forma monetaria. Por lo tanto, \(M = \gamma (M + B) \) y consecuentemente,

\[B = (1 / \gamma - 1) M. \] \(31\)

Podemos, entonces, reescribir (30) en la forma:

\[M = \frac{1}{1 - (1 / \gamma) (r_n)} ab P * Q \]

Y utilizando la forma específica de \(\varpi(.) \) que hemos utilizado, al dividir por \(P * K \) obtenemos una nueva expresión para el equilibrio de activos financieros:

\[ab \gamma q = [r_n + \gamma - 1] m. \] \(LM\)
El gobierno tiene que financiar, además de los gastos en bienes, \((\alpha i + g)\) PK, los intereses sobre la deuda pública \(r_nB\). Como ahora puede financiarse mediante emisión monetaria y mediante endeudamiento, su restricción financiera está dada por

\[
\dot{M} + \dot{B} = (\alpha i + g)\text{PK} + r_nB.
\]

Sea \(\beta\) la proporción del gasto público que es financiada en forma monetaria. O sea, tenemos \(M = \beta (M + B)\), de donde

\[
B = (1/\beta - 1)\dot{M}
\]

Por lo tanto, la tasa proporcional de emisión monetaria es

\[
\mu = \beta (\alpha i + g)\frac{p}{m} + \beta (1/\gamma - 1)r_n
\]

Es evidente que \(\beta\) y \(\gamma\) están íntimamente ligados, pues ambos se refieren a la relación entre dinero y bonos públicos, con la diferencia que \(\beta\) se refiere a los flujos mientras que \(\gamma\) se refiere a los stocks. Diferenciando la definición de \(\gamma\), obtenemos, luego de cierto manipuleo,

\[
\dot{\gamma} = \gamma (1 - \gamma/\beta)\mu
\]

Reemplazando \(\mu\) por la expresión EM, obtenemos la siguiente ecuación de ajuste de pasivos públicos:

\[
\gamma = \gamma (\beta - \gamma) \left[(\alpha i + g)p/m + (1/\gamma - 1)r_n\right]
\]

Por (31), vemos que \(b = \delta m\), donde \(\delta = (1/\gamma - 1)\). Podemos utilizar esa igualdad para eliminar \(b\) en las ecuaciones AS y (29) Obtenemos así

\[
s = k(q - st) + g(p)(i + g) + g_0 (p, r) \delta rm/p
\]

\[
q = (i' + g' + \delta'rm) (c - c'r - c''p) - \delta'rm - t's
\]

(29')
donde \(\delta' \equiv \delta/(1-k) \). Si maximizamos beneficios esperados por unidad de capital fijo bajo la restricción (29'), obtenemos las nuevas ecuaciones de determinación de precio y cantidad:

\[
2c'p = c + ac'' + hr - [(kt-i)(s+\delta'rm)/(i + g + \delta'rm)]
\]

\[
2q = (i' + g' + \delta'rm)(c - ac'' - (abc'' + c')r) + t's - \delta'rm
\]

El gobierno tiene dos instrumentos monetarios, \(\beta \) y \(\gamma \). Cuando desea cambiar la estructura de sus pasivos, puede hacerlo ya sea modificando \(\beta \) o modificando \(\gamma \). Cuando modifica \(\beta \), simplemente cambia la forma en que financia sus gastos, sin cambiar en lo inmediato la estructura de sus pasivos, dada por \(\gamma \). Pero una vez que \(\beta \) se hace diferente de \(\gamma \) (suponiendo que partimos de una situación en que ambos son iguales), comienza a actuar la ley de ajuste AP. Si el gobierno pasó a financiar una fracción mayor del gasto mediante emisión monetaria, \(\beta \) se hi mayor que \(\gamma \), por lo cual \(\gamma \) comienza a aumentar (al tornarse \(\gamma \) positivo). Eventualmente, sin embargo, \(\gamma \) vuelve a hacerse igual a \(\beta \), por lo cual AP deja de actuar.

Por otro lado, el gobierno puede modificar \(\gamma \) sin por ello modificar la proporción en que financia monetariamente sus gastos. Para ello, recurre a operaciones de mercado abierto, comprando, por ejemplo, títulos públicos. Una compra tal incrementa \(\gamma \) súbitamente, por lo cual \(\gamma \) se vuelve negativo y \(\gamma \) comienza a decrecer. En última instancia, son los flujos monetarios los que determinan la estructura de los pasivos, siempre que ellos se mantengan constantes durante un lapso de tiempo suficientemente extenso. Vale la pena destacar que siempre que AP esté operando deberá estar modificándose la ecuación LM.

Para evitar la introducción explícita de una ecuación dinámica adicional, o sea, AP, podemos restringir las medidas de política monetaria a aquéllas que \textbf{combinan} modificaciones simultáneas e iguales de \(\beta \) y \(\gamma \), manteniendo siempre la igualdad entre ambas. O sea, si el gobierno desea pasar a financiar una proporción mayor de sus gastos mediante emisión monetaria, debe combinar tal medida con una compra de títulos públicos que simultáneamente le modifique la estructura de sus pasivos. Los pasivos inmediatamente pasan a tener la misma estructura que la financiación del gasto (o del déficit en caso de introducir impuestos). En tal caso, \(\gamma \) nunca deja de ser igual a \(\beta \).
En ese caso, podemos olvidarnos de γ y también de AP. Por supuesto, tal supuesto restringe innecesariamente las posibilidades que brinda el modelo planteado en cuanto a la política monetaria. Sin embargo, resulta ser un expediente conveniente para restringir a dos el número de ecuaciones dinámicas y posibilitar así el análisis gráfico.

Si adoptamos ese supuesto, LM y EM se reducen, respectivamente, a

$$ab\beta q = [1 r_n + \beta - 1] m \quad \quad \text{LM}$$

$$\mu m = \beta (\alpha i + g)p + (1 - \beta)r_n m \quad \quad \text{EM}$$

En la última ecuación se ve que el señorazgo real debe financiar una fracción β del gasto real en bienes así como una fracción β del gasto en intereses sobre la deuda pública $(1/\beta - 1)b r_n$. Observe que las ecuaciones IN y TI no cambian con la introducción de endeudamiento público.

Podemos ahora proceder como hicimos en las secciones precedentes y eliminar las variables r_n, π_e y μ del sistema, quedando el siguiente sistema:

$$2c''p = cacc'' + hr - [(kt-i)s+\delta rm]/[i+g^p+\delta rm] \quad \quad \text{DP}$$

$$2q = (i'+g'+\delta' rm)(c-ac''-(abc''+c')r)+ t's -\delta'rm. \quad \quad \text{DQ}$$

$$ab\beta q = (\alpha i+g)p + (\beta r-i+\nu(p-1)) + \beta - 1] m \quad \quad \text{LM}$$

$$s = k(q-st) + g(p)(1+g) + g_0(p,r)\delta rm/p \quad \quad \text{AS}$$

$$m = vm(1-p) \quad \quad \text{AM}$$

Es posible proceder con este sistema como hicimos con el sistema más sencillo. Para determinar los valores de largo plazo de las variables, podemos introducir $p = 1$ y $q = st$ en las tres ecuaciones estáticas, obteniendo un sistema en s^*, m^* y r^*. Esta vez, el sistema resultante es no lineal e indescomponible. Ello implica, en particular, que la existencia de una solución no está garantizada. Además, la política monetaria ahora tiene incidencia sobre el estado estacionario del sistema.

Puede utilizarse la ecuación LM^* para eliminar m^* en el sistema estático de largo plazo y representar gráficamente las ecuaciones DP^* y DQ^* en un cuadrante r, q, como en las secciones precedentes. También es posible utilizar una versión de la ecuación LM^* para representarla en el mismo cuadrante de tal manera que pase por la intersección de las otras dos curvas. Puede comprobarse que para visualizar la tasa de inflación de largo plazo, es necesario ahora buscar la orde-
nada de la recta LM, no en q = 0, como antes, sino en q = -(δm*)/(ab). Su ángulo con el eje r es ahora 1m*/ab δ, de manera que sigue indicando el valor de m*.

También puede graficarse las ecuaciones de corto plazo como antes con la excepción de Th, que no puede ser graficada en el cuadrante sudoeste (pues π e ahora depende también de i).

IX. Conclusiones

En este trabajo se ha modelizado un ciclo de inventarios partiendo de un marco de competencia imperfecta en los mercados de productos y rigidez en el salario real esperado. Se construyó un marco teórico en el cual es posible analizar la generación y evolución de inventarios no deseados de productos. Las empresas tienen información imperfecta al respecto al nivel general de precios, lo cual les lleva a formular pronósticos de esa variable que en el corto plazo pueden ser erróneos. Los errores de pronóstico del nivel general de precios, y por lo tanto, de la demanda agregada, las lleva a acumular inventarios no deseados. El ajuste en el nivel de inventarios deseados y el ajuste en el nivel de precios esperado constituyen las fuerzas que impulsan la dinámica de las variables.

Como se demuestra en el Apéndice, son muchas las combinaciones de parámetros que le dan inestabilidad al sistema. En el trabajo nos centraremos en un caso estable y lo analizamos en detalle. Los ciclos de inventarios implican la variabilidad de la utilización de la capacidad instalada y del nivel de empleo de la fuerza de trabajo.

La parte monetaria del modelo se basa en una demanda de carrera por parte de las familias y una demanda para transacciones por parte de las empresas así como una oferta basada en la financiación del déficit público. El modelo permite seguir la evolución de la tasa de inflación (esperada y efectiva) a través del ciclo.

Creemos que el aporte principal de este trabajo es el de construir un marco macroeconómico de corto plazo bastante rico en cuanto a su realismo y, por otro lado, bastante manejable. Su característica principal es la de modelar explícitamente el ajuste de precios por parte de empresas monopolísticas mientras que la tasa de interés nominal se ajusta en forma instantánea a la manera Walrasiana para despejar los mercados de activos financieros.
Por otro lado, el modelo genera movimientos en las variables que tienen bastante asidero empírico. En particular, no es necesario que disminuya el salario real esperado para que aumente el nivel de producción, como se desprendería tanto de la General Theory como de los modelos macroeconómicos más modernos que se basan en la competencia perfecta. Por el contrario, cuando las empresas expanden su producción ante la expectativa de un incremento en sus beneficios monopolísticos, están dispuestas a ceder una parte de esos ingresos a los trabajadores como para satisfacer sus exigencias de justicia distributiva. En el modelo esto se refleja en la constancia del costo salarial unitario esperado.

APÉNDICE SOBRE ESTABILIDAD

Si diferenciamos totalmente las ecuaciones estáticas del modelo, podemos obtener los siguientes multiplicadores:

\[q_s = \frac{-t^t}{2E} \{ D + 2c' (\alpha i + g + vm) \} \]

\[p_s = \frac{-t^t}{2E} \{ (abc'' + c')f + 2m/(i + g') \} \]

\[r_s = \frac{t^t}{E} \{ [(\alpha i + g + vm)/(i' + g') - fc''] \} \]

\[q_m = \frac{-2}{E} \cdot (j-r) \cdot c''/(i' + g') \]

\[p_m = \frac{h}{E} \cdot (j-r) \]

\[r_m = \frac{2}{E} \cdot c''/(j-r) \]

Donde

\[E = 2c'c''/(i' + g')f + D, \quad D = h(\alpha i + g + vm) + 2c''m. \]
Observemos que la fórmula de la pendiente de la recta LM (correspondiente a la ecuación LM₀) es \(2c''/D \). Por lo tanto, para tener el caso usual de una recta LM con pendiente positiva D debe ser positivo. Esto significa que, ante una mayor producción, la tasa de interés real debe aumentar para mantener en equilibrio al mercado monetario. Vamos a suponer que ese es el caso. La positividad de D implica la de E. Por consiguiente, \(q_s \) y \(p_s \) son ambos negativos. Además, tanto el signo de \(r_m \) como el de \(-q_m \) es igual al signo de \(i-r \); el signo de \(p_m \) es igual al de \(h(i-r) \); y el de \(r_s \) es indeterminado.

Si linealizamos el sistema dinámico en torno a la solución estacionaria, obtenemos

\[
\begin{pmatrix}
\dot{s} \\
\dot{m}
\end{pmatrix} =
\begin{pmatrix}
\begin{array}{c}
\begin{pmatrix}
k(q_s-t) + g'(1)(i+g)p_s \\
-kq_m + g'(1)(i+g)p_m
\end{array}
\end{pmatrix}
\begin{array}{c}
s \\
m
\end{array}
\end{pmatrix}
\]

de donde

traza = \(k(q_s-t) + g'(1)(i+g)p_s - \text{vmp}_m \)

determinante = \(-\text{vkm} \cdot ((q_s-t)p_m - q_m p_s)\).

La condición necesaria y suficiente para que el equilibrio estacionario sea estable es que la traza sea negativa y el determinante positivo. Si observamos la fórmula del determinante, vemos que es negativo si \(p_m < 0 \) y \(q_m > 0 \). Luego, la combinación \(i-r < 0 \) y \(h > 0 \) implica inestabilidad. En los restantes casos, la estabilidad es a priori posible. Hay diversos casos posibles pero nosotros nos vamos a restringir a los que nos parecen económicamente relevantes.

En particular, observe que un aumento en la masa monetaria, debe desplazar la LM hacia la derecha y así hacer aumentar q y disminuir r. Para ello, debemos tener \(q_m > 0 \) y \(r_m < 0 \), o sea \(i-r^* \) < 0. Ya vimos que si, además, \(h > 0 \), se tiene inestabilidad. En ese caso se tiene \(p_m < 0 \). Si aumenta m, como la tasa de interés disminuye, las empresas reducen sus precios. Cada una, sin embargo, actúa sobre la base de la errónea suposición de que las demás mantienen sus precios constantes. Por ello, p se hace menor que la unidad. Se genera así un error de pronóstico que comienza a ser gradualmen-
te corregido. Al bajar P^*, aumenta aún más $m = M/P^*K$, lo cual explica la inestabilidad. Para restringirnos entonces al caso económicamente relevante, vamos a suponer que $i-r^* < 0$ y $h < 0$, de modo tal que se tiene $q_m > 0, r_m < 0$ y $p_m > 0$.

Las pendientes de las isoclinas $\dot{m} = 0$ y $\dot{s} = 0$, también juegan un papel relevante en el análisis de estabilidad. A partir de las fórmulas AS^* y AM^*, puede comprobarse que las siguientes son las pendientes de las isoclinas:

$$\frac{\text{d}m}{\text{d}s} \bigg| _{\dot{m} = 0} = -\frac{p_s}{p_m} \quad \frac{\text{d}m}{\text{d}s} \bigg| _{\dot{s} = 0} = -\frac{k(q_s - t) + g'(1)(i + g)p_s}{kq_m + g'(1)(i + g)p_m}$$

La isoclina $\dot{m} = 0$ tiene, entonces, pendiente positiva. Puede comprobarse mediante un análisis gráfico que, para que haya estabilidad, es necesario que la isoclina $\dot{s} = 0$ tenga signo negativo. (Pues si no es así, se tiene isosectores terminales en donde las trayectorias se alejan del equilibrio. Se tiene, en el caso en cuestión, un punto de ensiladura). El numerador y el denominador del cociente de la última fórmula, entonces, deben tener el mismo signo. Sin embargo, el único caso compatible con la estabilidad es que ambos sean negativos (ya veremos por qué). Si ese es el caso, debe tenerse:

$$-K(q_s - t)/p_s < g'(1)(i + g) < -kq_m/p_m$$

O sea, en nuestro caso para tener estabilidad es necesario que $g'(1)\equiv c_1 w - c''$ se encuentre dentro del indicado intervalo negativo. Observése que la positividad del determinante implica que ese intervalo efectivamente existe. Es por ello que el caso contrario, en que ambos términos del cociente son positivos, es incompatible con la estabilidad. Pues, en ese caso, se revierten las desigualdades de arriba y el determinante debe ser negativo.

Hay una información adicional que nos brinda la positividad del determinante. Pues ella implica la siguiente desigualdad:

$$\frac{\text{d}m}{\text{d}s} \bigg| _{\dot{m} = 0} = -\frac{p_s}{p_m} < -(q_s - t)/q_m = \frac{\text{d}m}{\text{d}s} \bigg| _{q = st}$$

Por lo tanto, la pendiente de la recta que indica el ajuste voluntario de inventarios debe ser mayor a la de la isoclina $\dot{m} = 0$.

BIBLIOGRAFÍA

Se modela el papel de los inventarios de bienes terminados en su papel de amortiguadores de los desequilibrios de corto plazo en los mercados de productos. Para ello se parte de un modelo de competencia monopolística en el que cada empresa tiene un nivel general de precios esperado exógeno que se ajusta según expectativas adaptativas. En el mercado de trabajo se usa la hipótesis de los salarios de eficiencia. Las empresas son fijadoras de precios y de salarios.

Se analiza en forma conjunta la dinámica de los inventarios y del dinero. Para ello, se incluye un equilibrio de cartera de dos activos financieros, el dinero y los préstamos de las familias a las empresas. Se supone que las empresas ajustan su demanda de inventarios hacia un coeficiente producto-inventario deseado, aunque los errores de pronóstico del nivel de precios pueden hacerlas errar en su estimación de la demanda de bienes, dando lugar a una acumulación indebida de inventarios. En el estado estacionario, se alcanza el coeficiente producto-inventario deseado y se acierta en el pronóstico del nivel de precios. Se realizan diversos ejercicios de dinámica comparada.

THE DYNAMICS OF INVENTORIES AND MONEY UNDER MONOPOLISTIC COMPETITION AND EFFICIENCY WAGES

Summary

The role of inventories of finished goods as short run disequilibrium buffers in product markets is modeled in a monopolistic competition framework in which each firm has an exogenous general price level which adjusts adaptively. In labor markets, the efficiency wage hypothesis is used. Firms set prices and wages.

Money and inventory dynamics are jointly developed. Firms adjust their desired inventory level to errors and endogenous product-inventory coefficient. However, price level forecasts errors may make them erroneously forecast demand, creating undesired inventories. In particular, in the steady state, the desired product-inventory coefficient is too high and expectations are incorrect.

A number of comparative static exercises are followed through, including a substitution of public capital for private, an increase in investment, a substitution of public consumption for private, an increase in the size of the government, an increase in the supply of family loans, an increase in the (endogenous) money supply, and an increase in public consumption.