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Abstract We investigate the regular or chaotic nature of star orbits moving in the merid-
ional plane of an axially symmetric galactic model with a disk and a spherical nucleus. We
study the influence of some important parameters of the dynamical system, such as the mass
and the scale length of the nucleus, the angular momentum or the energy, by computing in
each case the percentage of chaotic orbits, as well as the percentages of orbits of the main
regular resonant families. Some heuristic arguments to explain and justify the numerically
derived outcomes are also given. Furthermore, we present a new method to find the thresh-
old between chaos and regularity for both Lyapunov Characteristic Numbers and SALI, by
using them simultaneously.

Keywords Galaxies: kinematics and dynamics; galaxies: structure, chaos

1 Introduction

Although there are loads of works about the chaoticity of orbital motions in different galac-
tic potentials (see, e.g. Manos et al., 2008; Manos & Athanassoula, 2011; Zotos, 2012a,b,
citing but a handful), few of them focused in the motion on the meridional plane of an axi-
ally symmetric potential. The study of this kind of motion can be traced back to the works
of Contopoulos (1960) and Ollongren (1965, 1966). While Martinet & Mayer (1975) have
studied resonant (regular) meridional plane orbits, and Manabe (1979) considered, as was
common in those days, that almost any orbit in an axially symmetric potential should obey a
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third isolating integral of motion besides the angular momentum and the energy, Contopou-
los (1979) claimed that the motion of stars in the meridional plane was one of the standing
problems in galactic dynamics where integrability and stochasticity play a role. However,
few contributions to this problem have arised so far. Greiner (1987, 1991) insisted in the
lines of Manabe (1979), ignoring the chaoticity, while Caranicolas & Vozikis (1986) found
chaotic motion but only when their galactic model was perturbed. Gerhard & Saha (1991)
have also built orbits in the meridional plane, but, again, they focused in regular solutions
claiming that most stars move on regular orbits. In the same line, Copin et al. (2000) have
also studied orbits in the meridional plane but their scope was specifically to treat regular
orbits. Karanis & Caranicolas (2001), on the other hand, have studied chaotic motion in a
two-dimensional logarithmic potential as representative of the meridional plane potential of
an elliptical galaxy with a dense bulge, although it lacks the necessary centrifugal term. Lees
& Schwarzschild (1992), in a thorough study, analyzed the orbital content in the coordinate
planes of triaxial potentials and in the meridional plane of axially symmetric potentials, but
focusing, again, on the regular families. The chaotic motion in the meridional plane of ax-
ially symmetric galaxies, therefore, is still an open problem, and we will conduct here an
investigation of this topic.

Knowing whether the orbits of a dynamical system are ordered or chaotic is a first step
towards the understanding of the overall behavior of the system. But also of particular in-
terest is the distribution of regular orbits into different families. Binney & Spergel (1982,
1984) proposed a technique, dubbed spectral dynamics, for this particular purpose. Later on
this method has been extended and improved by Laskar (1993) and Carpintero & Aguilar
(1998). In general terms, this method computes the Fourier transform of the coordinates
of an orbit, identifies its peaks, extracts the corresponding frequencies, and search for the
fundamental frequencies and their possible resonances. In the present work, we shall use a
similar technique in order to classify regular orbits into different families.

The present paper is organized as follows: In Section 2 we present our gravitational
galactic model. In Section 3 we describe the computational methods we used in order to ex-
plore the nature of orbits. In the following Section, we investigate how the basic parameters
of the system influences the character of the orbits. In Section 5 we present some heuristic
arguments, in order to support and explain the numerically obtained outcomes of the previ-
ous Section. We conclude with Section 6, where the discussion and the conclusions of this
research are presented.

2 The galactic model

In the present work, we shall investigate the character of the motion in the meridional plane
of an axially symmetric disk galaxy with a spherical nucleus. We use cylindrical coordinates
(R, φ, z), where z is the axis of symmetry.

The total potential V(R, z) in our model is the sum of a disk potential Vd and a cen-
tral spherical component Vn. The first one is represented by a Miyamoto-Nagai potential
(Miyamoto & Nagai, 1975)

Vd(R, z) = −
GMd√

R2 +
(
α +
√

h2 + z2
)2
. (1)

Here G is the gravitational constant, Md is the mass of the disk, α is the scale length of
the disk, and h corresponds to the disk’s scale height. For the description of the spherically
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Fig. 1 The total circular velocity of the galactic model (black). Also shown are the contributions from the
spherical nucleus (red), and that of the disk (blue).

symmetric nucleus we use a Plummer potential (e.g., Binney & Tremaine, 2008)

Vn(R, z) = −
GMn√

R2 + z2 + c2
n

, (2)

where Mn and cn are the mass and the scale length of the nucleus, respectively. This potential
has been used in the past to model the central mass component of a galaxy (see, e.g. Hasan &
Norman, 1990; Hasan et al., 1993). Here we must point out that the nucleus is not intended
to represent a black hole nor any other compact object, but a bulge; therefore, we don’t
include relativistic effects.

We use a system of galactic units where the unit of length is 1 kpc, the unit of velocity
is 10 km s−1, and G = 1. Thus, the unit of mass results 2.325 × 107M�, that of time is
0.9778 × 108 a,1 the unit of angular momentum (per unit mass) is 10 km kpc s−1, and
the unit of energy (per unit mass) is 100 km2s−2. We use throughout the paper the values
Md = 7000 (corresponding to 1.63 × 1011 M�, i.e., a normal disc galaxy mass), α = 3 and
h = 0.175. These last values were chosen having in mind a Milky Way-type galaxy (e.g.,
Allen & Santillán, 1991). The mass and the scale length of the nucleus, on the other hand,
are treated as parameters.

One important physical quantity in disk galaxies is the circular velocity in the plane
z = 0,

θ(R) =

√
R

∣∣∣∣∣∂V
∂R

∣∣∣∣∣
z=0
. (3)

Replacing with our potential we obtain

θ(R) = R

√√
Md(

R2 + (α + h)2)3/2 +
Mn(

R2 + c2
n

)3/2 . (4)

A plot of θ(R) for our galactic model with Mn = 400 and cn = 0.25 is presented in
Fig. 1, as a black curve. In the same plot, the red line shows the contribution from the
spherical nucleus, while the blue curve is the contribution from the disk. It is seen that
at small distances from the galactic center, R ≤ 1 kpc, the contribution from the spherical

1 We adhere to the recommended IAU symbol for year, i.e., “a” (Wilkins, 1989).
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nucleus dominates, while at larger distances, R > 1 kpc, the disk contribution is the dominant
factor. We also observe the characteristic local minimum of the rotation curve which appears
when fitting observed data to a Galactic model (e.g., Irrgang et al., 2013; Gómez et al., 2010).

Since the total potential V(R, z) is axisymmetric, the z-component of the angular momen-
tum Lz is conserved. With this restriction, orbits can be described by means of the effective
potential (e.g., Binney & Tremaine, 2008)

Veff(R, z) = V(R, z) +
L2

z

2R2 . (5)

The L2
z /(2R2) term represents a centrifugal barrier; only orbits with small Lz are allowed to

pass near the axis of symmetry. The 3D motion is thus effectively reduced to a 2D motion
in the meridional plane (R, z), which rotates non-uniformly around the axis of symmetry
according to

φ̇ =
Lz

R2 , (6)

where the dot indicates derivative with respect to time. The equations of motion on the
meridional plane are

R̈ = −
∂Veff

∂R
,

z̈ = −
∂Veff

∂z
. (7)

The equations governing the evolution of a deviation vector δw ≡ (δR, δz, δṘ, δż) which
joins the corresponding phase space points of two initially nearby orbits, needed for the
calculation of the standard indicators of chaos, are given by the variational equations

˙(δR) = δṘ,
˙(δz) = δż,

(δ̇Ṙ) = −
∂2Veff

∂R2 δR −
∂2Veff

∂R∂z
δz,

(δ̇ż) = −
∂2Veff

∂z∂R
δR −

∂2Veff

∂z2 δz. (8)

The corresponding Hamiltonian to the effective potential given in Eq. (5) can be written
as

H =
1
2

(
Ṙ2 + ż2

)
+ Veff(R, z) = E, (9)

where E is the numerical value of the Hamiltonian, which is conserved. Therefore, an orbit
is restricted to the area in the meridional plane satisfying E ≥ Veff .

3 Computational methods

In order to study the chaoticity of our models, we chose, for each set of values of the param-
eters of the potential, a grid of initial conditions in the (R, Ṙ) plane, regularly distributed in
the area allowed by the value of the energy. The points of the grid were separated 0.1 units
in R and 0.5 units in Ṙ. For each initial condition, we integrated the equations of motion (7)
with a double precision Bulirsch-Stoer algorithm (e.g., Press et al., 1992). Each orbit was
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Fig. 2 MLCN and SALI of a set of orbits computed with Md = 7000, α = 3, h = 0.175, cn = 0.25, Mn = 500,
E = −670 and Lz = 10. The blue lines show the resulting thresholds which separate regular from chaotic
orbits. The three red dots indicate three orbits classified differently by both indicators.

integrated for 104 time units, which corresponds to a time span of the order of hundreds of
orbital periods. In all cases, the energy integral (Eq. (9)) was conserved better than one part
in 10−10, although for most orbits it was better than one part in 10−11.

For our study, we want to know whether each orbit is regular or chaotic. Several indi-
cators of chaos are available in the literature; we chose two of them, namely the standard
Lyapunov exponents (e.g. Jackson, 1991) and the SALI indicator (Skokos et al., 2004). Of
course, being the Lyapunov exponents defined for t → ∞, only a finite time version of
them (Lyapunov characteristic numbers) are numerically achievable. To compute these in-
dicators, we integrated, along with each orbit, its corresponding variational equations (8)
from unitary displacements in each of the Cartesian directions of the phase space (R, z, Ṙ, ż)
of the meridional plane, thus allowing us to compute, along with the SALI, the full set of
Lyapunov exponents using a Gram-Schmidt orthogonalization and a renormalization of the
displacement vectors at each step, following the recipe of Bennetin et al. (1980).

To classify an orbit as regular or chaotic by using either the maximal Lyapunov char-
acteristic number (MLCN) or the SALI, a threshold value should be established separating
both types of orbit. This is a delicate issue, as these thresholds are generally obtained by
some statistical procedure or, even, by eye inspection of plots of the indicators versus time.
Besides, whereas the results of different chaos indicators agree in general, there are also
“sticky” orbits (i.e., chaotic orbits that behave as regular ones during long periods of time),
that may be misclassified by one or another method depending of the threshold value used.

We established the thresholds by taking advantage of our computation of two chaos
indicators, as follows. First, the set of orbits of a given grid was integrated, as we already
said, for 104 time units (i.e., about 1012 years, thus avoiding sticky orbits with a stickiness at
least of the order of a Hubble time). Then, their MLCN and SALI were computed, and we
looked for those values of the thresholds that maximised the agreement in the classification
of both methods. To this end, we iterated the values of the thresholds until a minimum
of disagreement has been achieved, choosing as initial values the mean of each indicator.
We found that the values thus computed leave less than 1% of orbits differently classified
by both methods. Fig. 2 shows an example of the resulting thresholds. The horizontal and
vertical lines correspond to the established threshold values. We can see three red dots,
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Table 1 Thresholds TS and TL obtained for the SALI and the MLCN, respectively, total number of orbits N
used to compute those values, and number N′ of those orbits classified differently by both indicators.

Mn cn Lz E log TS log TL N N′

0-500 0.25 10 −670 −3.80 −2.660 74050 11
100 0.05-0.50 10 −670 −3.61 −2.689 64092 11
400 0.25 1-50 −670 −3.46 −2.687 71425 13
50 0.25 10 −459 −4.33 −2.653 8993 1
50 0.25 10 −508 −3.73 −2.696 8223 1
50 0.25 10 −567 −4.61 −2.608 7429 2
50 0.25 10 −642 −3.00 −2.732 6575 2
50 0.25 10 −738 −3.05 −2.701 5665 2
50 0.25 10 −865 −2.70 −2.714 4685 2
50 0.25 10 −1038 −3.14 −2.712 3613 0
50 0.25 10 −1279 −2.75 −2.734 2473 0
50 0.25 10 −1613 −2.43 −2.736 1309 0
50 0.25 10 −2004 −2.09 −2.800 255 0

100 0.15 10 −462 −2.66 −2.729 9079 0
100 0.15 10 −511 −3.23 −2.677 8314 0
100 0.15 10 −571 −2.96 −2.735 7506 0
100 0.15 10 −647 −3.23 −2.719 6644 0
100 0.15 10 −743 −2.50 −2.686 5742 0
100 0.15 10 −871 −2.75 −2.736 4758 0
100 0.15 10 −1046 −2.90 −2.687 3703 0
100 0.15 10 −1290 −2.43 −2.729 2550 0
100 0.15 10 −1630 −2.22 −2.693 1362 0
100 0.15 10 −2037 −2.12 −2.789 320 0
500 0.25 10 −489 −3.99 −2.674 9592 1
500 0.25 10 −541 −2.65 −2.726 8812 2
500 0.25 10 −605 −3.99 −2.659 7991 2
500 0.25 10 −685 −3.31 −2.726 7111 0
500 0.25 10 −788 −3.57 −2.741 6189 0
500 0.25 10 −925 −2.75 −2.734 5188 0
500 0.25 10 −1113 −2.42 −2.751 4111 0
500 0.25 10 −1379 −2.94 −2.753 2960 0
500 0.25 10 −1763 −2.74 −2.733 1755 0
500 0.25 10 −2300 −2.00 −2.744 642 0

corresponding to orbits for which the classifications of both indicators did not coincide. It
is worth noticing that Kalapotharakos & Voglis (2005) also used a combination of MLCN
and SALI, although they supplemented those indicators by adding the computation of the
variation with time of the fundamental frequencies of the orbits, and they did not combine
the indicators to establish their thresholds. As a reference, Table 1 shows the values of the
thresholds thus obtained for each of the models studied in Section 4, plus the number of
orbits which didn’t get the same classification.

Once the orbits have been classified into chaotic or non-chaotic, we considered those of
this last set as regular orbits.2 We then further classified these regular orbits into families,
by using the frequency analysis of Carpintero & Aguilar (1998), although the extraction

2 A regular orbit of a N-dimensional potential obeys, by definition, N or more isolating integrals of motion.
On the other hand, a chaotic orbit is defined through its sensitivity to the initial conditions in phase space:
if the initial conditions of the orbit are infinitesimally displaced, then the distance between the original orbit
and the new orbit grows exponentially with time. These definitions do not complement each other. Whereas it
can be proved that a regular orbit is not chaotic and a chaotic orbit is not regular (e.g., Jackson, 1991, Section
8.3), as far as we know it has not been proved that every irregular (i.e. not regular) orbit is chaotic, or, in
other words, that every orbit obeying less than N isolating integrals has sensitivity to the initial conditions.
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of frequencies was done with the frequency modified Fourier transform, an algorithm first
developed by Laskar (1988) and later improved by Šidlichovský and Nesvorný (1996).

A note about the nomenclature of orbits. All the orbits of an axisymmetric potential
are 3D loop orbits, i.e., orbits that rotate around the axis of symmetry always in the same
direction. However, in dealing with the meridional plane the rotational motion is lost, so the
path that the orbit follows onto this plane can take any shape, depending on the nature of the
orbit. We will call an orbit according to its behaviour in the meridional plane. Thus, if for
example an orbit is a rosette lying in the equatorial plane of the axisymmetric potential, it
will be a linear orbit in the meridional plane, etc.

4 Results

In this Section, we will complement our indicators of chaos, MLCN and SALI, with the
classical method of the (R, Ṙ, z = 0, ż > 0) Poincaré Surface of Section (PSS), in order to
visually distinguish the regular or chaotic nature of motion. We used the initial conditions
mentioned in Sec. 3 in order to build the respective PSSs, taking values inside the Zero
Velocity Curve (ZVC) defined by

1
2

Ṙ2 + Veff(R, 0) = E. (10)

Since we want to investigate how the parameters of the dynamical system influence not
only the level of chaos but also the percentages of the basic families of regular orbits, we
chose to study the following seven basic families: (a) box orbits, (b) 1:1 linear orbits, (c)
2:1 banana-type orbits, (d) 2:3 fish-type orbits, (e) 4:3 resonant orbits, (f) 4:5 resonant orbits
and (g) orbits with higher resonances, i.e., all resonant orbits not included in the former
categories. It turns out that for these last orbits the corresponding percentage is less than 1%
in all cases, and therefore their contribution to the overall orbital structure of the galaxy is
insignificant. Note that every resonance n : m is expressed in such a way that m is equal
to the total number of islands of invariant curves produced in the (R, Ṙ) phase plane by the
corresponding orbit. In Fig. 3 we present an example of each of the seven basic types of
regular orbits, plus an example of a chaotic one. In all cases, we set Mn = 100 (except for
the chaotic orbit, where Mn = 500), E = −670, Lz = 10, cn = 0.25. The orbits shown in
Figs. 3a and 3h were computed until t = 100 time units, while the rest were computed until
one period has completed. The curve circumscribing each orbit is the limiting curve in the
(R, z) plane defined as Veff(R, z) = E. Table 2 shows the initial conditions for each of the
depicted orbits; for the resonant cases, the initial conditions and the period Tper correspond
to the parent periodic orbit.

It is worth noticing that the 1:1 resonance is usually the hallmark of loop orbits, both
coordinates oscillating with the same frequency in their main motion. Their mother orbit is a
closed loop orbit. Moreover, when the oscillations are in phase, the 1:1 orbit degenerates into
a linear orbit (the same as in Lissajous figures made with two oscillators). In our meridional
plane, however, 1:1 orbits do not have the shape of a loop. Their mother orbit is linear (as in
Fig. 3c), and thus they don’t have a hollow (in the meridional plane) but fill a region around
the linear mother, always oscillating in R and z with the same frequency. We will call them
“1:1 linear open orbits” to differentiate them from true meridional plane loop orbits, which
have a hollow and rotate always in the same sense.

Nevertheless, to avoid confusion, we will follow here the widespread convention of considering irregular
orbits and chaotic orbits as the same set.
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Fig. 3 The eight basic types of orbits in our galactic model: (a) box orbit; (b) 2:1 banana orbit; (c) 1:1 linear
orbit; (d) 2:3 fish orbit; (e) 4:3 boxlet orbit; (f) 4:5 boxlet orbit; (g) 6:5 boxlet orbit, one of our “orbits with
higher resonance”; (h) chaotic orbit.

Table 2 Initial conditions for the orbits of Fig. 3. In all cases, z0 = 0 and ż0 is found from the energy integral,
Eq. (9). Tper is the period of the orbit.

Orbit Figure R0 Ṙ0 Tper
box 3a 7.41800000 0.000000000 -
2:1 banana 3b 4.40634102 0.000000000 1.22699769
1:1 linear 3c 3.36734581 31.97732133 0.95200932
2:3 fish 3d 9.61363706 0.000000000 1.93809874
4:3 boxlet 3e 7.78008196 0.000000000 3.67094043
4:5 boxlet 3f 9.27613711 0.000000000 3.85375364
6:5 boxlet 3g 8.30441195 0.000000000 5.60252420
chaotic 3h 10.72000000 0.000000000 -

4.1 Influence of the mass of the nucleus

To study how the mass of the nucleus Mn influences the level of chaos, we let it vary while
fixing all the other parameters of our model. As already said, we fixed the values Md = 7000,
α = 3 and h = 0.175. We chose cn = 0.25 as a fiducial value for the size of the nucleus,
and integrate orbits in the meridional plane for the set Mn = {0, 50, 100, ..., 500}. In all cases
the energy was set to −670 and the angular momentum of the orbits Lz = 10. Once the
values of the parameters were chosen, we computed a set of initial conditions as described
in Sec. 3, and integrated the corresponding orbits computing at the same time the two chaos
indicators. The respective thresholds and resulting classifications were computed once the
entire set was fully integrated.

Fig. 4a depicts the phase plane when Mn = 100. One can observe that most of the phase
space is covered by regular orbits, while there are also several chaotic layers which separate
the areas of regularity. Thus, there is not a unified chaotic domain, at least in this z = 0 slice
of the phase space. The outermost thick curve is the ZVC. In Fig. 4b we present the phase
plane when Mn = 500, i.e., a model with a more massive nucleus. It is evident that there
are many differences with respect to Fig. 4a, being the most visible the growth of the region
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Fig. 4 The (R, Ṙ) phase plane when (a) Mn = 100 and (b) Mn = 500.
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Fig. 5 Orbital structure of the (R, Ṙ) phase plane when (a) Mn = 100 and (b) Mn = 500.

occupied by chaotic orbits, the presence of a large unified chaotic sea, and an increasing in
the allowed radial velocity Ṙ of the stars near the center of the galaxy.

Figs. 5a and 5b show grids of orbits that we have classified on the PSS of Figs. 4a and
4b, respectively. Here we can see which of the regular families each of the islands seen in the
PSSs belong to. In Fig. 5a appear the seven main families already mentioned: (i) 2:1 banana-
type orbits correspond to the invariant curves surrounding the central periodic point in the
corresponding PSS; (ii) box orbits are situated mainly outside of the 2:1 resonant orbits; (iii)
1:1 open linear orbits form the double set of elongated islands in the PSS; (iv) 2:3 fish-type
orbits form the outer triple set of islands of the PSS; (v) 4:3 resonant orbits correspond to
the middle triple set of islands in the PSS; (vi) 4:5 resonant orbits form the chain of five
islands of the PSS; and (vii) there are many other types of resonances producing several
chains of small islands in the PSS, embedded in the chaotic layers. The white dots inside
the grid correspond to orbits that have been classified as regular by one of the indicators and
chaotic by the other, being most probably sticky orbits. The outermost black thick curve is
the ZVC. On the other hand, in Fig. 5b the basic families of orbits are still present except
for the 4:5 family which has disappeared making room for chaotic orbits. Also, the portion
of higher resonant orbits is considerably smaller than in Fig. 5a.



10 E. E. Zotos & D. D. Carpintero

æ

æ

æ

æ
æ

æ æ
æ

æ
æ

æ

à

à

àà

à
à

à
à

à à
à

à

ì

ì

ìì ì
ì

ì
ì ì ì ì

ì

ò ò ò ò ò ò ò ò ò ò ò

ô ô

ô

ô
ô ô

ô
ô ô ô ôç

ç ç ç
ç ç ç ç ç

ç
ç

á
á á

á á á á á á á á

í
í

í í
í í

í í
í

í

í

0 100 200 300 400 500
0

10

20

30

40

50

60

70

Mn

Pe
rc

en
ta

ge
%

æ Chaotic

à Box

ì 1:1 linear

ò 2:1 boxlet

ô 2:3 boxlet

ç 4:3 boxlet

á 4:5 boxlet

í Other

Fig. 6 Percentages of different kinds of orbits, varying Mn.

(a) (b)

Fig. 7 The (R, Ṙ) phase plane when (a) cn = 0.05 and (b) cn = 0.30.

Fig. 6 shows the resulting percentages of chaotic orbits and of the mean families of
regular orbits as Mn varies. It can be seen that when the nucleus is absent, there is no chaos
whatsoever, and most orbits are box orbits. However, a small nucleus is enough to trigger
chaotic phenomena, whereas the box orbits are depleted. This trend continues, although at a
lesser rate, as the nucleus grows in mass, i.e., the percentage of box orbits is reduced and that
of chaotic orbits is increased. The rest of orbits change very little; the meridional bananas,
in fact, are almost unperturbed by the shifting of the mass of the nucleus. From this figure,
one may conclude that Mn affects mostly the box and chaotic orbits in our galactic model.

4.2 Influence of the scale length of the nucleus

Now we proceed to investigate how the scale length of the nucleus cn influences the amount
of chaos. Again, we let it vary while fixing all the other parameters of our galactic model,
choosing Mn = 100 as a fiducial value for the mass of the nucleus, and integrating orbits in
the meridional plane for the set cn = {0.05, 0.10, 0.15, ..., 0.50}. As before, the energy was
set to −670 and Lz = 10.

Fig. 7a presents the phase plane when cn = 0.05. We observe that much of it is covered
by islands of regular orbits, surrounded by a chaotic sea. Fig. 7b corresponds to the cn = 0.30
case, i.e., a less concentrated spherical nucleus. As can be seen, there are no big differences
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Fig. 8 Orbital structure of the (R, Ṙ) phase plane when (a) cn = 0.05 and (b) cn = 0.30.
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Fig. 9 Percentages of different kinds of orbits, varying cn.

between both cases, the most prominent one being the shrinking of the area occupied by
chaotic orbits. In fact, the chaotic sea has been separated into different regions which sur-
round all the sets of invariant curves produced by the regular orbits. Fig. 8a, made as Fig. 5a
but for the PSS of Fig. 7a, shows that there are present only six out of the seven main fami-
lies of regular orbits: the 2:3 resonance is absent, while the islands of the 4:5 resonant orbits
are so thin that they appear as lonely points in the grid. On the other hand, in Fig. 8b, cor-
responding to cn = 0.30, all the basic families of regular orbits are present. Also, the region
of orbits of high resonances is considerably larger than with cn = 0.05. This trend is fairly
visible in Fig. 9, where the resulting percentages of chaotic and regular orbits as cn varies
are shown. It can be seen that there is a strong correlation between the percentage of chaotic
orbits and the value of cn. At the same time, as the nucleus become less concentrated, there
is a gradual increase in the percentage of almost all of the regular families, most noticeably
the box and the high resonant boxlets. Once again, the meridional 2:1 bananas are immune
to changes of the parameter. Thus, decreasing the scale length of the nucleus turns box and
high resonant orbits into chaotic orbits, while those with low resonances are less affected.
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(a) (b)

(c) (d)

Fig. 10 The (R, Ṙ) phase plane when (a) Lz = 10, (b) Lz = 15, (c) Lz = 30 and (d) Lz = 50.

4.3 Influence of the angular momentum

Zotos (2012b) showed, for an axially symmetric galactic model composed of a disk, a halo
and a spherical nucleus, that one of the most important parameters that influences the orbital
structure is the angular momentum Lz. Here, we let Lz vary along the set {1, 5, 10, 15, ..., 50},
while fixing Mn = 400, cn = 0.25 and E = −670. Fig. 10a depicts the (R, Ṙ) phase plane
when Lz = 1. We observe the existence of a large chaotic sea, while most of the regular
orbits are located near the central region of the phase plane, although there are important
islands of invariant curves surrounding them. In Fig. 10b, corresponding to Lz = 15, we
can see that the amount of chaos is smaller, and that an additional inner chaotic layer has
appeared besides the outer sea. In Fig. 10c we can see the phase plane when Lz = 30. It
is seen that almost all the phase plane is covered by regular orbits. Nevertheless, we can
still distinguish the presence of two distinct chaotic layers. In Fig. 10d, which shows the
case Lz = 50, the entire phase plane is seen covered by regular orbits; the chaotic motion
is negligible. From these figures we can draw two conclusions: (i) increasing Lz causes a
decreasing of the chaotic region, which eventually disappears almost completely and (ii) the
permissible area on the (R, Ṙ) phase plane is reduced as we increase the value of Lz. Figs.
11(a-d) show the grids of orbits that we have classified, corresponding to the PSSs of Figs.
10(a-d) respectively. In Fig. 11a we note a lack of 4:5 boxlets orbits; they appear in Fig.
11b, although forming very thin islands. In Fig. 11c we observe a drastic decrease of chaotic
orbits, thus leaving room to regular families. Fig. 11d shows that the regular orbits have
taken almost all the phase plane. It is worth noticing that, at the highest angular momentum,
the 4:3 resonance has been almost deleted from the phase plane.
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Fig. 11 Orbital structure of the (R, Ṙ) phase plane when (a) Lz = 1, (b) Lz = 15, (c) Lz = 30 and (d) Lz = 50.

Fig. 12a presents the resulting percentages of chaotic and regular orbits as Lz varies. It is
clearly seen that, as Lz increases, the percentage of chaotic orbits decreases almost linearly,
while that of box orbits grows steadily when Lz > 15. In fact, when Lz > 25, they are the
dominant type of orbits. The rest of orbits change less. In particular, the percentage of 2:1
bananas is little affected by the increase of the angular momentum, unlike the previous cases.
It is also seen that when Lz ' 30 the percentage of the 4:3 family drops suddenly, remaining
at very low values from then on. Summarizing, the angular momentum mostly affects box
and chaotic orbits.

To further investigate the influence of Lz, we define, for each set of values of the param-
eters, the critical value of the angular momentum Lzc as the maximum value of the angular
momentum for which the orbits can display chaotic motion. Fig. 12b shows the numerically
found relationship between Lzc and Mn, for two values of the scale length of the nucleus,
cn = 0.25 and cn = 0.50. To obtain this, orbits were started near R0 = Rmin, with z0 = Ṙ0 = 0,
and ż0 obtained from the energy integral with E = −670. Here, Rmin is the minimal root of
the equation

V(R, 0) +
L2

z

2R2 = E. (11)
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Fig. 12 (a): Percentages of different kinds of orbits, varying Lz. (b): Relationship between the critical value of
the angular momentum Lzc and the mass of the nucleus Mn, for two values of the scale length of the nucleus
cn. More details are given in the text.

The particular value of the energy was chosen so that in all cases Rmax ' 10 kpc. It is
seen in Fig. 12b that the relationship between Lzc and Mn is nearly linear. This line divides
the (Lz,Mn) plane in two parts; orbits on the upper shaded part of the plot may be either
regular or chaotic, while those on the lower part of the plot can only be regular. Moreover,
it is interesting to notice that the extent of the chaotic domain is larger when the value of cn

is smaller, that is, when the nucleus is more concentrated, which is in agreement with the
results found in Fig. 9.

4.4 Influence of the energy

Another parameter that plays an important role is the value of the orbital energy E. We
investigated three cases: (i) A system with a small amount of chaos; for this case, we set
Mn = 50, cn = 0.25 and Lz = 10. (ii) A system with a medium level of chaos, for which we
chose Mn = 100, cn = 0.15 and Lz = 10. (iii) A system which presents a large amount of
chaos, with Mn = 500, cn = 0.25 and Lz = 10. To select the energy levels, we chose for each
case the ten energies which give Rmax = {1.5, 3, 4.5, ..., 15}, where Rmax is the maximum
possible value of R on the (R, Ṙ) phase plane.

For the case (i), low level of chaos, Fig. 13a depicts the phase plane when E = −2004
which corresponds to Rmax = 1.5. It is seen that the entire phase space is covered by regular
orbits. In Fig. 13b we present the phase plane when E = −459 (Rmax = 15). Here, the
chaotic orbits have taken a small region of the phase plane, which is nevertheless still mainly
occupied by regular families. Fig. 14a shows a grid of orbits that we have classified on the
PSS of Fig. 13b. We can see that all the different types of orbits are present, although most
of them correspond to either box orbits or 2:1 banana-type orbits. Also, the 1:1 and 4:3
resonances occupy a significant portion of the PSS, while the 2:3 and the 4:5 resonances
appear to be confined in small islands. Fig. 14b shows the resulting percentages of chaotic
and regular orbits as E varies. It can be seen that when the motion of stars is at very low
energies, it is entirely regular, being the box orbits the all-dominant type. The percentage
of box orbits is however reduced as the energy is increased, although they always remain
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(a) (b)

Fig. 13 The (R, Ṙ) phase planes of case (i) when (a) E = −2004 and (b) E = −459.
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Fig. 14 (a): Orbital structure of the (R, Ṙ) phase plane of case (i) when E = −459. (b): Percentages of different
kinds of orbits, varying the energy E in case (i).

the most populated family. It is also seen that the percentages of 1:1 and 2:3 boxlets start
to grow as soon as the energy grows, but then they remain at relatively low values, the 2:3
family disappearing at high energies. The percentage of orbits of the 2:1 family, on the other
hand, takes relatively high values at high energies. Only the 4:5 boxlet orbits remain almost
unperturbed by the increase of the energy. These percentages show that, when there is a
small amount of chaos, the value of the energy affects mostly the regular orbits by shifting
the population of the different families.

For the case (ii), Fig. 15a depicts the phase plane when E = −2037 which corresponds to
Rmax = 1.5. Once again, the phase plane is almost entirely covered by regular orbits, while
the chaotic motion is negligible. In Fig. 15b we present the phase plane when E = −462
and Rmax = 15, where a chaotic outer area is clearly seen, and an additional inner thin
chaotic layer can be observed. Fig. 16a shows a grid of orbits that we have classified on the
PSS of Fig. 15b. It is seen that the majority of orbits correspond either to chaotic, box, or
2:1 banana-type orbits. The 1:1, 2:3 and 4:3 resonances occupy a significant portion of the
PSS forming well-defined islands. It is also worth mentioning that there is a considerable
amount of higher resonant orbits. Fig. 16b presents the resulting percentages of the different
orbits as E varies. Once again, low energy orbits, i.e., orbits which move near the center, are
almost entirely box orbits (in the meridional plane). Also, the 2:1 bananas start to grow in
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(a) (b)

Fig. 15 The (R, Ṙ) phase planes of case (ii) when (a) E = −2037 and (b) E = −462.
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Fig. 16 (a): Orbital structure of the (R, Ṙ) phase plane of case (ii) when E = −462. (b): Percentages of
different kinds of orbits of case (ii), varying the energy E.

percentage at high energies. But, unlike case (i), the percentage of box orbits is significantly
reduced as E grows, and, at the same time, the chaotic and the 1:1 orbits increase rapidly. The
level of chaoticity remains relatively high, around 30-40%. At the higher energy studied in
case (ii), the percentages of the chaotic, box and 2:1 orbits tend to a common value (around
25%), sharing three fourths of the entire phase plane.

With respect to case (iii), high level of chaos, Fig. 17a shows the phase plane when
E = −2300 which corresponds to Rmax = 1.5. It is seen that most of the phase plane is
covered by chaotic orbits. In Fig. 17b we present the phase plane when E = −489 and
Rmax = 15. Here, we have a significant decrease in the region occupied by chaotic orbits. Fig.
18a shows the grid of orbits corresponding to the PSS of Fig. 17b. We see that most orbits
are chaotic, although all the regular families, with the exception of the 4:5 family, occupy a
significant portion of the PSS. In Fig. 18b, which presents the resulting percentages, it can be
seen that the motion is highly chaotic throughout. Though the percentage of chaotic orbits
is gradually reduced as the energy increases, it remains larger than any other individual
regular family. From E ' −1400 on, the decreasing of chaotic orbits is paired with a similar
increasing of box and 2:1 orbits. As before, the 4:5 orbits remain unperturbed and with very
low percentages
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(a) (b)

Fig. 17 The (R, Ṙ) phase planes of case (iii) when (a) E = −2300 and (b) E = −489.
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Fig. 18 (a): Orbital structure of the (R, Ṙ) phase plane of case (iii) when E = −489. (b): Percentages of
different kinds of orbits in case (iii), varying the energy E.

5 Analysis of the results

In the literature, the dynamical origin of the onset of chaos has proven elusive so far. A
promising line of investigation, namely the curvature of the phase space, although theoreti-
cally sound, came up against many experimental counterexamples (e.g., Szydlowski, 1994).
So, we will not attempt to explain which dynamical factors are responsible for the onset and
growth of chaos, but try to isolate any behaviour that may be correlated with that.

Gerhard & Binney (1985) have shown that stars that pass near a density cusp, thus
receiving a large acceleration, may depopulate the family of box orbits which supports the
triaxial figure of a galaxy. Therefore, regions of large accelerations may be responsible for
the onset of chaos. Since our potential is nowhere divergent, we do not have any cusps. But,
the effective potential on the meridional plane does have a cusp at the origin, caused by the
centrifugal term. Thus, we seek whether there is a relationship between chaos and a star
going near the origin.

We computed, for each star of our models, their minimum distance dmin (in the merid-
ional plane) to the origin of coordinates. Fig 19a shows these minimum distances for all
the orbits used to study the influence of the mass of the bulge Mn, versus the value of their
respective MLCNs; the horizontal line indicates the threshold between regular and chaotic
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Fig. 19 (a): Minimum distances of orbits to the origin versus MLCNs. The horizontal line shows the limit
separating regular from chaotic orbits. (b): Minimum distances of orbits to the origin versus minimum dis-
tances to the minimum of the effective potential, located at (Rg, 0).

orbits. It is seen that all the chaotic orbits pass near the center, i.e., they suffer at one time
or another some sudden acceleration due to the centrifugal force. On the other hand, we can
see that this is not a sufficient condition to be chaotic: regular orbits can also pass near the
center. We’ve found exactly the same behaviour when using orbits from the rest of the cases
analysed in Section 4. Therefore, we may draw the following conclusion: in the meridional
plane of our galactic model, a necessary condition for an orbit to be chaotic is to pass near
the center of the potential; a sufficient condition for an orbit to be regular is not to pass near
the center of the potential.

From the results of the previous Section, all of the studied parameters, except the energy,
have an almost monotonic influence on the percentage of chaos in the meridional plane. This
percentage grows with the increment of the mass of the bulge (Fig. 6), the decrement of the
scale length of it (Fig. 9), and the decrement of the angular momentum (Fig. 12, left). We’ve
found (numerically) that in all the cases the position Rg of the minimum of the effective
potential, which is always located on the R axis (e.g., Binney & Tremaine, 2008), nears the
origin of coordinates whenever the percentage of chaos rises. Fig. 19b shows the minimum
distance to the origin for the orbits shown in Fig 19a, versus their minimum distances to Rg.
We can see a consistent correlation between those quantities, hinting that the position of the
minimum of the effective potential might influence the degree of chaos, although we weren’t
be able to find an analytic proof of this.

The picture described above is consistent with the rising of the percentage of the chaotic
motion with Mn (Fig. 6), since the acceleration grows with the mass of the bulge (Sec. 2).
Also, it is consistent with the behaviour of the chaotic percentage seen in Fig. 9, considering
that the more concentrated is the nucleus, the more acceleration it causes near the center. It
also explains why the percentage of chaotic motion diminishes when the angular momentum
increases (Fig. 12a), given that a low angular momentum allows the star to approach the
center of the potential. On the other hand, Fig. 6 shows that when the bulge is absent, there
is no chaotic motion at all. Whereas this proves that the onset of chaos is driven by the
presence of the nucleus, it also poses a question mark about the abovementioned role of the
centrifugal force, since it is at work even in this full regular case.

On the other hand, as it was seen in the previous Section, the variation of the parameters
Mn, cn, Lz and E causes not only variations in the chaotic content, but also in the relative
importance of the different regular families. In particular, the 4:5 resonance may be taken as
a model, since it appears mainly when there is a low level of chaos, and decreases signifi-
cantly or even disappears when we have a strong chaotic regime. Therefore, it is of particular



Orbits in the meridional plane of a disk galaxy 19

0 100 200 300 400 500

9.2

9.3

9.4

9.5

9.6

9.7

9.8

Mn

R0

(a)

0.1 0.2 0.3 0.4 0.5

9.24

9.26

9.28

9.30

9.32

cn

R0

(b)

0 10 20 30 40 50

9.60

9.62

9.64

9.66

9.68

Lz

R0

(c)

-2000 -1500 -1000 -500
0

2

4

6

8

10

12

14

Energy

R0

(d)

Fig. 20 Evolution of the R position and the stability of the 4:5 resonance varying (a) the mass of the nucleus,
(b) the scale length of the nucleus, (c) the angular momentum and (d) the energy.

interest to investigate how its stability is being influenced by the above-mentioned parame-
ters. For this purpose, we used the theory of periodic orbits (Meyer & Hall, 1992), in which
the stability criteria can be obtained from the elements of the monodromy matrix X(t) as
follows:

K = Tr [X(t)] − 2, (12)

where Tr stands for the trace of the matrix, and K is called the stability index. For each set
of values of Mn, cn, Lz and E, we first located, by means of an iterative process, the position
of the parent 4:5 orbit onto the R axis when Ṙ = z = 0. Then, using these initial conditions
plus the value of ż obtained from the energy, we integrated the variational equations in order
to obtain the matrix X, with which we computed the index K. The results are presented in
Figs. 20 (a-d). In Fig. 20a we can see the evolution of the R position and of the stability of
the 4:5 resonance when Mn varies, the values of all the other parameters being as in Fig. 6.
Green dots correspond to stable periodic orbits, while red dots correspond to unstable ones.
We can see that when Mn ≥ 260 the periodic orbit becomes unstable. Curiously, it is also
unstable when Mn = 0. On the other hand, in Fig. 20b we see that the stability of the 4:5
parent periodic orbit is completely unaffected by the scale length of the nucleus. In this case,
the values of all the other parameters are as in Fig. 9. In Fig. 20c, where we have used the
values of the parameters as in Fig. 12 (left), it can been seen that there is a limit of stability
around Lz ' 35. It is worth noticing that, though in Fig. 11a there is no evidence of a 4:5
resonance, Fig. 20c indicates that the resonance is indeed present, although evidently deeply
buried in the chaotic sea. Finally in Fig. 20d we present the influence of the value of the
energy. The values of all the other parameters are as in Fig. 16 (right). One may see that
most of the periodic orbits are stable, except the region −1970 . E . −1800 in which the
periodic orbits become unstable. It is clear, then, that the parameters of the model, as well
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as the isolating integrals of motion, play a fundamental role in the stability of the regular
families, which in turn determines which ones are present in each case.

6 Discussion and Conclusions

We have investigated how influential are the parameters of a disc galaxy with bulge on the
level of chaos and on the distribution of regular families among its orbits. We have used an
analytic axisymmetric potential which embraces the general features of a disc galaxy with
bulge, and have chosen to work in the meridional plane of the orbits, in order to simplify the
study. Varying several of the constants of the potential, as well as the two global isolating
integrals of the orbits, namely the angular momentum and the energy, we have found that
the level of chaos and the distribution in regular families is indeed very dependent on all of
these parameters.

Our study shows that the mass of the bulge, although spherically symmetric and there-
fore maintaining the axial symmetry of the whole galaxy, generates chaos in the meridional
plane as soon as it is above zero. As the mass increases, this chaotic motion grows in per-
centage at the expense of the (meridional plane) box orbits, although it seems to saturate at
' 40% of the orbits once the mass of the bulge has reached some ' 5% of the mass of the
disc. The concentration of the bulge plays a similar role: the percentage of chaotic motion
depends almost linearly on this parameter. Once more, box orbits and high-resonance orbits
(by which we mean resonant orbits with a rational quotient of frequencies made from inte-
gers > 5) are the ones that give way to the chaotic orbits. We also found that the angular
momentum of the orbits influences the level of chaos in a similar fashion: orbits with low
angular momenta have higher chances of being chaotic that those with high values of it. The
relationship between chaos and angular momentum is close to linear, and, again, box orbits
are the most affected by the percentage of chaos. The energy of the orbits, however, plays
a different role. In a model with low level of chaos, varying the energy mainly shuffles the
orbital content among the families of regular orbits. Interestingly, box orbits are again the
family which suffers the most. Taking a model with a medium level of chaos, box orbits are
the dominant family at low energies, but the percentage of chaos quickly grows as the en-
ergy increases, again by collapsing the percentage of box orbits. In this case, however, linear
orbits (i.e., 3D hollowed out saucers) grow along with chaotic ones; also, further increasing
the energy reverts these trends, and 2:1 bananas start to increase their share. With a high
level of chaos model, the increase of the energy diminishes the percentage of chaos, while
the box and 2:1 bananas take the field.

When taken into account that the effective potential in the meridional plane has a cusp
caused by the centrifugal acceleration, all these behaviours turn out to be consistent with the
analysis we made on Sec. 5, where we arrived to the conclusion that a necessary condition
for an orbit to be chaotic is to pass near the center of the potential, and a sufficient condition
for an orbit to be regular is not to pass near the center of the potential.

In the same vein, we also conducted an investigation on the stability of the 4:5 resonance,
which was taken as a model, in an attempt to see whether it depends on the parameters of
the galactic system and the integrals of motion. Our results indicate that, with the exception
of the scale length of the nucleus, all the parameters affect substantially the stability of this
family, hinting at a deep interplay between chaos and proportion of regular families.

We’ve also found that, by combining the MLCN and the SALI algorithms, we can obtain
for both methods reliable thresholds separating chaotic from regular motion.
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We consider the outcomes of the present research as an initial effort in the task of explor-
ing the orbital structure of a disk galaxy with a central spherical nucleus. Since our results
are encouraging, it is in our future plans to study the influence of all the available param-
eters, including the disk’s parameters Md, α and h. Moreover, we plan to obtain the entire
network of periodic orbits and reveal the evolution of their stability with respect to all the
parameters of the galactic model.
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