
Preserving Message Integrity in Dynamic Process Migration

E. Heymann, F. Tinetti, E. Luque
Universidad Autónoma de Barcelona

Departamento de Informática
08193 - Bellaterra, Barcelona, Spain

e-mail: e.heymann@cc.uab.es

Abstract 1

Processor and network management have a great impact on the performance of Distributed Memory Parallel
Computers. Dynamic Process Migration allows load balancing and communication balancing at execution time.
Managing the communications involving the migrating process is one of the problems that Dynamic Process Migration
implies. To study this problem, which we have called the Message Integrity Problem, six algorithms have been analysed.
These algorithms have been studied by sequential simulation, and have also been implemented in a parallel machine for
different user process patterns in the presence of dynamic migration. To compare the algorithms, different performance
parameters have been considered. The results obtained have given preliminary information about the algorithms’
behaviour, and have allowed us to perform an initial comparative evaluation among them.

1. Introduction
Parallelism is a challenging computer technology. The main promise of this technology is to obtain high performance by

replicating the computer hardware. A Distributed Memory Parallel Computer (DMPC) is organised as a set of nodes that
communicate over an interconnection network, each node containing a processor and some memory. Interprocess
communication can be achieved via explicit message passing or via virtual shared memory. In DMPC high performance is
combined with scalability. With such machines, we have considered a message passing programming model. The unit of
parallelism is the process, which is a logical entity that executes code sequentially. A channel allows communication and
synchronisation among processes.

The performance on a DMPC can be improved if the use of its resources is balanced. This means balancing the
computation load (load balancing) and balancing the network utilisation (communication balancing). It is difficult to
achieve these goals statically because the behaviour of the parallel application normally cannot be determined in a static
way [1]. When some processes, with high computation needs, have to be executed on a single processor, it would be
convenient to separate those processes, that is, to place them on different processors, thereby balancing the load of the
parallel application. In the same way, if a processor contains some processes so that their communication needs are greater
than the network bandwidth at this node, a hot spot is produced. In such cases it would be also useful to separate those
processes, thereby balancing the communication load. Therefore, we expect to obtain better performance dynamically, via
Dynamic Process Migration. With a process migration support, the processes-processors mapping can be changed
dynamically, at execution time [2].

 In the same way as the address translation mechanisms and the dynamic data movement through the memory hierarchy
(virtual/cache memory) have prevailed as essential characteristics of any sequential computer, it will be necessary to include
a process migration mechanism in the hardware, thereby improving the performance of parallel computers.

Dynamic process migration implies the following problems:
• To evaluate the processors and network load, and how to use this information in deciding which process must migrate,

where it will migrate and when (Dynamic Load Balancing Policies);

1 This work was supported by the Spanish Comisión Interministerial de Ciencia y Tecnología (CICYT) under contract number TIC
95/0868, and was partially sponsored by the EU’s Copernicus Program under Contracts number CIPA-C1-93-0251 and CIPA-CP-93-
5383.

• How to migrate (physically), this includes the de-allocation of the process in the source processor and its allocation in
the destination processor (Process Migration Mechanisms); and

• To manage the communications involving the migrating process, which must continue receiving messages
independently of its network location (Message Integrity Management).

Our work is focused on the last problem, which we have called the message integrity problem (MIP). Given an initial
mapping, in which each process S1, S2, ... , Sk communicating with process R, knows R’s physical address, that is, the
processor identification Pi, in a message passing machine, the MIP consists of keeping these connections, once process R
migrates from processor Pi to processor Pj, as it is shown in figure 1.

 Figure 1. The Message Integrity Problem

Related work can be found in [3] and [4]; and a description of the generic work carried out about Dynamic Process
Migration is presented in [5].

Another situation in which the MIP appears is the following: process p has many copies of itself on different processors,
but only one of them is active at any given time. In this case, a message integrity algorithm is needed to assure that the
messages directed to p arrive at the location where the active copy of p is found. It is interesting to note the similarity
between the MIP and the cache access problem in a shared memory multiprocessor [6].

The MIP implies considering: which actions are taken by (1) the migrating process, say R, and by (2) the processes
sending messages to R. To manage the MIP we have analysed six algorithms: Centralised Scheme, Send First to Home
Address, Migration Mailbox, Follow Me, Message Rejection and Full Protocol. All these algorithms present different
characteristics. In order to perform a comparison among them, we have studied them by sequential simulation, and we have
also implemented all the algorithms in a parallel machine, and executed them for different user process pattern when
dynamic process migration is allowed. The performance parameters we have considered to evaluate and compare the
algorithms are: message latency, the extra load produced, the reaction time, the scalability, and how the algorithms modify
the communication pattern over the network. For simplicity, but without loss of generality, we only consider static creation
of user processes and communication channels.

The rest of the paper is organised as follows: The algorithms which solve the message integrity problem are described in
section 2; section 3 presents the performance parameters and experimentation done with these algorithms, whose results
show us the behaviour of each algorithm. These results are presented in section 4; section 5 contains the analysis of the
results of the previous section, and in section 6 the conclusions and future work are exposed.

2. Algorithms Description
To describe the algorithms which offer different alternatives to the Message Integrity Problem, the following convention

has been used: let R be the message receiver process that will migrate from processor Pi to processor Pj, and let S1, S2, ... ,
Sk be the processes communicating with R through static channels and sending messages to it.

The communication overhead produced by each algorithm is made up of: (1) Retransmission Messages, which represent
the messages that arrived at a wrong destination and must be re-sent in order to reach their true destination, due to the fact
that the destination process R had migrated; and (2) Control Messages, which represent the management messages needed
to implement the algorithm.

Process Processor

S1 S2 Sk

R R

Process Migration

Channels to R when allocated in Pi

Channels to R when allocated in Pj

• Centralised Scheme: There is a Central Server Process (CS) which provides physical address (processor
identification) of the destination process, through its process-processor allocation table. This CS process has to be notified
of any migration, that is, when a process migrates it must send its new address to the CS. When a process Si wants to send a
message to process R it must:

(1) Ask R’s location from the Central Server.
(2) Wait for the CS’s response -for example Pi -. This is the last known address of R.
(3) Send the desired message to Pi.
It is possible to send a message to a wrong address. In such case a NACK signal is received. This situation can be

produced when the answer to Si leaves just before the Central Server is being informed about R’s migration. In this case,
steps 1-3 are repeated.

Each send operation implies, in most cases, two control messages, one for asking the CS for the address of the
destination process R, and one to receive its answer. If R has migrated but the CS has not still been notified, a message
destined to R will arrive to a wrong destination and a retransmission will be carried out. In this case, more control messages
are produced. Each migration operation produces one control message in order to notify to the CS the new location of the
migrating process.

• Send First to Home Address: The home processor is the initial processor where each process is assigned. Suppose
that process R has been initially assigned to processor Pi (R’s home processor), then any message destined to process R will
be sent to processor Pi, no matter if R is still there. Once the message arrives to Pi, if process R has migrated, the message is
retransmitted to R’s new location, say Pj. This implies that the home processor must always know the location of its initial
processes. When a process migrates, it must send its new location to its home processor. In this way the home processor
will be able to retransmit the messages to R. It is possible that some messages have been sent to Pi for process R before the
home processor has been notified about R’s new location. These messages will not find process R in Pi, so a NACK signal
will be sent to the home processor. Once it receives the new location of R, it will retransmit the message to R. In this last
case, extra control messages are produced.

Each migration operation produces a control message destined to R’s home processor notifying its new address. Once a
process has migrated, all the messages directed to it will be sent to its home processor and then retransmitted. Additional
retransmissions will be done when process R migrates, its home processor has not still been notified, and a message to
process R arrives.

• Migration Mailbox: The idea in this case is based on modifying the semantic of the receive primitive. When a
receive is executed by process R, a message request is sent to a predefined address, called the migration mailbox of process
R. Any process Si that wants to communicate to the process R, sends the message to R’s migration mailbox, no matter if R
has migrated or not. This implies that no action is taken when a process migrates, that is, nobody has to be notified about
R’s migration. This scheme has the following restriction: if a process must migrate, it must wait to complete all pending
receives operations before the migration is allowed to be made.

The migration mailbox of a process R is located in the same processor as this process R is initially mapped, say Pi.
Therefore all the messages destined to process R will be sent to processor Pi. When process R and its Migration Mailbox
are in different processors, that is, once R has migrated, each receive operation will produce a control message and a
retransmission.

• Follow Me: When process R migrates, its new location (migration address) is recorded in the processor it leaves. In
this way each process builds a path to follow by the messages sent to it. When process Si wants to send a message to
process R, the message is sent to the processor where R was initially assigned, say Pi. If R has migrated, the migration
address left in Pi is used to follow process R. This step is performed as many times as needed to reach R.

On the one hand this algorithm does not generate any control message, but on the other hand, once a message is injected
into the processor network, it will be retransmitted until reaching process R, that is, as many times as R migrates, unless R
migrates to a processor in which it was located before. In this last case the path is reduced.

• Message Rejection: When a process migrates from processor Pi to processor Pj its new location is recorded in the
processor it leaves. When a process Si sends a message to R it uses its last information about R’s location, which is the
location of R when Si sent its last message to it. If a processor Pi receives a message to R and R is not in the processor
because it has migrated, it sends a NACK signal to Si’s processor, attaching R’s (last) known address. Si’s processor then
updates its own R’s location using the received address, and retransmits the message. These steps are repeated until the
message finally reaches R.

Each time a message is rejected, both a control message notifying the known address of process R, and a retransmission
to the received address, are generated.

• Full Protocol: Process R will not be allowed to migrate until:(1) all process S1, S2, ... , Sk communicating with it
know its new location; and (2) R receive all the message already sent to it.

When process R migrates, it performs a full-information exchange protocol for all the processes S1, S2, ... ,Sk. This
protocol consists of the following steps:

(1) A signal to processes S1, S2, ... , Sk is sent making them to stop sending messages to R;
(2) these processes send R the number of messages they have sent to R;
(3) R waits for the arrival of all the pending messages;
(4) when all the pending messages have arrived, then R migrates to Pj;
(5) R notifies its new address to processes S1,S2,... , Sk, and allows them to continue sending messages to it.
This algorithm does not generate any retransmission, but each time a process R migrates, 3 * k control messages are

generated, with k representing the number of processes communicating with R.
A variation of this algorithm allows process R to migrate after step 2. The pending messages will be retransmitted from

Pi to Pj.

3. Performance Parameters and Experimentation
The proposed algorithms have been evaluated and compared through the following performance parameters:
• Latency: This is the average time of sending a message from one process to another, that is, the time elapsed from

when a message leaves the source process to when it reaches the destination process;
• Load Overhead: This represents the extra load over the network that each algorithm adds, which consists of the

average number of message retransmissions per message, plus the average number of control messages. This parameter
points out the bandwidth an algorithm consumes;

• Reaction time: This is the time elapsed from when a process is selected to migrate, and the time in which this process
can be migrated, preserving the reception of its messages;

• How an algorithm modifies the communication pattern between processors. Focusing the communication pattern is
necessary to evaluate if the algorithm would be able to perform communication balancing; and

• Scalability: How the algorithm behaves when adding processes and processors.
To evaluate these performance parameters the following experimentation, which includes simulation and

implementation, has been carried out:
• Modelling and sequential simulation of the proposed algorithms. This simulation attempts to analyse the intrinsic

behaviour of each algorithm, without the influence of external elements like the load over the communication network or the
message sending pattern of the application.

• Implementation of the different algorithms which solve the MIP in a parallel machine. In this implementation the
application, that is the user processes, is simulated by means of a synthetic program which simulates computation and, sends
and receives real messages. The processes migration is also simulated, but like the communication messages, it generates
real traffic over the communication network. The synthetic program allows to perform executions modelling different
situations. The latency is affected by the communication network load. Messages between user processes, control messages,
retransmission messages, and the migrating user processes are transmitted using the communication network, and all of
them constitute network load.

For each one of the six algorithms we have carried out simulations and executions varying different input parameters.
The number of processors studied were 8, 32 and 64 processors for the simulations and 8, 16, and 32 for the executions.
This parameter allows to study the scalability of the algorithms. The process/processors ratios considered were 5 and 20
processes per processor. This last parameter has not been relevant in the results. Finally, different percentages of migration
have been studied: 0%, 1%, 5% and 10%. The 0% percentage of migration is used as reference, and represents the case
when dynamic process migration is supported but no process migrates. Each time a send operation is produced a migration
occurs with probability p, which represents the percentage of migration. Both simulation and execution takes place until an
average of 150 messages per process are generated.

It is very important to point out that all the processes are connected among themselved, that is, process R can receive
messages from any other process; and when adding processes, the connectivity is scaled. This fact will affect only the full
protocol algorithm, in which a process at migration time communicates with all the processes communicating with it,
without having a multicast mechanism. In order to evaluate the effect of the number of connections a process has, the full
protocol algorithm has been simulated with the following processes graphs: a complete graph, where all the processes are
connected with each other; a bi-directional pipe, where each process is connected with another two, and the number of

connections has a linear growth when scaling; and the hypercube topology, where in a 2n hypercube each process is
connected with n processes, and the number of links has a logarithmic growth when scaling.

For each algorithm a total of 24 simulations and executions were carried out, also the Full Protocol algorithm was
simulated with the different topologies described above.

3.1 The Sequential Simulation
The sequential simulators were implemented using a discrete event driven simulation model. The latency we have

considered is the minimum under a processor network, because we are not considering in this first approximation the effect
in the latency produced by the load over the network each algorithm adds. As we have handled the latency and the load over
the network independently, although the overhead produced by the algorithms described increases the network load, it will
not affect the latency.

The architecture model considered in the sequential simulation supports the communication between each pair of
processes, independently of their location in the processor network [7]. The communication time between each pair of
processes is a variation under an exponential function around a uniform value, provided by a two-step routing. The first
step is a random routing, and in the second step the message is routed to its destination processor. The average process
communication time is given by the average distance between a pair of processors in an hypercube topology, which presents
logarithmic growth, and doubled, thereby simulating the two-step routing. In this way, the communication time is given for
an exponential function around the following values: 2.8 in an 8 processor hypercube, 5.0 in a 32 processor hypercube and
6.0 in a 64 processor hypercube. Accordingly, the latency for a particular message is proportional to the number of hops
that it takes the message to arrive to its destination.

3.2 The Parallel Implementation
The general parallel implementation can be described in terms of the processes shown in fig. 2, which is modified for

each proposed algorithm. The synthetic model of the application is composed of user processes, whose execution is
simulated. The synthetic application’s processes are represented with a discontinuous line in figure 2. The rest of the
process, that is, the implementation processes for the algorithms are represented with a continuos line.

Proceso de implementación de políticas Process which implements the policy

Proceso de la aplicación sintética Process of the synthetic application

 usrsim: user process simulator

 coord: coordinador

 msgman: message manager

 mout: out message manager

 tgtsrv: user process target server

 consrv: connection server

 migman: migration manager

 usrpin: user inward message manager

 usrpout: user outward message manager

Figure 2. The Parallel Implementation

Process usrsim (user simulator process) simulates the behaviour of the user process time slice, as in multiprocessing
systems. It receives a user description from process coord (the probability of sending a message and the computing value),

Processor i

usrpin coord

 consrv

usrsim
 migman tgtsrv

 msgman mout

 usrpout

and simulates the user process in a time slice. If the user process does not communicate in the simulated time slice, then
process usrsim consumes the time slice and requests the process coord for another user process to simulate. If the user
process communicates in the simulated time slice, process usrsim asks process consrv for the communicating partner and
performs a message request to process msgman.

Process coord (coordinator process) keeps the user processes running and also migrates user processes. User processes
are sent to simulate its execution to process usrsim. When an outward migration request is received from process migman a
user process is sent to another processor (both chosen randomly) via the process usrpout. Incoming user processes are
received from process usrpin. Process tgtsrv is updated in each migration.

Process msgman (message manager process) handles message requests. These requests come from other processors or
from the process usrsim running in the same processor. For each request, process msgman asks process tgtsrv the location
(processor) of the message destination. If the destination user process is running locally, then the message is consumed,
otherwise the request is handled according to the policy for solving the MIP. When a request has to be sent to another
processor, process msgman sends it to process mout.

Process mout (message out manager process) is dedicated to distributing messages to other processors.
Process tgtsrv (target user process location server process) serves requests from process msgman for user process

location and remains updated at least for the location of user processes running locally. It receives information from process
coord about incoming and outgoing user processes.

Process consrv (user interconnections server process) knows the interconnection graph between user processes. Once a
user process has decided to send a message, process usrsim asks process consrv for the destination user process. Given a
source user process for a message, the process consrv selects a destination user process randomly.

Process migman (migration manager process) generates outward migration requests for process coord. Process migman
implements the migration policy for user processes.

Processes usrpin and usrpout (user processes inward and outward migration processes) handle the physical migration (to
and from the processor) of user processes.

Process mout communicates with process msgman in all the other processors, and process usrpout communicates with all
the other processes usrpin. Two separated data circuits are defined: one for message data (mout-msgman), and another for
process migration data (usrpin-usrpout). This general structure is set up by loaders.

The simulation of user defined applications can be defined according to the user processes (1) number; (2) computing
and communication behaviour; (3) interconnection pattern; (4) probability of migrating; and (5) migration policy. The
algorithms are implemented on a real processor network. In the parallel machine it is not possible to know the global state
of the system (e.g. there is not a global clock), and some local measures are taken to calculate the message latency. Three
measures made in each processor are used to calculate message latency: (1) Queue length of the message request when it
came to the process msgman,(2) Hop latency (elapsed time to send a request from a process msgman to another), and
(3)Number of hops a message takes to reach its destination. These three measures are taken locally at each processor
without knowledge of the parallel computer state.

4. Results
In this section some significant results for the sequential simulation and the parallel implementation are shown. Figures

3, 4 and 5 show the results of the sequential simulation for all the algorithms, considering latency, retransmissions, and
control messages for 8 and 64 processors. The X-axis represents the percentage of migration. In the latency’s graphs, the Y-
axis represents the time; in the retransmissions’ graphs, the Y-axis represents the average of retransmissions per process,
normalised with respect to the average number of messages generated by each process, that is 150; and in the control
messages’ graphs, the Y-axis represents the average control messages generated per process, also normalised with respect
to the average number of messages generated by each process. As the user processes interconnection strongly affects the
number of control messages generated by the Full Protocol policy, Figure 6 shows the number of control messages
produced by this policy for user processes connected in a full, pipe, and hypercube graph. The complete results of the
sequential simulation can be found in [8].

Figures 7, 8, and 9 show the results obtained in the parallel implementation for 8 and 32 processors (the limit of the
parallel computer). Measures and graphical axes are organised as explained for the sequential simulation.

LATENCY - 8 PROCESSORS

0
2
4
6
8

10
12
14
16
18

0% 1% 5% 10%

MIGRATION %

T
IM

E

LATENCY - 64 PROCESSORS

0

5

10

15

20

25

30

35

40

0% 1% 5% 10%

MIGRATION %

T
IM

E

Centralized Home Addr. Mailbox

Follow me Rejection Full Prot.

Figure 3. Sequential Simulation: Message Latency.

RETRANSMISSIONS
 8 PROCESSORS

0

20

40

60

80

100

120

140

0% 1% 5% 10%

MIGRATION %

R
E

T
R

A
N

S
M

IS
S

IO
N

 %

RETRANSMISSIONS
64 PROCESSORS

0

100

200

300

400

500

0% 1% 5% 10%

MIGRATION %

R
E

T
R

A
N

S
M

IS
S

IO
N

%

Centralized Home Addr. Mailbox

Follow me Rejection Full Prot.

Figure 4. Sequential Simulation: Message Retransmissions.

CONTROL MESSAGES
8 PROCESSORS

1

10

100

1000

10000

0% 1% 5% 10%

MIGRATION %

C
O

N
T

R
O

L
M

E
S

S
 %

CONTROL MESSAGES
 64 PROCESSORS

1

10

100

1000

10000

0% 1% 5% 10%

MIGRATION %

C
O

N
T

R
O

L
M

E
S

S
 %

Centralized Home Addr. Mailbox

Follow me Rejection Full Prot.

Figure 5. Sequential Simulation: Control messages

CONTROL MESS. 8 PROCESSORS
Full Protocol

1

10

100

1000

10000

0% 1% 5% 10%

MIGRATION %

C
O

N
T

R
O

L
M

E
S

S
 %

CONTROL MESS. 64 PROCESSORS
Full Protocol

1

10

100

1000

10000

0% 1% 5% 10%

MIGRATION %

C
O

N
T

R
O

L
M

E
S

S
 %

Pipe Process Graph
Hypercube Process Graph
Complete Process Graph

Figure 6. Sequential Simulation. Full protocol algorithm: Control messages.

Latency - 32 Processors

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0% 1% 5% 10%

Migration %

T
im

e

Centralised Home Addr Mailbox

Follow me Rejection Full Prot.

Latency - 8 Processors

0

50

100

150

200

250

300

350

400

0% 1% 5% 10%

Migration %

T
im

e

Figure 7. Parallel Implementation: Message Latency

Retransmissions - 8 Processors

0

20

40

60

80

100

120

140

0% 1% 5% 10%

Migration %

R
et

ra
ns

m
is

si
on

 %

Retransmissions - 32 Processors

0

50

100

150

200

250

300

350

400

0% 1% 5% 10%

Migration %

R
et

ra
ns

m
is

si
on

 %

Centralised Home Addr Mailbox

Follow me Rejection Full Prot.

Figure 8. Parallel Implementation: Message Retransmissions

Control Messages - 8 Processors

0

50

100

150

200

250

0% 1% 5% 10%

Migration %

C
on

tr
ol

 M
sg

s
%

Control Messages - 32 Processors

0

100

200

300

400

500

600

700

800

0% 1% 5% 10%

Migration %

C
on

tr
ol

 M
sg

s
%

Centralised Home Addr Mailbox

Follow me Rejection Full Prot.

Figure 9. Parallel Implementation: Control Messages

5. Analysis of Results
With respect to the message latency, four different types of behaviour were obtained in the sequential simulation: The

Full Protocol algorithm presents a latency equal to the communication time of sending a message from one process to
another; the Centralised Scheme presents a constant latency, independently of the percentage of migration, which is
comparatively high in the case of 8 processors, but the difference decreases when adding processors; the latency of the
Follow Me algorithm gets worse when adding processors and when increasing the percentage of migration; and the Send
First to Home Address, Message Rejection and Migration Mailbox algorithms have a similar behaviour, which consists of
having a low latency when the percentage of migration is low, and a saturation point, after which the latency increases.

In the parallel implementation the message latency is strongly affected by the network load. As message latency depends
on message retransmissions, the Follow Me algorithm results are the worst in almost all situations. The sequential
simulation as well as the parallel implementation show an increment in the latency when processors are added (fig. 3 and 7).
However, the scalability of the policies in the parallel implementation is worse than the observed in the sequential
simulation. Taking as departure point the measures with 8 processors, the message latency when using 4 times more
processors in the parallel implementation is increased by a factor of between 10 and 15 depending on the policy. On the
other hand, the sequential simulation shows that using 8 times more processors decreases performance in the message
latency by a factor of between 1.5 and 2.

Looking at the network load produced by each policy, there is a trade-off between retransmissions and control messages.
For a relatively low number of processors, the number of control messages generated in the Centralised Scheme is initially
higher than the number of control messages in any other policy. However, even in the case of a low number of processors
and user processes, the number of control messages generated by the Full Protocol tends to grow exponentially in relation to
the migration rate (fig. 5 and 9). On the other hand, the Full Protocol policy does not generate any retransmission (fig. 4 and
8). As the number of control messages generated in the Full Protocol depends strongly on the user processes
interconnection, figure 6 shows this relation for different process-interconnection graphs.

Good scalability is found for message retransmissions in all algorithms. Message retransmissions increase in the parallel
implementation for 32 processors compared with the values obtained for 8 processors, but this increase is not relevant. On
the contrary, the number of control messages for the Full Protocol policy increases exponentially with the number of
processors. Different behaviour is found in the Reject Message policy for 8 and 32 processors in the parallel
implementation.

The Full Protocol has the highest reaction time. Depending on the implementation, within the Centralised Scheme and
the Send First to Home Address, the new location of the migrating process has to be notified before it can be migrated.
Otherwise, the new location is sent after the migration. In the Migration Mailbox, the migrating user process must wait for
the messages it has asked its migration mailbox for. Usually, there is at most only one pending reception, and then one
message to wait before the migration can be done. The user processes in the Follow Me and the Message Rejection policies
react immediately. Many steps have to be performed since a user process is chosen for migration until it is sent to another
processor in the Full Protocol policy. Measures taken in the parallel implementation show that the reaction time for the Full
Protocol varies between the time taken for 20 and 30 user messages.

If an algorithm does not modify the network communication pattern adequately, it will not be able to perform
communication balancing. The Full Protocol algorithm, after the information exchange step in which a depending-on-the-
connection number of messages are generated, modifies the communication pattern. The Message Rejection algorithm
changes the communication pattern too. On the other hand, the communication pattern remains nearly the same in the
Follow Me policy. Independently of the location of a migrated user process, the Send First to Home Address and Migration
Mailbox policies maintain the load around the home processor and migration mailbox processor respectively. The
Centralised Scheme produces a hot spot around the Central Server.

6. Conclusions and Future Work
Dynamic load balancing and communication balancing in DMPC implies having a process migration mechanism. An

algorithm which guarantees that processes receive messages independently of its network location must be provided. We
have studied by sequential simulation and implemented in a parallel machine, six algorithms with different characteristics to
handle this problem, which we have called the Message Integrity Problem.

The sequential simulation gave us an idea of the advantages and disadvantages of each intrinsic algorithm in different
situations with respect to the performance parameters we have considered.

The parallel implementation allowed us to consider more parameters, such as network load, and to obtain more accurate
results, by considering real conditions of migration and message traffic.

None of the basic algorithms has had good enough results for all possible situations. Nevertheless we initially discarded
some algorithms like Full Protocol, Follow Me and Centralised Scheme. New algorithms combining the advantages of the
proposed algorithms must be developed and studied. Indexes that will allow us to better characterise the behaviour of the
algorithms are currently being developed. Furthermore, we are developing a formal model for all the different algorithms
that will allow us to predict results beyond simulation.
7. References
[1] Luque, E; Ripoll, A; Cortès, A; Margalef, T. A Distributed Diffusion Method for Dynamic Load Balancing on
Parallel Computers. Proceedings of the EUROMICRO Workshop on Parallel and Distributed Processing, IEEE Computer
Society, January, 1995.
[2] Smith,J.A survey of Process Migration Mechanisms. Operating Systems Review, ACM SIGOPS, July 1988.
[3] Zhu, W.; Goscinski,A.; Gerrity,G. Process Migration in RHODOS. Australian Defense Force Academy, Canberra,
1990.
[4] Casas, J.; Clark, D.; Konuru, R.; Otto, S. MPVM: A migration Transparent Version of PVM. Computing Systems,
vol. 8, no 2, pp. 171-216, Spring 1995.
[5]Mascarenhas, E.; Rego, V. Ariadne: Architecture of a Portable Threads System Supporting Thread Migration.
Software Practice and Experience, vol. 26 pp. 327-356. March 1996.
[6] Lenoski, D; Weber, W. Scalable Shared-Memory Multiprocessing. Morgan Kaufmann Publishers, 1995.
[7] Luque, E.; Franco, D.; Heymann, E.; Moure, J.C. TransComm: A Communication Microkernel for Transputers.
Proc. of the Fourth Euromicro Workshop on Parallel and Distributed Processing. IEEE Computer Society Press, January
22-26, 1996, pp. 147-153.
[8] Heymann, E. Support for Process Migration in Distributed Memory Parallel Computers. Master Thesis.
Universitat Autònoma de Barcelona, 1995.

