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ABSTRACT
Recently Pasetto et al. have proposed a new method to derive a convection theory appropriate
for the implementation in stellar evolution codes. Their approach is based on the simple
physical picture of spherical bubbles moving within a potential flow in dynamically unstable
regions, and a detailed computation of the bubble dynamics. Based on this approach, the
authors derive a new theory of convection which is claimed to be parameter-free, non-local
and time-dependent. This is a very strong claim, as such a theory is the holy grail of stellar
physics. Unfortunately, we have identified several distinct problems in the derivation which
ultimately render their theory inapplicable to any physical regime. In addition, we show that
the framework of spherical bubbles in potential flows is unable to capture the essence of stellar
convection, even when equations are derived correctly.
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1 IN T RO D U C T I O N

It is not an exaggeration to state that the turbulent transport of
heat, angular momentum and chemical species is the most impor-
tant unsolved problem in stellar astrophysics. Most of the present
uncertainties in stellar physics are, in one way or another, linked
to our incomplete understanding of mixing in stellar interiors, e.g.
the final fate of stars of high and intermediate mass, formation of
s-process elements, chemical anomalies on the red giant branch,
formation of carbon stars, size of the convective cores in H- and
He-burning stars. In spite of many decades of attempts to derive
an accurate time-dependent and non-local theory of convection that
can be included in stellar evolution codes, success has been very
minor. While some theories of time-dependent convection have
been derived and applied (Kuhfuss 1986; Kuhfuss 1987; Wuchterl
& Feuchtinger 1998; Flaskamp 2003), they all introduce several
free parameters that must be calibrated for different regimes, di-
minishing their predictive power. Even more problematic is the
case of non-local convection and convective boundary mixing. For
decades, serious attempts have been made to derive non-local con-
vection theories that could be introduced in stellar evolution codes
(Deng, Xiong & Chan 2006; Deng & Xiong 2008; Canuto 2011e).
However, these theories are not popular due to their complexity
and their limited accuracy (Xiong 1986; Weiss & Flaskamp 2007).
Attempts to derive a general framework for the treatment of stel-
lar convection and other mixing processes lead to very complex
equations which cannot be easily included in 1D stellar evolution
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codes (Kuhfuss 1986; Canuto 2011a,b,c,d,e). In fact, non-local con-
sequences of convection, such as convective boundary mixing, are
routinely included in stellar evolution codes based on ad hoc pre-
scriptions and additional free parameters – see Viallet et al. (2015)
and Arnett et al. (2015), for recent discussions on these issues. Con-
sequently, despite its well-known shortcomings, the mixing-length
theory (MLT; Prandtl 1925; Biermann 1932; Vitense 1953) has been
in use for more than 80 years.

In this paper, we call a ‘theory of stellar convection’ a theory that
can be implemented in 1D stellar evolution codes. Such a theory
should capture the essential properties of turbulent convection, al-
lowing us to reproduce its effects on the stellar structure (mainly
chemical mixing and energy transport) without the need to resort to
expensive 3D simulations. A theory of stellar convection is highly
sought, as the predictive power of current stellar models is strongly
limited by the shortcomings of MLT. The status on the theoretical
side contrasts with the progress done in observational techniques
and instrumentation (e.g. Kepler, CoRoT and Gaia; de Bruijne 2012;
Guzik et al. 2014). A new generation of stellar models is necessary
to fully exploit the large amount of quality data that is delivered by
observers. Without any doubt, a new generation of stellar models
should rely on a better treatment of convection.

Recently, Pasetto et al. (2014) claimed to present an accurate
parameter-free, non-local, time-dependent theory of stellar convec-
tion that can be easily implemented in 1D stellar codes. This is a
strong claim since such a theory has been sought for many decades.
In order to facilitate the reader’s understanding, we start by schemat-
ically summarizing the method proposed by Pasetto et al. (2014).
Pasetto et al. (2014) adopt a rather simple picture of convection,
in which the transport of heat is achieved by ‘bubbles’ that rise
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due to buoyancy in a convectively unstable region. This descrip-
tion of convection using the concept of bubbles is likely inspired
from the usual simple picture that one has in mind when deriving
the MLT. Furthermore, in the picture of Pasetto et al. (2014), con-
vective bubbles have a definite shape (they are spherical) and are
differentiated from the surrounding material – i.e. the surrounding
material flows around them. As a first step, the authors analyse the
motion of an isolated bubble. From kinematic considerations, they
derive the expression of the velocity field around the bubble. This
is done assuming that the flow around the bubble is a potential flow
(∇ × u = 0, where u is the velocity field). This allows them to link
the velocity of the moving bubble to that of the surrounding fluid
at each time – i.e. assuming an instantaneous adjustment of the
surrounding fluid. Given the velocity field around the bubble, the
authors then deduce the pressure field around the bubble. Knowing
the pressure field, they compute the total force that the fluid exerts
on the bubble,

�F =
∮

bubble
P ndS.

Applying Newton’s law to the bubble, the authors derive an ex-
pression for the acceleration of the bubble, the first key result of
their theory. With appropriate initial conditions, this equation de-
fines completely the motion of the bubble as a function of time. In
the second part of their work, Pasetto et al. (2014) use their the-
ory for an isolated bubble to formulate a theory of convection by
considering a collective set of bubbles.

In this work, we study the applicability of this method to the stellar
regime and its possible limitations. In order to do this, we derive
the equation for the dynamics of the bubble by a careful accounting
of the physical assumptions and hypothesis made in the derivation.
During this process, we found that some inconsistent physical and
mathematical assumptions have been made by Pasetto et al. (2014),
casting serious doubts on the validity of their theory. It will also
become clear in the next section that the claim of a non-local,
time-dependent theory is an overstatement by the authors. Yet, the
method of deriving a parameter-free convection theory from the full
dynamics of a convective element assuming a surrounding potential
flow is interesting. If valid, the method could indeed be extended to
obtain a parameter-free, non-local and time-dependent theory and
to get rid of the mixing length parameter, α, whose calibration in
different stellar regimes is problematic (Ludwig, Freytag & Steffen
1999; Trampedach et al. 2014; Magic, Weiss & Asplund 2015;
Tremblay et al. 2015). We have been able to reobtain the dynamics
of the bubble by a sound mathematical and physical derivation.
This allows us to study the behaviour of the solutions and assess
the physical regime in which the method described by Pasetto et al.
(2014) can be applied. Unfortunately, we find that the movement of
spherical bubbles within potential flows is completely inapplicable
to the regime of stellar convection and that no useful theory of
stellar convection can be obtained from this approach. This is not a
surprise since the adoption of the ideal fluid and the potential flow
approximations (the ‘dry water’ approximation; Feynman 1964)
neglect the importance of viscosity and boundary layers for the
dynamics of the bubble.

The paper is organized as follows. In the next section, we show
that the derivation of Pasetto et al. (2014) of the acceleration
equation is flawed due to incorrect physical and mathematical as-
sumptions. In Section 3, we clarify the approximations underlying
their theory of an isolated bubble, and provide the correct deriva-
tion of the acceleration equation of the bubble. We show that the
authors misinterpreted their acceleration equation, and neglected

a term that is physically important. In Section 4, we provide the
correct analysis of the equation of motion, and focus particularly on
the asymptotic/final regimes reached by the bubble. We show that it
is unavoidable that the theory becomes inconsistent and highly non-
physical. In Section 5, we finish the article with some discussion
and concluding remarks.

2 PH Y S I C A L A N D M AT H E M AT I C A L
I NCONSI STENCI ES I N PA SETTO ET A L. (2 0 1 4 )

Before analysing the physical and mathematical assumptions
adopted by Pasetto et al. (2014), it is already worth noting that
a first consequence of the method adopted by the authors is that it
cannot provide a self-consistent time-dependent and non-local con-
vection theory in the usual sense of these terms. By looking at the
system of equations that define the theory of convection presented
in Pasetto et al. (2014), see their equation 601, it becomes appar-
ent that their theory is a local formulation, very much in the spirit
of MLT. In a local theory of convection, velocities and convective
fluxes depend only on the local thermodynamical variables and their
local gradients. Usually, a local theory of convection results from a
‘local’ approach to the problem of convection. In a local approach,
one makes the assumption that all the relevant processes are tak-
ing place on length-scales l that are much smaller than the typical
length-scale over which the background is changing, i.e. l � Hp,
Hρ , where l is the length-scale of the process of interest, Hp and
Hρ are the pressure and density scaleheight, respectively. Clearly,
the work presented in Pasetto et al. (2014) follows such a local
approach, as clearly stated in their Section 2.2 It is not possible to
derive a self-consistent non-local theory of convection from such a
local approach, as it is precisely the local approach that decouples
the problem at each radius. Furthermore, a ‘time-dependent’ theory
of convection has a very specific meaning in the field of 1D stellar
structure computations. It refers to a theory which is able to de-
scribe convection in the case where the stellar background evolves
on a time-scale smaller, or of the same order, than the convective
turn-over time-scale. As mentioned in the introduction, such the-
ories exist but their predictive power is hampered by several free
parameters. As admitted by the authors in one of their footnotes,
the theory presented in Pasetto et al. (2014) is not ‘time-dependent’
in the usual sense.3 Very likely, Pasetto et al. (2014) refer to their

1 Throughout this paper, we denote the equations in Pasetto et al. (2014)
with square brackets to differentiate them from our own equations.
2 Where they state, ‘We proceed furthermore with an additional simplifica-
tion by assuming that the stellar fluid is incompressible and irrotational on
large distance scales. The concept of a large distance scale for incompress-
ibility and irrotationality is defined here from a heuristic point of view: this
length should be large enough to contain a significant number of convec-
tive elements so that a statistical formulation is possible when describing
the mean convective flux of energy, but small enough so that the distance
travelled by the convective element is short compared to the typical distance
over which significant gradients in temperature, density, pressure, etc. can
develop (i.e. those gradients are locally small).’
3 This is hinted by the authors at the end of section 2, p. 3594; ‘Before starting
our analysis, in order to avoid a possible misunderstanding of the real mean-
ing of some of our analytical results, it might be wise to call attention to a
formal aspect of the mathematical notation we have adopted. For some quan-
tities, Q function of time or space or both, Q(x; t), we look at their asymptotic
behaviour by formally taking the limits Q∞ = limx→x∞,t→∞ Q(x; t). This
does not mean that we are taking temporal intervals infinitely long, rather
that we are considering time long enough so that the asymptotic trend of the
quantity Q is reached but still short enough so that the physical properties
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theory as being ‘time-dependent’ because they integrate in time a set
of equations until an asymptotic regime is obtained. However, their
theory of convection is based on the asymptotic regime, where the
time variable is not relevant any more and, consequently it cannot
be considered as a theory of time-dependent convection.

Having clarified that the approach derived by Pasetto et al. (2014)
deals with a time-independent and local theory, we now turn to
analyse some of the mathematical and physical approximations
made in their derivation of the equation of motion for the spherical
bubble.

2.1 The physical assumptions

After deriving the equations for the velocity field of an incom-
pressible and irrotational fluid around an expanding sphere moving
within a fluid of constant density and in hydrostatic equilibrium at
infinity (see their sections 2 and 3), the authors apply this result to
compute the forces exerted on the sphere by the surrounding fluid.
Besides the assumptions of an incompressible and irrotational fluid
of constant density, they also neglect heat diffusion and restrict
themselves to the subsonic regime (i.e. spheres moving at speeds
much smaller than the speed of sound). In this context, they claim
that it is reasonable to assume that (see their equation 12)

vb

Ṙ
� 1, ∀t > tmin, (1)

i.e. that the relative velocity vb = |vb| between the convective ele-
ment and the intrastellar medium is much smaller than its expansion
velocity Ṙ = |Ṙ| – throughout this work, we denote the radius of
the bubble by R, and its temporal changes by Ṙ and R̈. However, it
is easy to show that such a regime is in strong contradiction with
the assumptions of a subsonic regime and a local approach – the
latter materialized by the possibility of solving the movement of the
bubble assuming a medium of constant density.

Let us say that a bubble is characterized by its mass mb (constant
in time), density ρb(t), pressure Pb(t), radius R(t), position rb(t), and
velocity vb(t) = ṙb. The surrounding medium is characterized by
its pressure stratification P(r). First, a spherical bubble travelling in
the surrounding medium at a subsonic speed remains in pressure
equilibrium, i.e. Pb 	 P as sound waves are able to wash out any
pressure difference.4 Therefore, Pb(t) = P(rb(t)) and, taking the time
derivative, one obtains

dPb(t)

dt
= dP (rb(t))

dt
= dP

dr
vb = −Pvb

Hp
, (2)

or simply

d log Pb

dt
= − vb

Hp
. (3)

We used the definition of the pressure scaleheight Hp = − dr
d log P

.
Neglecting heat conduction, the change in density of the bubble
follows the adiabatic relation

Pb

ρb
�1

= const, (4)

of the whole system have not changed significantly, such as that the star still
exists.’
4 In addition, we show in Appendix A that this is also mathematically
consistent with the equations for the dynamics of the bubble to be derived
later.

where �1 is the first adiabatic index. This is equivalent to

d log Pb

dt
= �1

d log ρb

dt
. (5)

Combining equations (3) and (5), we obtain:

�1
d log ρb

dt
= − vb

Hp
. (6)

Finally, as the mass of the bubble is constant, its density decreases
as ρb ∝ R−3. Thus, we obtain:

− 3 �1
d log R

dt
= − vb

Hp
. (7)

It follows that, within the adiabatic and subsonic approximations,
the relation between the expansion rate and the velocity of the
bubble is

vb

Ṙ
= 3Hp�1

R
. (8)

We can conclude that the assumption vb/Ṙ � 1 is equivalent to
Hp/R � 1, as usually �1 ∼ 1.

This result can be understood on the basis of the following very
simple physical observation. Within the subsonic approximation,
the only way in which a bubble can expand much faster than it
moves is when small vertical displacements lead to big changes in
the pressure of the surrounding fluid, i.e. when Hp is very small
compared to the size of the bubble.

Unfortunately, assuming vb/Ṙ � 1, which implies Hp/R � 1,
is in complete contradiction with the core of the theory which is
based on a local picture of convection. In particular it is in clear
contradiction with expressions such as equations 3, 13, 24 and 27
from Pasetto et al. (2014) which are derived within the picture of a
bubble moving in a constant density background.

2.2 The mathematical approximations

While the previous inconsistency is serious enough to render the
applicability of the theory questionable, other contradictions de-
velop as a consequence of mathematical simplifications during the
derivation of the force exerted by the fluid over the moving sphere
– sections 4.2 and 5 of Pasetto et al. (2014). The first of these ap-
proximations comes during the derivation of ‘Lemma 1’ of Pasetto
et al. (2014) (equation 13). There it is stated that, under the validity
of vb/Ṙ � 1, it is possible to say that

( vb

Ṙ

)2 1

2

(
9

4
sin2 θ − 1

)
� v̇b

R

Ṙ2

(
3

2
cos θ − cos φ

)
+ R̈R

Ṙ2
,

(9)

and also that(
vbṘ

Ṙ2

)2
5

2
cos θ � v̇b

R

Ṙ2

(
3

2
cos θ − cos φ

)
+ R̈R

Ṙ2
. (10)

It is clear that it is not possible to justify these two inequalities
(equation 14 in Pasetto et al. 2014) solely on the base of vb/Ṙ � 1
without any other assumption. In order to justify equations (9) and
(10), one must make the assumptions that v2

b � |v̇bR| and v2
b �

|R̈R|. These two assumptions restrict even more the physical regime
in which the theory could be applicable. One might wonder whether
such specific regime, i.e. vb/Ṙ � 1, v2

b � |v̇bR| and v2
b � |R̈R|,

does exist at all.
We will show later that the two incorrect approximations per-

formed in equations (9) and (10) do not change the shape of the
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equation for the acceleration of the fluid element, although they do
change some of the coefficients. Unfortunately, after the derivation
the equation of motion (their equation 24)5

v̇b = g
mb − M

mb + M/2
− 10

3

πR2ρvbṘ

mb + M/2
, (11)

the authors simplify this expression by neglecting the second term
to obtain their equation 26. It is not possible to neglect the second
term solely on the base of vb/Ṙ � 1, as it is claimed by Pasetto et al.
(2014). The physical regime in which this term can be neglected is
discussed below. It is worth noting that their equation 26 plays a
key role in the derivation of the convective theory, as it is equation
26 that is used in the further development of the work – e.g. in
the derivation of their equation 27. Interestingly, by doing this, the
authors dropped the only term that could provide them with a truly
asymptotic regime, as we will show in Section 4. It is easy to see
that, the actual physical regime in which the second term becomes
negligible is the one of strong buoyancy forces (M − mb)/mb ∼ 1.
A simple rewriting of their equation 24 using the definition of
M = 4πR3ρ/3, shows that

v̇b = g
mb − M

mb + M/2
− 10

4

Mvb(Ṙ/R)

mb + M/2
. (12)

It follows that, for strong buoyancy forces, the second term becomes
negligible when g � vbṘ/R. Using that Hp = P/gρ and that for
an ideal gas, the sound speed is cs

2 = γ P/ρ, we see that the second
term becomes negligible if cs

2/γHp � Ṙ/Rvb. As the derivation
of the equation of motion within a local picture requires Hp � R,
the previous condition holds as soon as cs

2/γ � Ṙvb. As a result,
we see that the second term is indeed negligible as soon as we have
significant buoyancy forces (M − mb)/mb � 1 and we restrain our-
selves to subsonic motions and expansions. The previous argument
shows that, although for very different reasons, in the regime of
significant buoyancy and subsonic bubbles, the key equation 26 of
Pasetto et al. (2014) is valid.

Finally, a serious inconsistency arises during their computation
of the convective flux in their section 6. In order to compute the
velocity of the convective elements (their equation 41), the authors
analyse the movement of the stagnation points in the case of a non-
expanding rigid-body movement (Ṙ = R̈ = 0). The approximation
of a non-expanding convective element is in stark contradiction with
the previous derivation of theory. Furthermore, the authors wrongly
assume that P/ρ + 
g 	 0 at the stagnation points. From this
analysis, Pasetto et al. (2014) conclude that the velocity, radius and
acceleration of the bubble are connected by (see their equation 41)

v2
b = −v̇bR. (13)

Clearly, assuming equation (13) is in apparent contradiction with
equations (9) and (10), which require v2

b � |v̇bR|. The neglection
of the second term in equation (12) is also in contradiction with
the simultaneous assumption of v2

b = −v̇bR and equation (1) – as
these assumptions imply vbṘ/R � v̇b. We will show in Section
4 that the ratio v2

b/(v̇bR) changes by orders of magnitude during
the actual motion of the bubble (see Figs 1 and 2). Consequently,
equation (13) does not hold.

5 We have corrected the sign of the first term, because when M > mb (more
buoyancy than weight) the direction of v̇b should be opposite to that of g
and, also, have added the denominator of the first term (mb + M/2) which
should also appear in the second term.

3 EQUATI O N O F MOTI O N FO R A N
E X PA N D I N G S P H E R E I N A POT E N T I A L F L OW

As mentioned during the introduction, during the study of Pasetto
et al. (2014) we found that the equivalent of their key equation 24
(equation 11) can be derived in a sound physical and mathematical
way. This is an interesting result which will allow us to study the
motion of an isolated bubble within the present picture and assess
its applicability to derive a theory of stellar convection.

In line with Pasetto et al. (2014), we will assume that the fluid
is ideal (no viscosity), incompressible (∇ · v = 0) and irrotational
(∇ × v = 0). We will assume that the path travelled by the sphere
(lb) can be considered small compared to the distances over which
pressure P, gravity g or density ρ change. If Hp and Hρ are the
pressure and density scaleheights, we have lb � Hp and lb � Hρ .
The medium is assumed to be in hydrostatic equilibrium far from
the moving element (∇P∞ = ρg; where P∞ means the pressure in
that layer and far away from the bubble).

3.1 Flow around an expanding sphere moving at constant
velocity

Under the assumption ∇ × v = 0, there is a potential ψ so that
∇ψ = v. The potential of an incompressible flow of constant den-
sity must fulfill ∇2ψ = 0 – see section 9 of Landau & Lifshitz
(1987), for a detailed discussion of potential flows. In particular,
the solution corresponding to the motion (with velocity vb = vb ez)
of an expanding sphere (of radius R and expansion rate Ṙ) within
a fluid which is in hydrostatic equilibrium far away (i.e. |x| → ∞)
can be obtained by solving

∇2ψ = 0, (14)

with the boundary conditions

∀t, lim
|x|→∞

v = 0, (15)

∀t, ∀n′, v · n′ = Ṙ + vb · n′, (16)

on the sphere |x − rb| = R,

where we denote the position of the bubble by rb(t) and we define
n′ = x′/|x′|, with x′ = x − rb the position as seen from the centre
of the bubble.

It is easier to solve the problem by changing to the coordinate
system comoving with the sphere at constant velocity vb. From that
coordinate system, the problem reduces to that of an expanding
sphere at rest located at x′ = 0 within a fluid moving at infinity
with v∞ = −vb, i.e. to solving

∇′2ϕ = 0, (17)

where ∇′ denotes the derivatives with respect to x′, with the bound-
ary conditions

lim
r ′→∞

v′ = v∞, (18)

∀n′, v′ · n′ = Ṙ, at |x′| = R, (19)

where 1 = ∇′ϕ denotes the velocity field as seen from the comoving
system, and r ′ = |x′|. It is straightforward to check that the solution
to that problem is given by

ϕ(x′) = 1

2

R3

r ′2 v∞ · n′ − ṘR2

r ′ + v∞ · r ′. (20)
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Figure 1. Solution of the bubble motion for ∇ = 10−1 and different initial bubble density perturbations (different colours correspond to different magnitude
of the perturbation). Upper left panel: evolution of the bubble’s velocity (|vb(t)|). Upper right panel: evolution of ω = M/mb. Bottom left panel: evolution of
the bubble’s expansion and position. Bottom right panel: evolution of the ratio vb

2/(v̇bR). The dashed lines correspond to the cases where δρ > 0, for which
vb < 0, rb < 0, and log R/R0 < 0. The red horizontal dashed line in the left upper panel shows the (conservative) limit vb = cs above which the theory is not
valid. The black horizontal dashed line in the left panels is the asymptotic velocity v∞

b = √
6 ∼ 2.45 (see the text).

This is an extension of the solutions discussed in sections 10 and
11 of Landau & Lifshitz (1987) in the case of an expanding sphere.
Computing the derivatives, we obtain

v′ = −3R3

2r ′3 n′(v∞ · n′) + n′ ṘR2

r ′2 + 1

2

R3

r ′3 v∞ + v∞. (21)

The velocity field as seen from the system in which the bubble is
in movement with velocity vb can be obtained from a direct galilean
transformation:

v(x) = v′(x′) + vb = v′(x − rb) + vb. (22)

Using v∞ = −vb, we find,

v = 3R3

2r ′3 n′(vb · n′) + n′ ṘR2

r ′2 − 1

2

R3

r ′3 vb, (23)

where it is worth noting that r ′ = |x − rb(t)| and n′ = (x −
rb(t))/|x − rb(t)| are functions of x and t. One can show that this ve-
locity fields satisfies equations (14)–(16). This can be easily shown
by noting that x′ = x − rb(t) implies that for any function F (x),
∇′F (x) = ∇F (x), ∀t. The potential ψ that produces the field v

(equation 23) is given by

ψ(x) = −1

2

R3

r ′2 vb · n′ − ṘR2

r ′ . (24)

3.2 The instantaneous adjustment hypothesis

In the following, we will assume that the shape of the velocity
field instantaneously adjusts itself to the shape prescribed by equa-
tion (23) for the instantaneous values of vb(t), R(t) and Ṙ(t), i.e. we
assume that

∀t, v(x, t) = 3R(t)3

2r ′3 n′(vb · n′) + n′ Ṙ(t)R(t)2

r ′2 − 1

2

R(t)3

r ′3 vb,

(25)

where the position of the bubble is given by rb(t) and n′ = x′/|x′|,
where x′ = x − rb(t) is the position as seen from the centre of the
bubble. The velocity field of equation (25) fulfills the boundary
conditions given by equations (15) and (16) at every time t. As t
and x are independent variables, it is easy to show that the potential
ψ(x, t) that produces this field is

ψ(x, t) = −1

2

R(t)3

r ′2 vb · n′ − Ṙ(t)R(t)2

r ′ . (26)

In order for this hypothesis to hold, the fluid needs to adjust fast
enough to the instantaneous velocity of the bubble. This hypothe-
sis will hold if both the expansion velocity of the sphere and the
translational velocity of the sphere are much smaller than the sound
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Figure 2. Same as Fig. 1 but for the case of ∇ = 10−3.

speed, i.e. if vb � cs and Ṙ � cs. In addition, we also assume that
the time-scales related to the acceleration and the change in the
expansion rate are small compared with the reaction time-scale of
the fluid given by τ = R/cs – i.e. we assume that changes in vb and
Ṙ fulfill Ṙ/R̈ � R/cs and vb/v̇b � R/cs. Under the assumption of
subsonic flows, this implies that |v̇b| � c2

s /R and R̈ � c2
s /R. Note

that the assumption of subsonic velocities is also compatible with
the incompressibility approximation, which implies cs = ∞.

3.3 Equation of motion for a moving and expanding sphere
within a fluid at rest

Once the velocity field is known, one can use this result to compute
the force exerted by the fluid on the moving bubble by using Euler’s
equation

∂tv + (v · ∇)v = −∇P

ρ
+ g, (27)

where g = −∇
g is the gravitational acceleration. For an incom-
pressible and irrotational fluid of constant density, equation (27) be
written as

∂tv + ∇ v2

2
= −∇ P

ρ
− ∇
g. (28)

Equation (28) can then be rewritten, using ∇ψ = v, as

∇
(

∂tψ + v2

2
+ P

ρ
+ 
g

)
= 0. (29)

Integrating this equation in space, we find

∂tψ + v2

2
+ P

ρ
+ 
g + c(t) = 0, (30)

where c(t) is a constant of integration. It can be obtained by noting
that for |x| → ∞, the fluid is static (v = 0) and in hydrostatic
equilibrium (∇(P/ρ + 
g) = 0). This implies that6

(
P

ρ
+ 
g

)
|x|→∞

= C ′, (31)

6 Note that here the expression |x| → ∞ means in fact at |x − rb| � R.
Strictly speaking the limit |x| → ∞ is ill-defined for a gravitational potential
of a constant gravity field. Also, note that, as we are assuming that the
hydrostatic pressure changes in much larger distances we are considering
that at |x − rb| � R the pressure P∞ depends on z so that it can balance
the changes in 
g(z). Due that at the scales of the problem, P∞ remains
almost constant, also 
g must remain almost constant. In this context, it is
useful to think the limit |x| → ∞ on the xy-plane, where 
g and P∞ are
in fact strictly constant. Then the choice of C′ = 0 corresponds to choosing

g = −g(z − rb) − P∞(z = rb)/ρ.
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where C′ is a constant that depends on the arbitrary choice of the
definition of the gravitational potential. Noting that for |x| → ∞,
we have that ∂tψ → 0 and v2 → 0, we see that equation (30) implies
that c(t) = −C′. For the sake of simplicity, we can set C′ = c(t) = 0,
and we obtain

P

ρ
= −∂tψ − v2

2
− 
g. (32)

The force F applied to the bubble is obtained by integrating
equation (32) over the surface of the sphere ∂V (t),

F = −
∫

∂V

P n′dS (33)

= ρ

∫
∂V

∂tψn′dS + ρ

∫
∂V

v2

2
n′dS + ρ

∫
∂V


gn′dS. (34)

The first integral in the right-hand side of equation (34) can be
obtained using the definition of ψ , taking the time derivative ∂tψ

and evaluating over the sphere. We have

∂tψ = −3

2
Ṙ(vb · n′) − R

2
(v̇b · n′)

− R̈R − 2Ṙ2, for |x − rb(t)| = R. (35)

Integrating over the whole sphere, we obtain
∫

∂V

(−∂tψ)n′dS = 2πR2Ṙvb + 2π

3
R3v̇b. (36)

The second integral in the right-hand side of equation (34) can
be directly computed once the velocity field is evaluated over the
surface of the sphere:

v(x) = (
vb cos θ + Ṙ

)
n′ + vb

sin θ

2
eθ , at |x − rb(t)| = R(t),

(37)

where we have defined the spherical coordinates r′, θ (zenithal
angle) and φ (azimuthal angle) measured from the instantaneous
centre of the sphere, and eθ is the unitary vector in the azimuthal
direction. From equation (37), we obtain

v(x)2 = (
vb cos θ + Ṙ

)2 +
(

vb
sin θ

2

)2

, at |x − rb(t)| = R(t).

(38)

Integrating over the whole sphere, we obtain
∫

∂V

v2

2
n′dS = 4π

3
ṘR2vb, (39)

where we have used that ez = ez′ and vb = vb ez .
Finally, the last integral in the right-hand side of equation (34)

can be integrated using that
∫

∂V


gn′dS =
∫

V

∇
gdV = −gV (t), (40)

where V (t) = 4πR(t)3/3 is the volume of the expanding sphere.
Using equations (36), (38), and (40) in equation (34), the force

exerted by the fluid on the moving bubble is

F = −
∫

∂V

P n′dS = −4πR3

3
ρg − 2π

3
ρR2Ṙvb − 2π

3
ρR3v̇b.

(41)

3.4 The acceleration of the bubble

The equation of motion for the moving sphere, under all the previ-
ously mentioned assumptions, is

mbv̇b = −
∫

∂V

P n′dS + mb g, (42)

where mb is the mass of the bubble (mb = 4πR3ρb/3), and the
pressure integral is given by 41. Using the definition M = 4πR3ρ/3
(i.e. the mass of a bubble of same radius but with the density of
the fluid), equation (42) gives a very simple expression for the
acceleration of the bubble;

v̇b = (mb − M)

(mb + M/2)
g − M

2(mb + M/2)

Ṙ

R
vb. (43)

This is the correct version of the acceleration derived by Pasetto et al.
(2014) in their equation (24). The first thing that is apparent from
the first term in equation (43) is that, in the regime corresponding
to our physical approximations, the acceleration of a bubble at rest
is smaller by a factor 1 + M/(2 mb) compared with the Archimedes
principle for a static fluid. While this might be surprising at first
glance, its physical explanation is quite simple. Within the approx-
imation of equation (25), the fluid is forced to be accelerated when
the bubble is accelerated. By looking at the stagnation points on top
and below the bubble, it becomes clear that the fluid there moves
at every time at the same velocity as the bubble. In order to fulfill
Euler’s equation for a velocity field that changes with time, some
forces must be exerted at the boundary of the fluid (and equiva-
lently, its reaction felt on the moving bubble). Consequently, the
factor 1 + M/(2 mb) accounts for the fact that, in order to acceler-
ate, and fulfill equation (25), the bubble must carry the nearby fluid
with it. The force exerted on the bubble by the surrounding medium
is also responsible for the second term in equation (43). In this case,
the term arises from the fact that, as the bubble expands, more fluid
needs to be accelerated to fulfill equation (25). This term acts in the
same orientation as the velocity, but its direction is determined by
the sign of Ṙ. Depending on whether the bubble is expanding or
contracting, this term acts in the same direction as the velocity vb

or in the opposite one. In the latter case, it acts as a drag. It is worth
noting that the claim of Pasetto et al. (2014) that this drag-like term
reconciles the potential flow approximation with d’Alembert para-
dox is wrong, as this force is only present in the case of contracting
or expanding spheres, and it is in no way related to real drag forces,
which can be of viscous or turbulent origin. This is apparent from
the fact that the force acts in the opposite direction, than that of a
real drag force, in the case of contracting bubbles. Also, it is easy
to see from equation (21) that the relative velocity of the fluid and
the sphere has a tangential component at the surface of the sphere,
contrary to what is known to happen at boundary layers.

Equation (43) has been derived under the assumption that the
flow remains irrotational (potential) at all times. This is a very
strong physical assumption and it would be necessary to investigate
to which extent this will be an appropriate description of a given real
fluid. For a compressible, viscous fluid moving under a conservative
body force, we have that the vorticity (∇ × v) fulfills

D(∇ × v)

Dt
= ((∇ × v) · ∇) v − (∇ × v)(∇ · v)

+ ∇ ×
(∇ · τ

ρ

)
+ ∇ρ × ∇P

ρ2
, (44)

where D/Dt denotes the Lagrangian derivative and τ is the vis-
cous stress tensor. In the general case, density will depend both on
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temperature and pressure. This implies that, in most cases, ∇ρ ×∇P
�= 0. Even if the flow is irrotational at the beginning of motion, one
should expect that vorticity (∇ × v) will be created at later times in
a real flow by the last term in the right-hand side of equation (44). In
addition, the absence of a drag force in equation (43) reminds us of
the existence of boundary layers in real fluids around solid bodies,
where viscosity cannot be completely neglected. In boundary layers,
the third term in the right-hand side of equation (44) will also lead to
the creation of vorticity. Consequently, even if the initial condition
is that of an irrotational flow, there is no reason to expect that the
flow will remain irrotational at all times. Besides the hypotheses
done on the flow, the derivation of equation (43) also assumes that
the bubble remains spherical at all times. However, equation (32)
shows that pressure differences at the surface of the bubble should
deform it as soon as it starts to move, unless internal forces prevent
it (e.g. in a solid body). Because of all these assumptions, the use
of equation (43) to describe the movement of spherical bubbles in
stellar interiors might not be valid unless proven otherwise for each
particular case.

Finally, up to now we have not made any assumption on the prop-
erties of the ‘bubble’ element. However, in a convection theory, we
want the bubble to be made of the same material as the surrounding
fluid. In the next section, we adopt an equation of state for the fluid
inside the sphere and use it to describe the dynamics of the bubble.

4 MOTION O F A N ISOLATED BU BBLE –
S O L U T I O N S A N D A S Y M P TOT I C B E H AV I O U R S

4.1 General case

While it is not our aim in this paper to develop a convection theory,
we want to assess the expected behaviour for the motion of the
bubble under the equation of motion derived in the previous section.
The projected equation of motion of the bubble in the radial direction
is

v̇b = −mb − M

mb + M
2

g − 1

2

Ṙ

R

M

mb + M
2

vb, (45)

with M = 4π/3R3ρ the buoyant mass, and mb the bubble mass.
To solve the bubble motion through the whole convective region,

we apply equation (45) at a given location of a stellar stratification.
This is the spirit of solving a problem using local approach: the force
balance that determines the acceleration of the bubble is computed
in a local approach, and the result is used to determine the motion of
the bubble through the convective region. This means that we need
to specify the value of the thermodynamic variables, T, ρ and P, as
well as their stratification given by Hp, Hρ and ∇ = d log T/d log P.
Only four of them can be independently set, as they are related by
the equation of state ρ(T, P) of the stellar material, which implies

dρ

ρ
= α

dP

P
− δ

dT

T
, (46)

and consequently

∇ = α

δ
− 1

δ

Hp

Hρ

, (47)

where α = (∂ log ρ/∂ log P )T and δ = −(∂ log ρ/∂ log T )P . In or-
der to solve equation (45), we need to know the evolution of R and
M as the bubble evolves.

The evolution of the buoyant mass M can be easily obtained by
taking the time derivative of its definition:

Ṁ

M
= 3

Ṙ

R
+ ρ̇

ρ
, (48)

since ρ̇ = dρ(r(t))/dt = −ρ vb/Hρ , we have

Ṁ

M
= 3

Ṙ

R
− vb

Hρ

. (49)

The evolution of the radius R of the bubble can be obtained from
the equation of state (equation 46) and the assumption of subsonic
motions. From equation (46), it is immediate that

ρ̇b

ρb
= α

Ṗ

P
− δ

Ṫb

Tb
, (50)

where we label with b the thermodynamic quantities inside the
bubble, and we have used that Pb = P(r(t)). Using the fact that
the mass of the bubble is constant, i.e. ρ̇b/ρb = −3Ṙ/R, and using
equation (3), we finally get that the expansion of the bubble is
governed by

Ṙ

R
= δ

3

Ṫb

Tb
+ α

3

vb

Hp
. (51)

To solve the dynamics, it is still necessary to know the evolution of
the temperature of the bubble Tb. This cannot be derived without
taking into account the amount of heat lost (or gained) by the bubble
as it moves. The energy balance of the bubble is given by (see
Kippenhahn, Weigert & Weiss 2012),

dq

dt
= cP

dT

dt
− δ

ρ

dP

dt
. (52)

The heat flux F from the bubble is given by

F = −krad∇T , where krad = 4ac

3

Tb
3

κbρb
. (53)

Estimating that the temperature gradient between the bubble and
the surrounding fluid is dT/dR 	 (T(r) − Tb)/R, the heat losses
from the spherical bubble are given by

dq

dt
	 3

ρbR2
krad(T (r) − Tb). (54)

Replacing equation (54) in equation (52) gives

Ṫb

Tb
	 3krad

ρbR2cP

[
T (r)

Tb
− 1

]
− ∇ad

vb

Hp
, (55)

where in the second term of the right-hand side, we replaced Ṗ =
−P vb/Hp, and used that ∇ad = (Pδ)/(cPρbTb).

Equations (45), (49), (51) and (55), together with the stratification
of the star P(r), ρ(r), T(r), Hp(r) Hρ(r) and ∇(r), allow to solve the
motion of the bubble. The reader should also be aware, however,
that in order to use equation (45) to describe the motion of a bubble
in a real flow, one should first show that the flow remains irrotational
at all times. This is not trivial and in principle there is no reason to
state that the generation of vorticity will be small. Equations (45),
(49), (51) and (55), show that, even within the picture developed by
Pasetto et al. (2014), it is necessary to take into account the radiative
heat losses from the bubble (equation 55) before being able to solve
the dynamics of the bubble. Equation (55) shows that depending
on the typical time-scales for the expansion (τ exp = Hp/vb) and
thermal diffusion (τ th = ρbcPR2/3krad) the evolution of Tb will be
completely different. In particular, as τ th ∝ R2, thermal diffusion
always dominates the dynamics for bubbles that are small enough.
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Figure 3. Properties of convective zone of the Garching solar model (GAR-
SOM) as presented in Weiss & Schlattl (2008), using the Grevesse & Sauval
(1998) solar composition, and updated nuclear reaction rates (Adelberger
et al. 2011) and low-temperature Rosseland mean opacities (Ferguson et al.
2005). Upper panel: depth dependence of the convective velocity vMLT, ac-
tual temperature gradient ∇, adiabatic gradient ∇ad and superadiabaticity
∇ = ∇ − ∇ad. Bottom panel: depth dependence of the thermal diffusion
time-scale τ th and the expansion time-scale τ exp for convective elements of
size R = ηHp. The dotted vertical lines denote the layers at r = 0.98 R� and
∇ad 	 0.283 10 adopted by Pasetto et al. (2014) to compare their predictions
with those of a solar calibrated MLT.

In the extreme case in which heat diffusion dominates, the bubble
expands in isothermal equilibrium and there is no buoyancy. This
is in stark contrast with the derivations performed by Pasetto et al.
(2014) who solve (in their sections 4 and 5) the dynamics of the
bubble without taking into consideration the role of heat diffusion.7

It is only in their section 6, after having solved the dynamics of the
bubble, that they consider heat losses from the bubble. We will show
in the next section that solving the dynamics without addressing the
heat lost by the bubble can lead to extremely unphysical results.

In the bulk of the solar convective zone, one has τ exp ∼ 105–106 s
and τ th ∼ 1012 × η2 s for convective elements of size R ∼ ηHp (see
Fig. 3). The motion of convective elements in those cases is very
close to adiabatic down to very small sizes – i.e. η � 10−3. Even in
the very outer regions of the sun, one finds that the expansion time-
scale is shorter than the thermal time-scales, and the movement
of a bubble is close to adiabatic for convective elements of size
R ∼ Hp. For example, in the standard solar model of Fig. 3 (Weiss
& Schlattl 2008), we see that at r 	 0.999R� one still finds that
τ exp ∼ 103 s and τ th ∼ 106 × η2 s and convective elements move
almost adiabatically. While the assumption of adiabaticity is good
to study the motion of convective elements in most of the solar

7 In fact, the authors claim at the beginning of Section 4.2 that the dynamics
of the bubble is solved under the assumption of adiabatic expansion. How-
ever, a careful examination of the derivations sheds that this hypothesis is
never used.

convective zone, one should keep in mind that it is in the regions
far from adiabaticity that a better convection theory than MLT is
needed to predict the correct value of the temperature gradient ∇.

4.2 Solutions for the adiabatic motion of the bubble

It is well known that in the inner convective regions of stars the
movement of convective elements of reasonable size is almost adi-
abatic due to the high density of the stellar matter. The assumption
of adiabatic expansion greatly simplifies the treatment of equa-
tions (45), (49), (51) and (55). This allows for an easy test case
for the dynamics of the bubble predicted by the method of Pasetto
et al. (2014). For the sake of clarity, we will now consider the
case of an ideal gas (α = δ = 1) with a constant adiabatic index
γ = �1 = (1 − ∇ad)−1 = 5/3. In the case of a bubble moving
adiabatically in the stellar medium (krad = 0) equation (55) can be
directly substituted into equation (51) to give

Ṙ

R
= vb

3Hp
[1 − ∇ad] = vb

3γHp
. (56)

Using equation (56) in equation (49), we can derive that

Ṁ

M
= vb

Hp
[∇ − ∇ad], (57)

where we have used the fact that ∇ = 1 − Hp/Hρ . The evolution
of the bubble in the adiabatic case is given by the set of equa-
tions (45), (56) and (57). Note that equation (57) describes the
usual Schwarzschild criterion. M is the mass of the fluid that oc-
cupies the same volume as the bubble. If M > mb, the bubble will
rise due to buoyancy, and if M < mb, the bubble will sink due to its
own weight. Let us consider a bubble in equilibrium, i.e. M = mb,
but under different values of ∇ = ∇ − ∇ad. When ∇ > 0, a
positive velocity perturbation will lead to an increase in M, leading
to an upward force (M > mb). On the other hand, a negative velocity
perturbation will lead to a decrease of M which will lead to a down-
ward force (M < mb). As expected, an unstable situation results.
Similarly, ∇ < 0 (∇ < ∇ad) corresponds to a stable situation.

Substituting equation (56) in equation (45), we obtain the final
set of equations that we need to solve:

v̇b = −mb − M

mb + M
2

g − 1

6γHp

M

mb + M
2

v2
b, (58)

Ṁ

M
= vb

Hp
∇. (59)

It is best to formulate the system using non-dimensional quanti-
ties. We choose to normalize lengths with the pressure scaleheight
Hp (=P/ρg), velocities with the sound speed cs (= √

γP/ρ), and
masses with the bubble mass mb. In these units, time is measured in
units of Hp/cs. The normalized system is

v̇b = − 1

γ

1 − ω

1 + ω
2

− 1

6γ

ω

1 + ω
2

v2
b, (60)

ω̇

ω
= vb∇. (61)

where ω = M/mb. Writing mb = 4π/3R3ρb, with ρb the bubble
density, one has

ω(t) = ρ(rb(t))

ρb(t)
. (62)

ω is the ratio between the background density and the bubble density.
We define the density perturbation of the bubble as δρ = ρb − ρ,
so that δρ/ρ = 1/ω − 1.
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The system requires two initial conditions. The first initial con-
dition is the initial velocity, vb(t = 0); the second initial condition
is given by ω(t = 0) = ρ(rb(t = 0))/ρb(t = 0), the initial density
perturbation of the bubble. Having normalized lengths to the value
of Hp, the problem depends on one other parameter, the superadia-
baticity ∇.

It is worth noting that the radius of the bubble does not enter the
adiabatic motion problem directly. However, once a solution (vb(t),
ω(t)) is known, the expansion of the bubble can be computed by
integrating equation (56). In normalized form, it writes

Ṙ

R
= vb

3γ
. (63)

We now rewrite it as
d

dt
ln R = ṙb

3γ
, (64)

which immediately leads to

ln
R

R0
= rb

3γ
, (65)

where R0 is the bubble initial radius. The change in the bubble
radius is directly related to the distance it has travelled from its
initial position.

Equations (60) and (61) are solved numerically. As initial condi-
tions, we consider that the bubble is at rest, vb(t = 0) = 0, and we use
a density perturbation to initiate the motion of the bubble. We ex-
plore positive and negative initial density perturbations of different
magnitudes, namely: δρ/ρ = −10−6, −10−3, −10−1, −0.5, 10−6,
10−3, 10−1, 0.5 – note that each δρ/ρ implies a different δTb/Tb so
that pressure is balanced. We also investigate different values of the
superadiabaticity, namely ∇ = 10−3, 10−1. These values cover a
range going from a nearly adiabatic stratification, as found in the
deep stellar interior, to a value corresponding to a slight superadi-
abaticity, as found close to the stellar surface where the movement
of the bubble can still be solved within the assumption of adiabatic
expansion.

We show in Figs 1 and 2 the solutions of the bubble motion.
When δρ < 0 (continuous lines), the bubble is rising and it reaches
an asymptotic velocity, while ω = ρ/ρb, rb, and log R

R0
increases

continuously with time. The value of the asymptotic velocity can be
derived the following way. When ω � 1, equation (60) becomes

v̇b = 2

γ
− 1

3γ
v2

b . (66)

The asymptotic velocity corresponds to v̇b = 0, which leads to
v∞

b = √
6. In physical units, this corresponds to

√
6cs. This value is

shown as a horizontal dashed line in the left-hand panels of Fig. 1.
The asymptotic velocity is supersonic, which is not consistent with
the underlying assumptions of the theory. Therefore, it is clear that
this asymptotic velocity cannot be used to compute a convective
flux.

The time-scale on which the asymptotic velocity is reached de-
pends only weakly on the magnitude of the initial density perturba-
tion, but it depends strongly on the superadiabaticity. The smaller the
superadiabaticity, the longer it takes to reach the asymptotic veloc-
ity. For the largest superadiabaticity explored here, ∇ = 10−1, the
bubble expanded by a factor of ∼10 and travelled a distance ∼10Hp

when it reaches the asymptotic velocity. For ∇ = 10−3, the bub-
ble expanded by a factor of ∼10–100 and travelled over roughly
103Hp. For comparison, the number of pressure scaleheight in the
entire Sun is roughly 30. As a conclusion, it is clear that the time
integration has to be stopped at some moment to make sure that the

velocity of the bubble remains subsonic and that the bubble did not
travel out of the convective region.

When δρ > 0 (dashed lines), the bubble sinks in the stratification.
As a result, it contracts, and the magnitude of the velocity increases
with time. We find that two different outcomes are obtained: the
velocity diverges linearly in time for ∇ = 0.1, and the velocity
diverges at a finite time for ∇ = 10−3.

When the superadiabaticity is large enough (∇ = 0.1 in our
case, see Fig. 1), ω = ρ/ρb decreases rapidly as the bubble becomes
more and more denser than its surrounding. When ω � 1, equation
(60) becomes

v̇b = −1/γ. (67)

In physical units, this correspond to

v̇b = −g. (68)

As nothing in the theory prevents the bubble to stop contracting,
its radius goes to zero and the bubble falls under the action of
gravity alone (free-fall). Its velocity diverges, and it becomes rapidly
supersonic.

When the superadiabaticy is small enough (∇ = 10−3 in our
case, Fig. 2), ω = ρ/ρb does not decrease quickly enough, and the
increase in the velocity magnitude now results in the second term
in equation (60) to be the dominant one. In this case, equation (60)
can be written as

v̇b = −Cv2
b, (69)

where C is positive and can be considered constant in time. This
gives immediately

vb(t) = 1

−v0
b + Ct

, (70)

where v0
b is the (absolute) value of the bubble velocity at the mo-

ment where the buoyancy force becomes negligible. One sees from
equation (70) that the bubble velocity diverges at t = v0

b/C. This
is a remarkable result that at a first sight may look surprising, yet
it can be understood in a very easy way and shows how unphys-
ical the predictions from the theory are. In the extreme case of a
bubble moving adiabatically in an adiabatic thermal stratification
(∇ = 0), the buoyancy mass and the density contrast remain con-
stant. In this case, the first term in the acceleration equation remains
constant while the second one increases as the bubble increases its
speed. Once the second term becomes dominant, the bubble will
contract extremely fast, shrinking to a point in a finite time-scale.
Note that, as the density contrast remains constant to its initial value
ω = ω(t = 0) this means that at each time the bubble has sunk deep
enough so that its new density ρb(t) follows that of the background
(ρ(rb(t))). In particular, this implies that when R reaches R = 0, the
bubble has already sunk to an infinite depth.

A particularly interesting conclusion that arises from the solution
of the motion of the adiabatic bubble is that there is no regime in
which the acceleration of the bubble fulfills the key equation 41 of
Pasetto et al. (2014). Not only vb

2 �= −v̇bR, but, as shown in the
bottom right panels of Figs 1 and 2, the ratio vb

2/(v̇bR) changes
over orders of magnitude during the motion of the bubble. This is a
very strong result as this approximation is key in the derivation of
the convective flux in their work.

Finally, the previous results show that the theory cannot be used to
describe the motion of the bubble at all times. The time integration
has to be stopped when either one of the quantity vb, R, rb reach
a value where the underlying assumptions of the theory cannot be
verified anymore.
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5 D I S C U S S I O N A N D C O N C L U D I N G R E M A R K S

In the previous sections, we have addressed the theory of convection
presented by Pasetto et al. (2014). As discussed in Section 2, their
theory is both a local and a time-independent theory of convection,
in the usual sense. In addition, we have shown that serious mathe-
matical inconsistencies affect the derivation of the final equations
in Pasetto et al. (2014), and that the key physical assumption of
a rapidly expanding bubble (vb/Ṙ � 1) is in stark contradiction
with the local and subsonic approach adopted by the authors which
requires R/Hp � 1. Yet, as we have shown in Sections 3 and 4, it
is possible to solve the dynamics of the bubble consistently under
the main physical assumption of Pasetto et al. (2014), i.e. assum-
ing a differentiated bubble moving in a potential flow. The detailed
analysis of the resulting solutions for the evolution of the bubble
show a very unphysical behaviour. This is not a surprise, as potential
flows are known to be a far-fetched idealization of real fluids. In-
deed, it is known since d’Alembert that potential flows predict zero
drag, in strong contradiction with experience. This is the famous
‘d’Alembert paradox’ (le Rond d’Alembert 1768). Potential flows
are popular in text books because they lead to analytically tractable
problems. However, potential flows are rarely achieved in real day
life, and they are mainly of academical interest (Feynman 1964).
In fact, the d’Alembert paradox shows that the real flow around
a body is not potential. Therefore, it is clear that the assumption
of a potential flow has the drawback that the resulting theory will
lack the drag that the fluid exerts on our bubble. Also, there is no
physical reason to assume that a flow will remain potential even if
that is the initial condition. The theory will necessarily be incom-
plete. In addition, it is worth noting that the relation between the
acceleration, velocity and radius of the bubble derived by Pasetto
et al. (2014), vb

2 = −v̇bR, does not exist in the detailed solution of
the equations and is wrong by many orders of magnitude. This is
important because this relation is used to derive the expression for
the convective flux, which is key in their derivation of a convection
theory.

All the previous points indicate that no accurate description of
stellar convection can arise from the approach proposed by Pasetto
et al. (2014). Yet, the authors claim that their theory is able to
reproduce the solar predictions of a sun-calibrated MLT. While this
claim looks surprising in view of the previous discussion, a closer
inspection shows that there is no such agreement. In fact, in their
table 1, the authors quote as a good agreement that their prediction
for the temperature gradient ∇ differs in only 1.7 × 10−4 with
the one predicted by the sun-calibrated MLT. While this difference
might look small at first sight, it is a rather large discrepancy. The
authors have chosen to compare their theory in a regime that is still
very close to adiabatic convection – as can be seen from the fact
that the convective flux is 6 orders of magnitude larger than the
radiative one quoted in their table 1. The relevant prediction for a
convection theory is the degree of superadiabaticity ∇ = ∇ − ∇ad.
As seen in Fig 3, the superadiabaticity in that region of the solar
convective zone is between ∇ ∼ 6 × 10−5 and 3 × 10−4 – either8

at r = 0.98 R� or at the layer where ∇ad ∼ 0.2831. Therefore,
the agreement for ∇ between the theory of Pasetto et al. (2014)

8 It should be noted that the ‘solar model’ adopted by Pasetto et al. (2014) is
not a proper solar model, as the value of ∇ at R = 0.98 R� is not the correct
one, see Fig 3. Also, fig. 6 of Pasetto et al. (2014) shows the convective flux
dominating down to R = 0.5 R�, where the actual sun has no convective
zone.

and the sun-calibrated MLT is not good, at best within an order of
magnitude.

The study of the behaviour of the dynamics of the expanding
bubble forces us to conclude that no improvement of stellar mod-
els can be expected from the approach presented by Pasetto et al.
(2014). Indeed, the approach adopted by the authors is too simplis-
tic, beside the inaccuracies discussed in Section 2, to be an accurate
description of stellar convection. Since 20 years, numerical sim-
ulations of stellar convection have shown that the flow exhibits
convective plumes, which are large-scale, coherent structures that
emerge from the driving region and are able to propagate over
significant distance before loosing their identities (Stein & Nord-
lund 1989; Cattaneo et al. 1991; Brummell, Hurlburt & Toomre
1996; Porter & Woodward 2000; Brummell, Clune & Toomre 2002;
Viallet et al. 2013). The stratification has an important role in stellar
convection, as it breaks the symmetry between upflows and down-
flows. For the case of stellar envelopes, where convection is driven
by cooling at the photosphere, convective plumes propagate down-
wards, and are surrounded by a much broader and slower upflow.
This is a result of mass conservation. Convective plumes are seen
to maintain their coherence over long distances, i.e. larger than
the pressure scaleheight, and they are responsible for the non-local
character of convection. Furthermore, it is known from numerical
simulations that convective plumes contribute to energy transport
not only through the heat that they carry (enthalpy flux), but also
through their kinetic energy. Due to the large Reynolds numbers
that characterize stellar hydrodynamics, convective plumes induce
shear instabilities as they propagate in the surrounding. As a result,
they do not have a very definite surface, nor a definite shape, as they
continuously mix with the surrounding. In some cases, this can re-
inforce the plume, as it entrain more mass and becomes stronger. In
some other cases, it can lead to a destruction of the plume as it gets
fully mixed with the surrounding, a phenomenon called ‘detrain-
ment’ (Rieutord & Zahn 1995; Rast 1998; Clyne et al. 2007). To be
an improvement, future theories of stellar convection should take
into account the non-local transport by convective plumes (Spruit
1997; Belkacem et al. 2006; Brandenburg 2015).

The picture adopted in Pasetto et al. (2014) ignores much of what
has been learned from previous theoretical studies of stellar convec-
tion. Although the ‘bubbles’ which constitute the basis of Pasetto
et al. (2014) theory could be at first be identified as representing
convective plumes, it is clear that the picture adopted by the au-
thors is too limited to really account for the observed properties of
convective plumes:

(i) the authors adopt a local approach, in which the bubble size is
restricted to length-scales smaller than the pressure scaleheight, and
in which both the dynamics of the bubble, as well as the predicted
temperature gradients, only depend on the properties at each stellar
layer;

(ii) the authors assume that motions are subsonic. This a valid
approximation for the deep interior, where convection is efficient.
However, close to the photosphere, the Mach number can be very
large so that the flow cannot be considered as subsonic. There,
one has no other choice than to consider the fully compressible
equations of hydrodynamics. For instance, at the photosphere the
ram pressure of the fluid is large enough to modify hydrostatic
equilibrium. This effect, which is described as due to a ‘turbulent
pressure’, is neither taken into account in MLT nor in the approach
of Pasetto et al. (2014);

(iii) the authors assume that the bubble has a well-delimited sur-
face, along which the surrounding material is flowing. This picture
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is not able to account for shear instabilities that develop at the head
of convective plumes, which of course have no definite surface.
As mentioned previously, the way plumes entrain/detrain with the
surrounding medium is key in setting their lifetime. This is the very
reason why a mixing length is included ad hoc in the MLT picture.

Therefore, a non-local and time-dependent theory of stellar con-
vection is still lacking, hampering progress in stellar physics. Better
predictions for the structure of superadiabatic layers are required
for asteroseismological studies. This requires to take into account
compressibility (Mach numbers are of the order of one), and non-
local effects due to plumes. State-of-the-art numerical simulations
of photospheric convection are the most promising way to move
beyond an MLT description of these layers. In the deep interior,
although the thermal structure is know (the stratification is essen-
tially adiabatic), a non-local theory of convection is needed to model
the structure of the boundary layer between convective and stably
stratified regions. This is timely, as both the extent and the effi-
ciency of the mixing can now be probed with asteroseismology
(Charpinet et al. 2011; Constantino et al. 2015). A theory of con-
vection remains elusive as it is an outstanding challenge to capture
the richness of the phenomenon into a mathematical description.
Furthermore, the current stellar structure equations offer a too re-
stricted framework to do better than MLT-like, local descriptions
of convection. Progress in this challenging field will likely result
from physical insight gained from numerical simulations, a com-
plete re-thinking of the stellar evolution equations (e.g. with stellar
evolution codes evolving towards mean-field hydrodynamics), and
the use of the increasing quantity and quality of observational data
available to constrain theoretical models. Unfortunately, the work
by Pasetto et al. (2014) does not provide any useful foundation for
the success of this challenging, but necessary, enterprise.
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APPENDI X A : R ELATI ONSHI P BETWEEN
Pb A N D P∞

It is also interesting to analyse how the predictions of equation (32)
for the connection between the pressure inside the bubble Pb and
the pressure of the fluid far away from the bubble P∞. For this some
physical comment about the hypothesis of the spherical symmetry
of the bubble is due. It is clear from equation (23) that the pressure
on the surface of a sphere moving within a fluid is not constant. In the
absence of any other forces, these differential forces will deform the
shape of the bubble. Then, the hypothesis of a spherically symmetric
bubble at all times is equivalent to assume that forces on the surface
of the bubble are able to balance the differential forces and keep a
spherical shape but do not prevent the sphere form expanding (i.e.
a mechanical constraint).

In order to obtain the link between the pressure inside the bubble
Pb (assumed to be filled with a homogeneous fluid) and the pressure
in the fluid we can analyse the energy transferred during an adiabatic
spherically symmetric expansion dVb. Under the assumption that
the surface forces only act to prevent the departure from spherical
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symmetry, we can then write that the work done by the sphere has
to be equated by the energy received by the rest of the fluid, i.e.

PbdVb = −
∫

∂V

P n′ · dr ′dS, (A1)

as dr ′ and n′ are parallel during and spherical expansion, we can
then write

Pb = −
∫

∂V
P dS

4πR2
. (A2)

Then, using equation (32), we find that

Pb = −
∫

∂V

(
∂tψ + v2

2 + 
g

)
dS

4πR2
, (A3)

which provides a link between the pressure inside the bubble and
the state of the surrounding material. Now we can make of of the
choice of C′ = 0 for the relation the between pressure and the
gravitational potential far away from the sphere and write 
g =
−g(z − rb) − P t

∞/ρ – where P t
∞ is the pressure far away from the

bubble at the layer z = rb(t).

Pb = − 1

4πR2

(∫
∂V

∂tψdS +
∫

∂V

v2

2
dS +

+
∫

∂V

(−gz′)dS +
∫

∂V

P t
∞dS

)
. (A4)

Performing the integrations, we find that

Pb = P t
∞ − ρ

2
Ṙ2 − ρ

2
vb

2 1

4πR2

∫
sin2 θ

2
dS − R̈Rρ − 2ρṘ2.

(A5)

Using the definition of the adiabatic sound speed, we can now
replace ρ = �1P∞/cs

2 to get

Pb = P t
∞ − �1P∞

cs
2

Ṙ2 − �1P∞
cs

2
vb

2 1

4πR2

∫
sin2 θ

2
dS

−�1P∞
cs

2
R̈R − �1P∞

cs
2

2Ṙ2. (A6)

Equation (A6) shows the fact that when Ṙ � cs, vb � cs and
R̈R � c2

s , the pressure inside the bubble can be considered to be
equal to that of the medium far away from the bubble Pb 	 P t

∞, as
it is well known for subsonic flows.
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