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Neural nets learn by training, not by being programmed. Learning is the process of adjustment
of the neural network to external stimuli. After learning it is expected that the network will
show  and  abilities. By recall we mean the capability to recognise inputs
from the training set, that is to say, those patterns presented to the network during the learning
process. By generalisation we mean the ability to produce reasonable outputs associated with
new inputs of the same total pattern space. These properties are attained during the slow
process of learning. Many approaches to speedup the training process has been devised by
means of parallelism.
The backpropagation algorithm (BP) is one of the most popular learning algorithms and many
approaches to parallel implementations has been studied [5][6][9][10][12][15].
To parallelise BP either the network or the training pattern space is partitioned. In 

, the nodes and weights of the neural network are distributed among diverse
processors. Hence the computations due to node activations, node errors and weight changes
are parallelised.  In  the whole neural net is replicated in different
processors and the weight changes due to distinct training patterns are parallelised.
This paper shows the design of two distributed supports for parallel learning of neural networks
using a pattern partitioning approach. Results on speedup in learning and its impact on recall
and generalisation are shown. Also a useful application of neural nets as a decisor for incoming
task allocation in a distributed system is discussed.

A backpropagation neural network is composed of at least three unit layers; an input, an output
and one ore more hidden (intermediate) layers. Figure 1 shows a three layer BP network.
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Given a set of p 2-tuples of vectors (x1 y1), (x2 y2), ..., (xp yp), which are samples of a functional
mapping y =  (x) : x  R N, y   R M, the goal is to train the network in order it learns an
approximation o = y’ = ’ (x). The learning process is carried out by using a two phase cycle;

 or   and  or  [8][13][14].
Once an input pattern is applied as an excitation to the input layer, it is propagated throughout
the remaining layers up to the output layer where the current output of the network is generated.
This output is contrasted against the desired output and an error value is computed as a function
of the outcome error in each output unit. This makes up the .
The learning process include adjusting of weights (adaptation) in the network in order to
minimise the error function. For this reason, the error obtained is propagated back from each
node of the output layer to the corresponding (contributors) nodes of the intermediate layer.
However each of these intermediate units receives only a portion of the total error according to

Fig. 1 - A Backpropagation Network



its relative contribution to the current output. This process is repeated from one layer to the
previous one until  each node in the network receives an error signal describing its relative
contribution to the total error. Based on this signal, weights are corrected in a proportion
directly related to the error in the connected units. This makes up the .
During this process, as the training is progressing, nodes in the intermediate levels are
organised in such a way that different nodes recognise different features of the total training
space. After training, when a new input pattern is supplied, units in the hidden layers will
generate active outputs if such an input pattern preserves the features they (individually) learnt.
Conversely, if such an input pattern do not contain those known features then these units will
be inclined to inhibit their outputs.
It has been shown that during training, backpropagation neural nets tend to develop internal
relationships between units, as to categorise training data into pattern classes. This association
can be either evident or not to the observer. The point here is that:

• Firstly, the net finds an internal representation, which enables it to generate appropriate
responses when those patterns used during training are subsequently submitted to the
network.

• Secondly, the network will classify those patterns never seen before according to the
features they share (resemblance) with the training patterns.

  replicates the neural net structure (units, edges and associated weights) at
each processor and the training set is equally distributed among processors. Each processor
performs the propagation and the adaptation phases for the local set of patterns. Also, each
processor accumulates the weight changes produced by the local patterns which afterward are
exchanged with other processors to update weight values.
This scheme is suitable for problems with a large set of training patterns and fit properly  to run
on local memory architectures [1][20].
Different training techniques, or regimes, can be implemented in a backpropagation algorithm
to implement the learning process [1][10][12]. In this work, because it is appropriated for a
distributed environment, the choice was the -  regime. Under this technique weight
changes are accumulated for all training patterns before updating any of them, with a
subsequent   stage each time all patterns in the training set were presented.

To implement a pattern partitioning scheme, the whole neural network is replicated among 
processors and each processor carries out the learning process using  patterns where  is
the size of the training set. As shown in figure 2, weight changes are performed in parallel and
then the corresponding accumulated weight changes vectors, , are exchanged between
processors. Now we describe the basic steps of a backpropagation learning algorithm under the
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Fig.  2. A Pattern Partitioning Scheme



 regime, also known as . The superindexes  and  identify
hidden and output units respectively.

1. For each pattern p = ( p1, p2, ..., pN)

1.1 Compute the output of units in the hidden layer:

  =  
=1

  =   ( )

1.2 Compute the output of units in the output:

=1

  =   ( )

1.3 Compute error terms for the units in the output layer:
 (  - ) 

1.4 Compute error terms for the units in the hidden layer:

 = 

1.5 Compute weight changes in the output layer:

1.6 Compute weight changes in the hidden layer:

2. Send local    and   and Receive remote   y .

3. Update weights changes in the output layer:

4. Update weights changes in the hidden layer:

Until     ( = (
1

21= =1

( pk - pk)
2 ) < maximum accepted error) or

              (number of iterations = maximum number of iterations)

The subindexes , ,  and  identify the pth input pattern, the ith input unit, the jth hidden unit
and the kth output unit respectively.   is the weight corresponding to the connection between
unit  and unit ,  is the accumulated change for the weight corresponding to the connection
between unit  and unit   is the bias and ,  and  identify the number of input, hidden and
output units respectively.  denotes the sigmoid function which is used to compute the
activation of each node.

 
 

                                                          
2 During an epoch, or batch, the submission of all patterns in the partition, the corresponding
computations and the accumulation of weight changes must be performed before weights update takes
place, then the next epoch begin.



 
 
 Two approaches were faced for parallel learning support: a socket-based and a PVM-based
architecture
 

In our early works a real implementation was built on the processors distributed in a LAN of
workstations (multicomputers). Each process ran in a workstation. The routines used a socket
interface as an abstraction of IPC (Interprocess Communication) mechanism
[3][ 4][5][6][16][17].
Figure 3  shows the support system architecture, processes and interactions. The parallel
learning algorithm is independently initiated by a process at each LAN node. The 
process  will be responsible of local learning processing and when needed will request a service
to exchange vectors  forks twice to create child processes  and  for
communication with other LAN nodes.

The tasks performed by each process are:

• Main process  runs the learning algorithm for the neural net NN. After each epoch
 request the following services:

 Sending of the local vector.
Receiving of remote vectors.

To update the weights for every pattern in the partition it creates a current  vector by
gathering the local and remote  vectors.
 

• Process   receives the  vectors sent by remote  processes.
• Process sends the local  vectors generated during one ore more epochs to the

remote  processes.

These three processes execute independently but they communicate for exchanging
information. In order to allow the concurrent execution of learning and the external
communication with remote processes, a set of  mechanisms where used.
This communication is handled via interprocess communication mechanisms (IPCs).
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Fig. 3. - Support System Architecture



The interaction between processes   and is established via IPC1 when after an
epoch the learning process request to distribute its  vector.
The interaction between processes  and is established via IPC2 when after an
epoch the learning process request remote  vectors  to subsequently determine the current

 vector.

The current work with PVM is discussed now. PVM is created to link computing resources and
provide to the user with a parallel platform for running their computer applications,
independent of the number of processors[18][19]. PVM supports a very efficient message-
passing model. Figure 4 shows an alternative support to implement our particular application on
the Parallel Virtual Machine.
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In this section we present a brief description of the underlying system architecture and
procedures supporting the parallel learning process, running on the processors distributed in a
LAN of workstations. Each processor is allocated for a replicated neural network. The parallel
learning support presented here is independent of the neural network structure.

The following code for BP describes the PVM implementation.

#include <pvm3.h>

void main (argc, argv )
{

int one=1;                   /* number of  task to spawn, use always 1 for  time */
int Task[NUMTASK]; /* children task id array */

      int i,j;

/* Initialization of child parameters */
for (j=1, i=NUMTASK+1; i<=argc; i++; j ++) argvnn[j] = argv[i];           /* Parameter  for each BP */
for (j=1; j <= NUMTASK; j ++)          /* It spawns BP algorithm as is indicated in

NUMTASK */
{

argvnn[0]= argv[j];
one= pvm_spawn("BP", (char **) argvnn, 1, PvmTaskDefault, 1, &Task[j-1]);
if (one !=1) { pvm_exit(); return -1;}

              }
 pvm_exit();

return -1;
}



#include <pvm3.h>

void main (argc, argv )
{

int grid;  /* group id */
int bufid;  /* reception buffer id  */

grid = pvm_joingroup("NN");   if (grid<0) { pvm_exit(); return -1;}
arguments(argc, argv);  /* Neural Networks Initializations */

         repeat
{ 

clear_vector (&accum_weight_l) ; /* clear weights changes vector*/
for (each pattern) /* Accumulation of all weights changes*/

                        {
/*
      ....
     Compute the output of units in the hidden and output  layers
     Compute error  terms for the units in the output and  hidden layers
     Compute weight changes in the output and hidden layers     (accum_weight_l)
      ....
/*

                  }
      

pvm_initsend(PvmDataDefault);
if (epoch_intervals)
{

packing_weight(&accum_weight_l);  /*  packing local weight changes vector  to distribute */
pvm_bcast("NN", 1);

}
      

clear_vector (&accum_weight_r) ; /* clear weights changes vector */
bufid=pvm_nrecv(-1,1);  /* if bufid = 0, no message then continue */
if (bufid>0)
{

pvm_setrbuf(bufid);
unpacking_weight(&accum_weight_r); /* unpacking foreign weight changes vector */

}

update_weight(&accum_weight_l, &accum_weight_r); /* Definitive  weights changes */

until (current error < max. accept. err.) or  ( number of iterations ( maximum number of iterations)
}

Next, some comments about process interaction.
When calling PBP (on a single workstation) it will be specified as many < > (pattern
file names) as processors will be envolved in the training phase.
The parent spawns several BP processes with the corresponding parameters (regarding the
example: BP1   with  ,  BP2  with ,  etc.).
Each BP(child)  will run in a different  processor of the Virtual Machine.



As an application of neural networks we used an intelligent facility to automatically allocate, in a
computer network, a user incoming process to the most appropriate node in accordance to its
computing requirements[2].
The model assumes that:
• The relevant performance feature to improve is the response time for user processes.
• Processes coming to be served in this network have different demands on system resources

(CPU, Memory and I/O devices).
• The network is formed by a set of  nodes, such that each of them can contribute with different

performance to a user process depending on its demands.
• Every user incoming process comes to the network through an entry node, before passing to the

execution node (see Fig. 5). Process behavior and resource requirements can be determined by a
program profile file or explicitly declared by the incoming process.

• An  module within the Operating System kernel evaluates process attributes,
requirements and system state at the process arrival time.

• Using the output of the evaluator, as input, a  module decides which node in the
network can accomplish more efficiently the process execution and then process migration
takes place.

As a simple example, let us assume the following scenario:

We have a system where N available nodes differ essentially in Current Memory Capacity ( )
and MIPS provided. Due to system dynamics they also differ in Current Available Processing
Power ( ). User processes are CPU intensive tasks and their main requirements are Memory
Required ( ) and Desired Response Time ( ).

, ,  and , are each divided into a number of levels (high, medium and low, or
more levels). Other processes requirements on system resources, such as access to secondary
storage, can be equally satisfied by any of the available nodes and there will not be network
transfers (except for initial process migration, which we assume is equally costly for every node).

Then the following simple allocation criterion can  be applied:

• Having  best fit satisfied, satisfy  by allocating the process to the best fitted node
(the one with minimum  fulfilling process requirement). In case of equal 
values for more than one node then node selection is random.

• If the strategy also considers the situation where idle nodes exists, then; if for two or more
nodes  is equal, and some of these nodes is in idle3 state ( ) then the process is
allocated to that idle node. This second decision attempts to balance the workload.

For this allocation criterion, with N system nodes, 4+5N binary inputs will suffice to depict
process requirements (4 bits) and system state (5 bits per system node), while the size of total
pattern space is given by:

                                                          
3A node is defined as being in an idle state when no user process is running.
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Fig. 5 The kernel portion of an entry node



Because only legal inputs conform a training set for the neural net, the second term of  excludes
the cases in which  is greater than  available.

Experiments covered here refer solely to the variable-epoch training regime; a new variant of
the per-epoch regime. The  consists in randomly assigning the
number of epochs (epochs interval) locally performed before any exchange takes place. Higher
speed-up was the motivation of this new approach previously envisioned for a socket-based
interface
The variable number of epochs locally performed before any exchange took place was chosen
as a random number r between 1 and 15. Better results were observed for greater r values, but
reported results corresponds to average values.
 Let be   the total pattern space. The processors training sets ( ) were  subsets of .
For sequential training, the training set  was built by uniform selection of X% of the pattern
space 
For parallel training the pattern space was divided into  subsets and each subset was assigned
to one processor (virtual or not)  in parallel execution. The training subsets  were built by
uniform selection of  of the pattern space 
Values for  was chosen as 30 and 60.
In what follows the experiment identifiers indicate:
<Training type>-<size(%) of Training Set>/<number of subsets for parallel execution>

To compare results, the neural net was trained sequentially (i), in parallel using socket (ii) and
in parallel using PVM (iii):

• (i) Experiments SBP-30/1 and SBP-60/1.  = 30% and 60% of
respectively.

 
• (ii) Experiments PBP-30/3 and PBP-60/3. Three disjoint subsets of   of 

were selected and each subset was assigned to one processor in different workstations.
Size( ) = 10% and  20% of  respectively.

 
• (iii) Experiments PVM-30/3, PVM-30/6, PVM-60/3 and PVM-60/6 The

software allows any numbers of processors to be created without any relationship to the
number of real processors. In this state three and six disjoint subsets of of  were
selected respectively, and each subset was assigned to one process. The number  of
parallel processes was set to 3 and 6.  = 10%, 5%, 20% and 10%  of  respectively.

X / 3 %X /3 %( X /3 %
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Figure 6 shows  an example of  parallel partitioning scheme for experiments  SBP-X/1, PBP-
X/3 and  PVM-X/3.

As we were working in two stages (training and testing), the following  were used in
each case:

• For Sequential Processing,  (the training set of the unique neural network) was used on
the learning stage and  and  (the whole sample space) were used in the testing stage (for
Recall and Generalisation respectively).

• For Parallel Processing, on the learning stages,  was the local training subset submitted to
the  BPi, with the accumulated weight changes vectors received from other BPj networks
(with training subset  ). For that reason,

is the training set for  all BPi  at the learning and testing stages.

 During these processes, the following relevant  were  examined:

:
: Learning time, is the running time of the learning algorithm.

: Number of iterations needed to reach an acceptable error value while
training.

:
 = rcg/Size(Ts). Is the recall ability of the neural net. Where  is the total

number of patterns recognized when only patterns  belonging  to the Training
Set (Ts) are presented, after learning, to the network. The objective is to
analyse if each net can assimilate (can acquire) the learning of other networks
that were running in parallel with it.

 = gnl/Size( ). Is the combined recall and generalisation ability. Where
  is the size of the Total Pattern Space and  is the total number of

patterns recognized when all possible patterns are presented, after learning, to
the network.

 =  is the ratio between the learning times under different
approaches (sequential or parallel).

 =  is the benefit-cost ratio for recall. It indicates the benefit
of speeding up the learning process, which is paid by the cost of (possibly)
loosing recall ability.

 =  is the benefit-cost ratio for generalisation. It indicates
the benefit of speeding up the learning process, which is paid by the cost of
(possibly) loosing generalisation ability.

The corresponding mean values of the performance variables are shown in the following figures
and tables.

As we can observe in figure 7 a reduction, greater than one third  in the number of iteration
needed to achieve permissible error values, was achieved. Results for the partitioning scheme
of 30% are shown but using either parallel partitioning approach attains similar results.

1=

=



Table 1, is a summary of the experiments performed and their results:

Experiment Learning time
(seconds)

Recall
%

 Generalisation
%

SBP-30/1 1989 100 98

PBP-30/3 426.91 97.85 96.84

PVM-30/3 123.33 97.84 95.71

PVM-30/6 53.05 92.8 92

SBP-60/1 5996 100 99.5

PBP-60/3 1137.66 99.33 98.83

PVM-60/3 275.66 99.91 99.73

PVM-60/6 87.22 98.97 97.64

Figures 8 and 9 show the associated loss in recall and generalisation of the neural
network for different sizes of the training set.
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     Fig. 7 - Number of iteration needed  under sequential and parallel learning  (best case)

Table 1 - Summary of LT, R and G results. LT is expressed in
             seconds while R and G are expressed  in percentile
             values.

Fig. 8 - Values of Recall and Generalisation
           for Ts= 30 % of 



In general, the detriment of recall and generalisation capabilities decreases as the training set
size is incremented. Their values range from 0.09% (PVM-60/3) to 7.2% (PVM-30/6) for
recall. In the case of generalisation the values range from -0.23% (PVM-60/3) to 6% (PVM-
30/6). Opposite to the expected, in this case, an improvement was also detected: PVM-60/3
achieved a generalisation capability better than the sequential BP.

Table 2 indicates the speed-up in learning time attained through parallel processing when
different sizes of the portions of the total pattern space are selected for training the neural
network. Table 2(a) shows the ratio between the sequential learning and the parallel learning
times ( SP  =LT(S) / LT(P)  ).

SBP-30/1
vs.

SBP-60/1
vs.

PBP-30/3 PVM- 30/3 PVM-30/6 PBP-60/3 PVM- 60/3 PVM-60/6

4.65 16.12 37.49 5.27 21.75 68.74

In general, as the size of  increases (from 30% to 60%) then an increment of the speed-up can
be observed under variable-epoch training.
This effect shows a substantial improvement over the per-epoch approach used in earlier
implementations. Moreover, increment of the speed-up can be observed among different
parallel  implementations.  Table 2(b)  shows  the  ratio  between  both  parallel  learning  times
( SPVM  = LT(PBP)  / LT(PVM) ).

PBP-30/3
vs.

PBP-60/3
vs.

PVM- 30/3 PVM-30/6 PVM- 60/3 PVM-60/6

3.46 8.04 4.12 13.04

Both parallels implementations showed comparable capability, but  PVM-X achieved a
substantial increment in speed-up with values ranging from  3.46 to 13.04 times faster than
PBP-X.

Fig. 9 - Values of Recall and Generalisation
           for Ts= 60% of 

Table 2(a) - Speed-up values achieved through parallel
                   processing vs sequential processing

Table 2(b) - Speed-up values achieved through parallel processing
                   with PVM   vs.  parallel processing with Socket



It is interesting to observe in table 3 the Benefit-Cost Ratio, which gives an indication of a
speed-up  obtained at the cost of a detriment in recall or generalisation. Table 3(a) shows for
PVM-X, the benefit-cost ratio for recall ability

 = 

and table 3(b)  shows  the benefit-cost ratio for generalisation ability

 =  ).

SBP-30/1
vs.

PVM- 30/3

SBP-30/1
vs.

PVM-30/6

SBP-60/1
vs.

PVM- 60/3

SBP-60/1
vs.

PVM-60/6
13.96 30.29 21.66 67.71

SBP-30/1
vs.

PVM- 30/3

SBP-30/1
vs.

PVM-30/6

SBP-60/1
vs.

PVM- 60/3

SBP-60/1
vs.

PVM-60/6
7.03 6.24 -- 37.35

In all cases, it can observed  good ratios between benefit and costs. In the particular case of
PVM-60/3 an increment of speed-up was simultaneously detected with an increment in
generalisation capability, hence the benefit cost ratio is not registered. This performance
variable is of great help to inspect the goodness of a parallel design for training neural nets.

The training time of a neural network has been a main issue of recent research. The length of a
training time depends, essentially, upon the number of iterations required. On its turn, this
number depends upon several interrelated factors. Some of them are: size and topology of the
network, initialization of weights and the amount of training data used.
A means of training acceleration based in the last mentioned factor is a parallel approach
known as pattern partitioning. Using this technique, in this work we presented a feasible
architecture for a system supporting parallel learning of backpropagation neural networks on a
Parallel Virtual Machine.  A preliminary set of experiments in our investigation, revealed that
the beneficial effects of parallel processing can be achieved with minor capability loss.
Furthermore, we need to remark  that PVM provided us a unified framework within which our
parallel application was developed in an efficient and clear manner. That resulted in a
straightforward program structure and very simple implementation. PVM transparently
manipulated all message routing, synchronization aspects, data conversion, message packing
and unpacking, process group manipulation and all aspect regarding heterogeneity. All these
factors contributed to reduced development and debugging time.  It worth remarking that a
more effective implementation of  parallel backpropagation  neural network was completed.

Finally, at the light of the effectiveness showed by the distributed approach for the parallel
learning process by means of PVM, at the present time, testing with larger number of
processors and different training set sizes are being performed for different neural networks.

Table 3(a) - Benefit-Cost Ratio for Recall.

Table 3(b) - Benefit-Cost Ratio for Generalisation.
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