A PARALLEL APPROACH FOR BACKPROPAGATION LEARNING
OF NEURAL NETWORKS

CRESPO, M., PICCOLI F., PRINTISTA M., GALLARD R.

Proyecto UNSL-338403"
Departamento de Informaética
Universidad Nacional de San Luis
Ejército de los Andes 950 - Local 106
5700 - San Luis
Argentina
E-mail:{mcrespo,mpiccoli,mprinti,rgallard } @inter2.unsl.edu.ar
{mcrespo,mpiccoli,mprinti,rgallard } @unsl.edu.ar
Phone: +54 652 20823
Fax : 454 65230224

ABSTRACT

Fast response, storage efficiency, fault tolerance and graceful degradation in face of scarce or
spurious inputs make neural networks appropriate tools for Intelligent Computer Systems. But on
the other hand, learning algorithms for neural networks involve CPU intensive processing and
consequently great effort has been done to develop parallel implementations intended for a
reduction of learning time.

Looking at both sides of the coin, this paper shows firstly two alternatives to parallelise the
learning process and then an application of neural networks to computing systems. On the parallel
learning side we describe main parallel schemes for a backpropagation algorithm and two
alternative distributed implementations to parallelise the learning process of neural networks
using a pattern partitioning approach. Under this approach, weight changes are computed
concurrently, exchanged between system components and adjusted accordingly until the whole
parallel learning process is completed. On the application side, some design and implementation
insights to build a system where decision support for load distribution is based on a neural
network device are shown. Incoming task allocation, as a previous step, is a fundamental service
aiming for improving distributed system performance facilitating further dynamic load balancing.
A neural network device inserted into the kernel of a distributed system as an intelligent tool,
allows to achieve automatic allocation of execution requests under some predefined performance
criteria based on resource availability and incoming process requirements.

Performance results of the parallelised approach for learning of backpropagation neural
networks, are shown. This include a comparison of recall and generalisation abilities and
speed-up when using either a socket interface or a Parallel Virtual Machine (PVM) interface to
support parallelism.

KEYWORDS: Neutral networks, parallelised backpropagation, partitioning schemes, pattern
partitioning, system architecture.

! The Research Group is supported by the Universidad Nacional de San Luis and the ANPCYT
(National Agency to Promote Science and Technology).

1. INTRODUCTION

Neural nets learn by training, not by being programmed. Learning is the process of adjustment
of the neural network to external stimuli. After learning it is expected that the network will
show recall and generalisation abilities. By recall we mean the capability to recognise inputs
from the training set, that is to say, those patterns presented to the network during the learning
process. By generalisation we mean the ability to produce reasonable outputs associated with
new inputs of the same total pattern space. These properties are attained during the slow
process of learning. Many approaches to speedup the training process has been devised by
means of parallelism.

The backpropagation algorithm (BP) is one of the most popular learning algorithms and many
approaches to parallel implementations has been studied [5][6][9][10][12][15].

To parallelise BP either the network or the training pattern space is partitioned. In network
partitioning, the nodes and weights of the neural network are distributed among diverse
processors. Hence the computations due to node activations, node errors and weight changes
are pardlelised. In pattern partitioning the whole neural net is replicated in different
processors and the weight changes due to distinct training patterns are parallelised.

This paper shows the design of two distributed supports for parallel learning of neural networks
using a pattern partitioning approach. Results on speedup in learning and its impact on recall
and generalisation are shown. Also a useful application of neural nets as a decisor for incoming
task allocation in adistributed system is discussed.

2. BACKPROPAGATION NETWORKS

A backpropagation neural network is composed of at least three unit layers; an input, an output
and one ore more hidden (intermediate) layers. Figure 1 shows athree layer BP network.

Output layer

Hidden layer

Input layer

Fig. 1 - A Backpropagation Network

Given aset of p 2-tuples of vectors (X1 Y1), (X2 ¥2), ..., (Xp Yp), Which are samples of afunctional
mapping y=¢ (xX) : xe R", y € R, the goal is to train the network in order it learns an
approximation o =y’ = ¢’ (x). The learning process is carried out by using a two phase cycle;
propagation Of forward phase and adaptation or backward phase [8][13][14].

Once an input pattern is applied as an excitation to the input layer, it is propagated throughout
the remaining layers up to the output layer where the current output of the network is generated.
This output is contrasted against the desired output and an error value is computed as a function
of the outcome error in each output unit. This makes up the forward phase.

The learning process include adjusting of weights (adaptation) in the network in order to
minimise the error function. For this reason, the error obtained is propagated back from each
node of the output layer to the corresponding (contributors) nodes of the intermediate layer.
However each of these intermediate units receives only a portion of the total error according to

its relative contribution to the current output. This process is repeated from one layer to the
previous one until each node in the network receives an error signal describing its relative
contribution to the total error. Based on this signal, weights are corrected in a proportion
directly related to the error in the connected units. This makes up the backward phase.

During this process, as the training is progressing, nodes in the intermediate levels are
organised in such a way that different nodes recognise different features of the total training
space. After training, when a new input pattern is supplied, units in the hidden layers will
generate active outputs if such an input pattern preserves the features they (individually) learnt.
Conversely, if such an input pattern do not contain those known features then these units will
be inclined to inhibit their outputs.

It has been shown that during training, backpropagation neural nets tend to develop internal
relationships between units, as to categorise training data into pattern classes. This association
can be either evident or not to the observer. The point hereis that:

» Firstly, the net finds an internal representation, which enables it to generate appropriate
responses when those patterns used during training are subsequently submitted to the
network.

» Secondly, the network will classify those patterns never seen before according to the
features they share (resemblance) with the training patterns.

3. PATTERN PARTITIONING FOR PARALLEL BACKPROPAGATION

Pattern partitioning replicates the neural net structure (units, edges and associated weights) at
each processor and the training set is equally distributed among processors. Each processor
performs the propagation and the adaptation phases for the local set of patterns. Also, each
processor accumulates the weight changes produced by the local patterns which afterward are
exchanged with other processors to update weight values.

This scheme is suitable for problems with alarge set of training patterns and fit properly to run
on local memory architectures [1][20].

Different training techniques, or regimes, can be implemented in a backpropagation algorithm
to implement the learning process [1][10][12]. In this work, because it is appropriated for a
distributed environment, the choice was the set-training regime. Under this technique weight
changes are accumulated for all training patterns before updating any of them, with a
subsequent update all stage each time all patternsin the training set were presented.

Node J

%@ %@ Node!

|

%@ Node K
Node F %ﬁ /

Fig. 2. A Pattern Partitioning Scheme

4. THE PARALLEL LEARNING ALGORITHM

To implement a pattern partitioning scheme, the whole neural network is replicated among P
processors and each processor carries out the learning process using 7s/P patterns where Ts is
the size of the training set. As shown in figure 2, weight changes are performed in parallel and
then the corresponding accumulated weight changes vectors, awc, are exchanged between
processors. Now we describe the basic steps of a backpropagation learning algorithm under the

set-training regime, also known as per-epoch training’. The superindexes h and o identify
hidden and output units respectively.

Batch-Training Algorithm
Repeat
1. For each pattern xp = (xp1, Xp2, -+ Xpn)

1.1 Compute the output of unitsin the hidden layer:
N
h _ h h
net, = Z_le,.xp,.Jr o;

i, = f(nethj)
1.2 Compute the output of unitsin the outpuit:

L
o _E 0. o
j=

0, = f(nety)
1.3 Compute error terms for the units in the output layer:
8;07k = (Vpe - Opk)f’(net;k)
1.4 Compute error terms for the unitsin the hidden layer:
8, =f(net,) ;5;kw,;
1.5 Compute weight changes in the output layer:
cl?j = Cl(:j 7 8;kipj
1.6 Compute weight changes in the hidden layer:
¢l = ¢ + 18,
2. Send local ¢" and ¢ and Receive remotec” y ¢

3. Update weights changes in the output layer:

wy =W, + (¢}, (local)+ c; (remote))
4. Update weights changes in the hidden layer:

wfl. = wfl. +(c?l. (local)+ c?l. (remote))

T M
Until (E= Z (= Z (Vok - 0p)?) < maximum accepted error) or

=1

(number of iterations = maximum number of iterations)

The subindexes p, i, j and k& identify the p™ input pattern, the i™ input unit, the j"™ hidden unit
and the k™ output unit respectively. w; isthe weight corresponding to the connection between
unit j and unit i, ¢; is the accumulated change for the weight corresponding to the connection
between unit j and unit i, @ isthebiasand N, L and A identify the number of input, hidden and
output units respectively. f denotes the sigmoid function which is used to compute the
activation of each node.

2 During an epoch, or batch, the submission of al patterns in the partition, the corresponding
computations and the accumulation of weight changes must be performed before weights update takes
place, then the next epoch begin.

5. PARALLEL LEARNING SUPPORT

Two approaches were faced for parallel learning support: a socket-based and a PVM-based
architecture

5.1 A SOCKET-BASED SYSTEM ARCHITECTURE

In our early works a real implementation was built on the processors distributed in a LAN of
workstations (multicomputers). Each process ran in a workstation. The routines used a socket
interface as an abstraction of IPC (Interprocess Communication) mechanism

(3][4[5][e][16][17].

Figure 3 shows the support system architecture, processes and interactions. The parallel
learning agorithm is independently initiated by a process at each LAN node. The ProcW
process, will be responsible of local learning processing and when needed will request a service
to exchange vectors awc. ProcW forks twice to create child processes HI and HJ for
communication with other LAN nodes.

ProcHI

Local Current Remote IPC1

, h Weight .

Weight Weight i R i
egl elg y S €ceives Remote <

v i eight Vectors i
& ‘._\ ‘_;

Compute
1<1%:lx*lm2
Sermiemenm We i
Local

ProcWw Weight
Vector

RREOE 2

Vectors

ProcHJ

Fig. 3. - Support System Architecture
The tasks performed by each process are:

e Main process ProcW runs the learning algorithm for the neural net NN. After each epoch
ProcW request the following services:
Sending of the local awc vector.
Receiving of remote awc vectors.
To update the weights for every pattern in the partition it creates a current AW C vector by
gathering the local and remote awc vectors.

* Process ProcHI receives the awc vectors sent by remote ProcHJ processes.
» Process ProcHJ sends the local awc vectors generated during one ore more epochs to the
remote ProcHI processes.

These three processes execute independently but they communicate for exchanging
information. In order to alow the concurrent execution of learning and the external
communication with remote processes, a set of non hlocking mechanisms where used.

This communication is handled via interprocess communication mechanisms (1PCs).

The interaction between processes ProclW and ProcHI is established via IPC1 when after an
epoch the learning process request to distribute its awc vector.

The interaction between processes ProcHJ and ProclV is established via IPC2 when after an
epoch the learning process request remote awc vectors to subsequently determine the current
AWC vector.

5.2 A PVM-BASED SYSTEM ARCHITECTURE

The current work with PVM is discussed now. PVM is created to link computing resources and
provide to the user with a paralel platform for running their computer applications,
independent of the number of processorg[18][19]. PVM supports a very efficient message-
passing model. Figure 4 shows an aternative support to implement our particular application on
the Parallel Virtual Machine.

Procy W.V.
Proc;
H Local Current

W eight . W eight W eight
V ectors W eight Vector Vector
M essage V ectors (msg)
M essage
Prock Compute New

“... Wweight Vector

PVM Sing'ie workstation

Fig. 4. System Architecture for PVM

In this section we present a brief description of the underlying system architecture and
procedures supporting the parallel learning process, running on the processors distributed in a
LAN of workstations. Each processor is alocated for a replicated neural network. The parallel
learning support presented here is independent of the neural network structure.

5.2.1. PYM IMPLEMENTATION

The following code for BP describes the PV M implementation.

/* NNBP (parent) */
#include <pvm3.h>

void main (argc, argv)

{

int one=1; /* number of task to spawn, use always 1 for time*/
int Task NUMTASK]; /* children task id array */
intij;

/* Initialization of child parameters */

for (j=1, i=ENUMTASK+1; i<=argc; i++; j ++) argvnn[j] = argv[i]; [* Parameter for each BP*/
for (j=1;j <= NUMTASK; j ++) /* It spawns BP algorithm asisindicated in
NUMTASK */

{
argvnn[0] = argv(j];
one= pvm_spawn("BP", (char **) argvnn, 1, PvmTaskDefault, 1, & Task[j-1]);
if (one !=1) { pvm_exit(); return -1;}
}
pvm_exit();
return -1,

/% BP (child) */
#include <pvm3.h>

void main (argc, argv)

int grid; /* group id */
int bufid; /* reception buffer id */

grid = pvm_joingroup("NN"); if (grid<0) { pvm_exit(); return -1;}
arguments(argc, argv); /* Neural Networks Initializations */

repeat
{
/* Propagation Phase */

clear_vector (&accum_weight_I) ; /* clear weights changes vector*/
for (each pattern) /* Accumulation of al weights changes*/

/*
Compute the output of unitsin the hidden and output layers
Compute error terms for the unitsin the output and hidden layers

Compute weight changes in the output and hidden layers (accum_weight_I)

o
}

pvm_initsend(PvmDataDefault);
if (epoch_intervals)
{

packing_weight(&accum_weight_l); /* packing local weight changes vector to distribute */
pvm_bcast("NN", 1);

}
clear_vector (&accum_weight_r) ; [* clear weights changes vector */
bufid=pvm_nrecv(-1,1); [* if bufid = 0, no message then continue */
if (bufid>0)
{

pvm_setrbuf (bufid);

unpacking_weight(&accum_weight_r); /* unpacking foreign weight changes vector */
}
update weight(&accum_weight_I, &accum_weight_r); /* Definitive weights changes */
/*

Adaptation Phase (back phase)
y

until (current error < max. accept. err.) or (number of iterations (maximum number of iterations)

Next, some comments about process interaction.

When calling PBP (on a single workstation) it will be specified as many <file pattern> (pattern
file names) as processors will be envolved in the training phase.

The parent spawns several BP processes with the corresponding parameters (regarding the
example: BP, with <file pattern>; , BP, with <file pattern>,, etc).

Each BP(child) will runinadifferent processor of the Virtual Machine.

Each child first joins at “NN” group and then individually initializes their arguments. Next,
begin to run the propagation phase of algorithm on its <file_pattern>. When all patterns were
submitted to each child, if epoch interval was reached, it broadcasts the accumulated weight
changes vector and permanently receives remote accumulated weight changes vector. The
reception is not blocking, since if nothing has arrived, the children must to go ahead. Finally,
each BP performs the adaptation phase and completes one epoch.

Each children finish when either the current error of the neural network is less than maximum
accepted error or the number of iterations is greater than the admissible number of iterations.

6. A NEURAL NETWORK DEVICE FOR ALLOCATION OF INCOMING TASKS

As an application of neural networks we used an intelligent facility to automatically allocate, in a
computer network, a user incoming process to the most appropriate node in accordance to its
computing requirements2].
The model assumes that:
» Theredevant performance feature to improve is the response time for user processes.
* Processes coming to be served in this network have different demands on system resources
(CPU, Memory and 1/O devices).
» The network isformed by a set of N nodes, such that each of them can contribute with different
performance to auser process depending on its demands.
 Every user incoming process comes to the network through an entry node, before passing to the
execution node (see Fig. 5). Process behavior and resource requirements can be determined by a
program profilefile or explicitly declared by the incoming process.
e An evaluator module within the Operating System kernel evauates process attributes,
requirements and system state at the process arrival time.
» Using the output of the evaluator, as input, a decisor module decides which node in the
network can accomplish more efficiently the process execution and then process migration

takes place.
Kernel towards
S allocated
incoming
Evaluator Decisor >
process execution
node

Fig. 5 The kernel portion of an entry node
Asasimple example, let us assume the following scenario:

We have a system where N available nodes differ essentially in Current Memory Capacity (CMC)
and MIPS provided. Due to system dynamics they also differ in Current Available Processing
Power (CAPP). User processes are CPU intensive tasks and their main requirements are Memory
Required (MR) and Desired Response Time (DRT).

CMC, CAPP, MR and DRT, are each divided into a number of levels (high, medium and low, or
more levels). Other processes requirements on system resources, such as access to secondary
storage, can be equally satisfied by any of the available nodes and there will not be network
transfers (except for initial process migration, which we assumeis equally costly for every node).

Then the following simple allocation criterion can be applied:

» Having MR best fit satisfied, satisfy DRT by allocating the process to the best fitted node
(the one with minimum CAPP fulfilling process requirement). In case of equa CAPP
va ues for more than one node then node selection is random.

* If the strategy aso considers the situation where idle nodes exists, then; if for two or more
nodes CAPP is equal, and some of these nodes is in idl€® state (ZS) then the process is
allocated to that idle node. This second decision attempts to balance the workload.

For this allocation criterion, with N system nodes, 4+5N binary inputs will suffice to depict
process requirements (4 bits) and system state (5 bits per system node), while the size of total
pattern space is given by:

A nodeis defined as being in an idle state when no user process is running.

T: [32(N+1)2N]_[3N+1(22N+2N)]

Because only legal inputs conform atraining set for the neural net, the second term of 7 excludes
the casesin which MR is greater than CMC available.

7. EXPERIMENTS DESCRIPTION

Experiments covered here refer solely to the variable-epoch training regime; a new variant of
the per-epoch regime. The variable-epoch training regime consists in randomly assigning the
number of epochs (epochs interval) locally performed before any exchange takes place. Higher
speed-up was the motivation of this new approach previously envisioned for a socket-based
interface

The variable number of epochs locally performed before any exchange took place was chosen
as a random number r between 1 and 15. Better results were observed for greater r values, but
reported results corresponds to average val ues.

Let be S thetota pattern space. The processors training sets (zs) were subsets of S.

For sequential training, the training set 7's was built by uniform selection of X% of the pattern
space S.

For parallel training the pattern space was divided into » subsets and each subset was assigned
to one processor (virtual or not) in parallel execution. The training subsets ¢s; were built by
uniform selection of (X/n)% of the pattern space S.

Values for X was chosen as 30 and 60.

In what follows the experiment identifiers indicate:

<Training type>-<size(%) of Training Set>/<number of subsets for parallel execution>

To compare results, the neural net was trained sequentialy (i), in parallel using socket (ii) and
in paralel using PVM (iii):

e (i) Experiments SBP-X/1: SBP-30/1 and SBP-60/1. Size(Ts) = 30% and 60% of S
respectively.

» (ii) Experiments PBP-X/n: PBP-30/3 and PBP-60/3. Three digoint subsets of (X/n)% of S
were selected and each subset was assigned to one processor in different workstations.
Size(ts;) = 10% and 20% of S respectively.

e (iii) Experiments PVM-X/n: PVM-30/3, PVYM-30/6, PVM-60/3 and PVM-60/6. The
software allows any numbers of processors to be created without any relationship to the
number of real processors. In this state three and six disjoint subsets of (X/n)% of S were
selected respectively, and each subset was assigned to one process. The number »n of
parallel processes was set to 3 and 6. Size(ts;) = 10%, 5%, 20% and 10% of S respectively.

T otal Patterns Set
N

— > Ts)

X % of Patterns

BP, BP, BP;

Fig. 6 — The Partitioning Approach

Figure 6 shows an example of parallel partitioning scheme for experiments SBP-X/1, PBP-
X/3and PVYM-X/3.

Aswe were working in two stages (training and testing), the following parameters were used in

each case:

e For Sequential Processing, Ts (the training set of the unique neural network) was used on
the learning stage and Ts and S (the whole sample space) were used in the testing stage (for
Recall and Generalisation respectively).

* For Parallel Processing, on the learning stages, ¢s; was the local training subset submitted to
the BPR, with the accumulated weight changes vectors received from other BP networks
(with training subset ¢s,, j #i). For that reason,

Ts = U tsi
i=1

isthetraining set for al BP, at the learning and testing stages.

During these processes, the following relevant performance variables were examined:

Training process:.

Testing process:

8. RESULTS

Ly: Learning time, is the running time of the learning algorithm.
Niter: Number of iterations needed to reach an acceptable error value while
training.

R =rcg/Size(Ts). Is the recall ability of the neural net. Where rcg is the total
number of patterns recognized when only patterns belonging to the Training
Set (Ts) are presented, after learning, to the network. The objective is to
analyse if each net can assimilate (can acquire) the learning of other networks
that were running in parallel with it.

G = gnl/Size(S). Is the combined recall and generalisation ability. Where
Size(S) isthe size of the Total Pattern Space and gn!/ is the total number of
patterns recognized when all possible patterns are presented, after learning, to
the network.

SP =Lyupproacni / Lapproacn2 1S the ratio between the learning times under different
approaches (sequential or paralél).

Recpc = Sp/(Ryeq - Roar) 1S the benefit-cost ratio for recall. It indicates the benefit
of speeding up the learning process, which is paid by the cost of (possibly)
loosing recall ability.

Geng,c = Sp/(Gy.q - Gpay) 1S the benefit-cost ratio for generalisation. It indicates
the benefit of speeding up the learning process, which is paid by the cost of
(possibly) loosing generalisation ability.

The corresponding mean values of the performance variables are shown in the following figures

and tables.

As we can observe in figure 7 a reduction, greater than one third in the number of iteration
needed to achieve permissible error values, was achieved. Results for the partitioning scheme
of 30% are shown but using either parallel partitioning approach attains similar results.

Leaming Process Trace

100

10\

—¥— SBR30/1

\K*\ —8—FBR303

1\ \ —— P/YM30/3
01

0,01 } + + + + + + |
500 1000 1500 1600 2000 3000 4000 4900 5000
Nurmber of iterations

Error
-

Table 1, isasummary of the experiments performed and their results:

Experiment Learning time Recall Generalisation
(seconds) % %
SBP-30/1 1989 100 98
PBP-30/3 426.91 97.85 96.84
PVM-30/3 123.33 97.84 95.71
PVM-30/6 53.05 92.8 92
SBP-60/1 5996 100 99.5
PBP-60/3 1137.66 99.33 98.83
PVM-60/3 275.66 99.91 99.73
PVM-60/6 87.22 98.97 97.64

Figures 8 and 9 show the associated loss in recal and generdisation of the neural
network for different sizes of the training set.

105 CSBP-301
100 — PBP-30/3
o5 | 0O PVM-30/3
O PVM-30/6
90
85
80 T 1
R G

AR R
R Lo peate s A -

1007 4——_ —~_— [OSBP-60/1
o | DPBP-60/3
0O PVM-60/3
90 - O PVM-60/6
85
80 T 1

R G

:Fg &V gfiessERecal aﬂgﬂGengradusmroi}'fT' E
T il ESEROm eSS A £ AR S

In general, the detriment of recall and generalisation capabilities decreases as the training set
size is incremented. Their values range from 0.09% (PVM-60/3) to 7.2% (PVM-30/6) for
recall. In the case of generalisation the values range from -0.23% (PVM-60/3) to 6% (PVM-
30/6). Opposite to the expected, in this case, an improvement was also detected: PVM-60/3
achieved a generalisation capability better than the sequential BP.

Table 2 indicates the speed-up in learning time attained through parallel processing when
different sizes of the portions of the total pattern space S are selected for training the neural
network. Table 2(a) shows the ratio between the sequential learning and the parallel learning
ti meS(S =LT(S)/ LT(p))

SBP-30/1 SBP-60/1
VS. VS.
PBP-30/3 PVM-30/3 PVM-30/6 PBP-60/3 PVM- 60/3 PVM-60/6
4.65 16.12 37.49 5.27 21.75 68.74

In general, asthe size of Ts increases (from 30% to 60%) then an increment of the speed-up can
be observed under variable-epoch training.

This effect shows a substantial improvement over the per-epoch approach used in earlier
implementations. Moreover, increment of the speed-up can be observed among different
parallel implementations. Table 2(b) shows the ratio between both paralel learning times
(Sevm = Lyesp / Lypvmy).

PBP-30/3 PBP-60/3
VS. VS.
PVM-30/3 PVM-30/6 PVM- 60/3 PVM-60/6

3.46 8.04 4.12 13.04

Both parallels implementations showed comparable capability, but PVM-X achieved a
substantial increment in speed-up with values ranging from 3.46 to 13.04 times faster than
PBP-X.

It is interesting to observe in table 3 the Benefit-Cost Ratio, which gives an indication of a
speed-up Sp obtained at the cost of a detriment in recall or generalisation. Table 3(a) shows for
PVM-X, the benefit-cost ratio for recall ability

RecB/C = SP/ (Rseq - RparPM

and table 3(b) shows the benefit-cost ratio for generalisation ability

GenB/C = Sp/ (Gseq = UparPVM)

SBP-30/1 SBP-30/1 SBP-60/1 SBP-60/1
VS. VS. VS. VS.
PVM- 30/3 PVM-30/6 PVM- 60/3 PVM-60/6
13.96 30.29 21.66 67.71

Table 3(a) - Benefit-Cost Ratio for Recall.

SBP-30/1 SBP-30/1 SBP-60/1 SBP-60/1
VS. VS. VS. VS.
PVM- 30/3 PVM-30/6 PVM- 60/3 PVM-60/6
7.03 6.24 - 37.35

Table 3(b) - Benefit-Cost Ratio for Generalisation.

In al cases, it can observed good ratios between benefit and costs. In the particular case of
PVM-60/3 an increment of speed-up was simultaneously detected with an increment in
generalisation capability, hence the benefit cost ratio is not registered. This performance
variable is of great help to inspect the goodness of a parallel design for training neural nets.

9. CONCLUSIONS

The training time of a neural network has been a main issue of recent research. The length of a
training time depends, essentially, upon the number of iterations required. On its turn, this
number depends upon several interrelated factors. Some of them are: size and topology of the
network, initialization of weights and the amount of training data used.

A means of training acceleration based in the last mentioned factor is a paralel approach
known as pattern partitioning. Using this technique, in this work we presented a feasible
architecture for a system supporting parallel learning of backpropagation neural networks on a
Paralldl Virtual Machine. A preliminary set of experiments in our investigation, revealed that
the beneficial effects of parallel processing can be achieved with minor capability loss.
Furthermore, we need to remark that PVM provided us a unified framework within which our
parallel application was developed in an efficient and clear manner. That resulted in a
straightforward program structure and very simple implementation. PVM transparently
manipulated all message routing, synchronization aspects, data conversion, message packing
and unpacking, process group manipulation and all aspect regarding heterogeneity. All these
factors contributed to reduced development and debugging time. It worth remarking that a
more effective implementation of parallel backpropagation neural network was completed.

Finally, at the light of the effectiveness showed by the distributed approach for the parallel
learning process by means of PVM, at the present time, testing with larger number of
processors and different training set sizes are being performed for different neural networks.

10. ACKNOWLEDGEMENTS

We acknowledge the cooperation of the project group for providing new ideas and constructive
criticisms. Also to the Universidad Naciona de San Luis the CONICET and the ANPCYT from
which we receive continuous support.

11. REFERENCES

[1] Berman F., Snyder L. - On mapping parallel algorithms into parallel architectures-
Parallel and Distributed Computing, pp 439-458, 1987.

[2] CenaM., Crespo M. L., Gallard R. Transparent Remote Execution in LAHNOS by Means of
a Neural Network Device. Operating System Reviews, Val. 29, Nro 1, ACM Press, 1995.

[3] ColourisG., Dollimore J., Kindberg T. -Distributed Systems: Concept and Design - Addison-
Wesley, 1994.

[4] Comer, D. E., Stevens, D. L. - Internetworking with TCP/IP - Vol. | - Prentice Hall.

[5] Crespo M., Piccoli F., Printista M., Gallard R.- A Parallel Approach for Backpropagation
Learning of Neural Networks- Proceedings of 3er Congreso Argentino de Ciencias de la
Computacién, Universidad Nacional de La Plata, Vol. 1., pp 145 — 156,, September 1997.

[6] Crespo M., Piccoli F., Printista M., Gallard R.- Parallel Shaping of Backpropagation Neural
Networks in Workstations-Based Distributed Systems- Proceedings of International ICSC
Syposium on Engineering of Intelligent Systems — EIS’ 98, University of La Laguna, Vol.
2., pp 334 — 340, Tenerife, Spain, February 1998.

[7] Foster, Ian T. : Designing and Building Parallel Programs - Addison Wesley, 1995.

[8] Freeman, J., Skapura, D. Neural Networks. Algorithms, Applications and Programming
Techniques. Addison-Wesley, Reading, MA, 1991.

[9] Girau, B. - Mapping Neural Network Back-Propagation onto Parallel Computers with
Computation/Communication Overlapping. Proceedings of Euro Par’95.

[10] Kumar, V., Shekhar, S., Amin, M.- A Scalable Parallel Formulation of the
Backpropagation Algorithm for Hypercubes and Related Architectures. IEEE transactions
on Parallel and Distributed Systems, Vol. 5. Nro.10, pp 1073 - 1090, October 1994.

[11] McEntire, P. L., O’Reilly, J. G., Larson, R. E. (Editors) : Distributed Computing:
Concepts and Implementations - Addison Wesley, 1984 .

[12] Petrowski, A., Dreyfus, G., Girault, C.- Performance Analysis of a Pipelined
Backpropagation Parallel Algorithm. IEEE. Trasactions Networks, Vol. 4, pp 970 - 981,
November 1993.

[13] Plaut, D., Nowlan, S., Hinton, G. Experiments on Learning by Backpropagation. Tech.
Report, CMU-CS-86-126, Carniege Mellon University, Pittsburg, PA, 1986.

[14] Rumelhart, D., Hinton, G., Willams, R. Learning Internal Representations by Error
Propagation. MIT Press, Cambridge, Massachusetts, 1986.

[15] Rumelhart, D., McClelland, J. Parallel Distributed Processing, vol. 1 y 2. MIT Press,
Cambridge, MA, 1986.

[16] Stevens, R.W.- Advanced Programming in the UNIX Envionment- AdDison-Weslwy
Publishing Company. 1992.

[17] Stevens, R.W.- UNIX Network Programing. Prentice Hall-Englewood Cliff. 1990.

[18]Sunderam, V., Manchek, R., Jiang,, W., Dongara, J., Bengeuelin, A., Geist, A. — PVM3 —
User’s Guide and Reference Manual — Oak Ridge National Laboratory: Tenesse, 1994.

[19]Sunderam, V., Manchek, R., Jiang,, W., Dongara, J., Bengeuelin, A., Geist, A. — PVM:
Parallel Virtual Machine — The MIT Press, Cambridge, Massachusetts, 1994,

[20]Tanembaun, A. — Modern Operating Systems — Prentice Hall, 1992.

