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Chirikov and Nekhoroshev diffusion estimates: bridging the two sides of the river
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We present theoretical and numerical results pointing towards a strong connection between the
estimates for the diffusion rate along simple resonances in multidimensional nonlinear Hamiltonian
systems that can be obtained using the heuristic theory of Chirikov and a more formal one due to
Nekhoroshev. We show that, despite a wide-spread impression, the two theories are complementary
rather than antagonist. Indeed, although Chirikov’s 1979 review has thousands of citations, almost
all of them refer to topics such as the resonance overlap criterion, fast diffusion, the Standard or
Whisker Map, and not to the constructive theory providing a formula to measure diffusion along
a single resonance. However, as will be demonstrated explicitly below, Chirikov’s formula provides
values of the diffusion coefficient which are quite well comparable to the numerically computed ones,
provided that it is implemented on the so-called optimal normal form derived as in the analytic part
of Nekhoroshev’s theorem. On the other hand, Chirikov’s formula yields unrealistic values of the
diffusion coefficient, in particular for very small values of the perturbation, when used in the original
Hamiltonian instead of the optimal normal form. In the present paper, we take advantage of this
complementarity in order to obtain accurate theoretical predictions for the local value of the diffusion
coefficient along a resonance in a specific 3DoF nearly integrable Hamiltonian system. Besides, we
compute numerically the diffusion coefficient and a full comparison of all estimates is made for ten
values of the perturbation parameter, showing a very satisfactory agreement.
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I. INTRODUCTION

In the present paper we analyze theoretically, and study by a concrete numerical example, the connection between
two different types of estimates regarding the speed of local diffusion along a resonance of a nearly-integrable multi-
dimensional nonlinear Hamiltonian system. These are i) estimates based on the theory of diffusion developed by B.
Chirikov [8], and ii) estimates based on normal forms and the construction of the Nekhoroshev theorem ( [43], [2],
[35], [44]).

The theory of Chirikov [8] relates the value of the diffusion coefficient D along a resonance, in a local domain of
size ǫ1/2 around a simply resonant point Ir of the action space, with the magnitude, wavevector, and frequencies of
the so-called driving harmonic terms in systems of the form

H(I,θ) = H0(I) + ǫV (I,θ), I ∈ G ⊂ R
N , θ ∈ T

N , ǫ ≪ 1, (1)

where (I,θ) are N–dimensional action–angle variables, H0 is the integrable Hamiltonian and the perturbation has the
form

ǫV (I,θ) = ǫ
∑

m

Vm(I) cos(m · θ), Vm : G → R, m ∈ Z
N/{0} . (2)

The theory of Chirikov has been reviewed in the framework of applications to dynamical astronomy in [4]. Using
notations and terminology relevant to the present paper, we may summarize its main points as follows:

1) We decompose the Hamiltonian (1) as

H(I,θ) = Z(I,θ) +R(I,θ) (3)

where:
i) The function Z(I,θ) contains only resonant terms associated with the particular resonance of interest (called by

Chirikov the ‘guiding resonance’), and can be written as:

Z(I,θ) = Z0(I) + ǫVG cos(mG · θ) + . . . (4)
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where VG and mG are the amplitude and harmonic vector of the main resonant term. After a change of basis, one
requires furthermore that the function Z0(I) be at least quadratic in a so-called resonant action variable p1, conjugate
to a resonant angle ψ1 = mG · θ. Then, the dynamics in the variables (p1, ψ1) is given essentially by the pendulum
dynamics (see section IV).

ii) The term R(I,θ) contains harmonics of non-zero wavevectors m not parallel to mG. Denoting by V the set of
all such vectors, one has

R(I,θ) =
∑

m∈V
Vm(I) cos(m · θ) . (5)

2) Estimates on the diffusion coefficient stem from examining how the various terms in (5) affect the time evolution
of certain quantities, which represent exact integrals of motion of the Hamiltonian flow under the term Z(I,θ), and
approximate integrals of the full Hamiltonian flow. The most important quantities of the theory are: i) the energy of
the pendulum part, and ii) the remaining action variables.

In a first approximation, one computes the per-period (of the pendulum) change of the values of the approximate
integrals due to the various terms in R(I,θ). In this evaluation, one approximates the time evolution of all angles in
R(I,θ) by the ones corresponding to the evolution under the unperturbed separatrix solution of the pendulum. One
should consider phase correlations between the various angles due to stickiness phenomena in the outer parts of the
separatrix-like chaotic layer. Integrating over the unperturbed separatrix solution for ψ1 implies the use of Melnikov’s
integrals (see Appendix A).

3) Making the crucial assumption that the diffusion within the weakly chaotic layers in the resonance web has a
normal character, the long-term variation of the approximate integrals can now be determined in terms of the per-step
variation of the same quantities. The final outcome is a formula for the local value of the diffusion coefficient along
the resonance mG in the vicinity of the point Ir. After some simplification, this formula reads

D .
1

ΩG

∑

m

ǫ2|ωm| |Vm(Ir)|2e
−π|ωm|

ΩG , (6)

where ωm ≡ m · ω(Ir) and ΩG = (ǫVG/|MG|)1/2, with MG the nonlinear pendulum mass, defined in section IV. The
inequality in (6) accounts for the fact that the amplitudes |Vm| are not in the optimal form, as will be discussed in
detail along this paper. A variant of Chirikov’s theory called the ‘stochastic pump’ model was developed in [50] and
[34].

Regarding numerical implementations, in [48] the authors computed the diffusion coefficient in a particular 2.5DoF
nearly–integrable Hamiltonian system, whose unperturbed part is a bidimensional quartic oscillator. They obtained
a good agreement between theory and experiment as long as the perturbation parameter was larger than a certain
bound. However, the system considered depends on two coupling parameters. A further example in the case of the
so-called three body resonances in Solar System dynamics was provided in [3]. Agreement is again found beyond a
certain bound in the perturbation.

Despite the large number of citations to Chirikov’s report [8], by a systematic search we have been unable to identify
other concrete quantitative applications of the same theory in the literature. In fact, most citations refer to the chaotic
diffusion in the so-called resonance overlap regime, which occurs for sufficiently high values of ǫ.

Nevertheless, the main goal of Chirikov’s theory is to characterize the diffusion in the resonance web of multidi-
mensional systems in the weakly chaotic limit, where there is no substantial resonance overlap. In this limit, the
diffusion is conjectured to share features encountered in the mechanism of Arnold diffusion, proposed by Arnold [1].
However, Arnold’s model is also a specific case with two parameters that can be varied independently one from the
other. In contrast, in generic Hamiltonian systems the normal form theory introduces a dependence of all parameters
that renders hardly tractable to generalize the proof of the existence of Arnold’s mechanism [36]. In fact, although
the diffusion in the web of resonances in the weakly chaotic regime has been observed in many numerical experiments,
for instance [15], [16], [17], [20], [49], [25], [51], [26], [27], [47], [11], [29], [21], [18], [23], [24], [30], [31],
[32], [5], [40], [38], [13], not all these examples can be characterized as ‘Arnold diffusion’. In the sequel we consider
systems satisfying the definition given in [23], i.e. i) satisfying simultaneously the necessary conditions of the KAM
and the Nekhoroshev theorems, and ii) being in the so-called ‘Nekhoroshev regime’. The first unambiguous numerical
detection of local and global Arnold diffusion for such systems was made in [29] and [23], respectively.

Our own main result presented below is the following: we will argue that, regarding the quantification of Arnold
diffusion in such systems, Chirikov’s and Nekhoroshev’s theories meet and complement each other in an essential way,
so that a proper implementation of Chirikov’s theory requires computing first a so-called simply-resonant normalized

Hamiltonian function which should be optimal in the Nekhoroshev sense. According to the Nekhoroshev theorem,
the optimal normalized Hamiltonian function is computed via a recursive algorithm of canonical transformations,
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starting from the Hamiltonian (1). Furthermore, this function has also the generic form of Eq.(3). However, the
difference between the original and the optimal normalized Hamiltonian is that, in the latter case, all coefficients in
the term R(I,θ) are bounded by a size exponentially small in an inverse power of ǫ. Clearly, this affects also all the
coefficients Vm(I) of the ‘driving’ resonances, whose values appear in Chirikov’s Eq.(6). Working with a concrete
numerical example, we then show that by using the optimal normalized Hamiltonian instead of the original one in
Chirikov’s formula, we can obtain precise estimates of the diffusion coefficient in the weakly chaotic limit. In fact,
we compute such estimates and show their very satisfactory agreement with the values of the diffusion coefficient (for
several values of ǫ) found by a purely numerical integration of ensembles of orbits.

We note in this context that the connection between the Chirikov and Nekhoroshev theories is addressed by Chirikov
himself in subsection 7.4 of [8]. In this review, Chirikov makes a qualitative discussion of how the optimal exponents
appearing in the exponential estimates of Nekhoroshev theory affect the estimates of the speed of diffusion found in
his own theory. This is further substantiated in subsection 7.6 of [8], by an analysis of the effects of higher order
resonant terms on the diffusion rate in the weak perturbation limit. Here, instead, we provide direct evidence, that
our normal form computation has reached an optimal order, and we also determine directly the effects of every driving
resonance in the optimal Hamiltonian function using the exact version of Eq.(6).

The main steps of our study are as follows: we first perform an optimal simply-resonant normal form computation
using a computer algebraic program, in order to study the diffusion in the thin chaotic layer in a domain of size ǫ1/2

along a particular simple resonance chosen by fixing the values of the action variables Ir ≡ (Ir
1 , I

r
2 , I

r
3 ) in the so-called

‘perturbed 3DoF quartic oscillator model’:

H̃(y,x) = H̃0(y,x) + ǫṼ (x), (7)

with

H̃0(y,x) =
1

2
(y2

1 + y2
2 + y2

3) +
1

4
(x4

1 + x4
2 + x4

3), Ṽ (x) = x2
1(x2 + x3) .

We express (7) in action angle variables (I,θ) via a transformation (y,x) → (I,θ) described in section II. Besides our
acquaintance with its properties, (see [38] and [40]), our choice of model is motivated by our aim to compare results
found here with those found in [9], in which a different model was used [18]. Since extended studies of the diffusion
in the weakly chaotic limit are available in this latter model as well (e.g. [23] and [29]), we obtain in this way some
indications regarding how general our results are.

As explained above, the ‘bridge’ between normal forms and the Chirikov approach is established after computing
a simply resonant optimal normalized Hamiltonian valid in a neighborhood of a simply-resonant point Ir in the
action space of the model (7). We then compute numerically the contributions of all the Melnikov integrals of the
driving resonant terms, which we identify as the terms (except for one, see section III) appearing in the the so-called
remainder function of the optimal normalized Hamiltonian. In other words, we identify the function R(I,θ) in Eq.(3)
with the remainder function. Summing the values of the associated Melnikov integrals over all driving resonances we
then arrive at a theoretical prediction for the value of the diffusion coefficient along the guiding resonance. We denote
this value by DC (C stands for ‘Chirikov’), and we compute DC as a function of ǫ for ten values of ǫ.

After computing DC(ǫ) in the above way, we perform the following comparisons:
i) We compare DC(ǫ) with the value of the diffusion coefficient D(ǫ) computed by numerical experiments, i.e.

by integrating ensembles of orbits with initial conditions in the thin chaotic layer surrounding the resonance in
the neighborhood of Ir . This particular calculation reveals one more salient feature of the normal form method:
by transforming our orbital data into ‘good’ action variables, obtained via a near-identity normalizing canonical
transformation, we eliminate from the data all noisy behavior due to the so-called deformation effects (see e.g. [22],
p. 63). This removal proves to be a crucial step allowing to measure the diffusion due only to the drift, i.e. the
slow motion along the resonance, after an integration time of the order of t ≤ 107. Had we relied, instead, for this
computation on the original action variables, whose time evolution reflects a combination of both the deformation and
the drift effects, we would require much longer integration times (between 109 and 1011 for the smaller values of ǫ;
see also [28]). In addition, transforming the numerical data to good variables allows to reveal short-term features in
the obtained diffusion curves which indicate up to what extent the diffusion can be considered as normal. In general,
we find that the diffusion is indeed normal to a first approximation, but with secondary features representing possible
deviations from the normal character. These, we aim to study in a future work.

ii) As in [9] and [13], we check whether our data indicate a power-law relation between the diffusion coefficient
and the normal form remainder R. In the present study we compare the size of the remainder ||R|| with both D and
DC . In both cases, we find a power-law of the form D ∼ ||R||b, or DC ∼ ||R||b, with b ≈ 2.5. This is somewhat
smaller to the value b ≃ 3 found in [9] and in agreement with the results of [31]. Regarding this latter point, we note
that considering Chirikov’s approach in combination with an optimal normal form construction instead of the original
Hamiltonian (1) leads to a simple argument of why the diffusion coefficient and the size of the remainder should be
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related by a power-law of the above form. If in Eq.(6) we substitute the coefficients Vm of the original Hamiltonian
by the coefficients fm of the driving harmonics in the remainder of the optimal normalized Hamiltonian function, we
arrive at the estimate

DC ∼
∑

m

ǫ2 |ωm|
ΩG

f2
m
e

−π|ωm|
ΩG . (8)

Here the sum is over wavevectors m labelling the driving resonances in the remainder function, while the relations
ωm ≡ m · ω(Ir) and ΩG = (ǫVG/|MG|)1/2 still hold to the degree that the lowest order resonant term in the normal
form and in the original Hamiltonian are practically the same. Now, from Nekhoroshev theory, for the largest fm
we have the estimate fm ∼ exp[−(1/ǫ1/2)

1
1+τ ], where τ is a positive constant (see [10] for a heuristic derivation of

such estimates). The value of τ is determined by Diophantine bounds holding for the divisors m · ω(Ir) appearing
in all terms of the remainder. These bounds are of the form |m ·ω(Ir)| > γ(Ir)/|m|τ , where γ is a positive constant
and |m| is the L1 modulus of m. However, at the optimal normalization we also have an estimate for the minimum
possible size of the wavevectors (the so-called ‘Fourier cut-off’) of those terms in the remainder function containing

the worst possible accumulation of divisors. This latter estimate reads |m| ≈
(

ǫ1/2
)−1/(τ+1)

. Combining these two

estimates, along with the O(ǫ1/2) scaling of ΩG, and that ||R|| ∼ fm we get:

DC ∼ ǫαf2
m
e−(C2/ǫ1/2)

1
1+τ ∼ ǫα||R||2+p , (9)

with α an exponent that depends on τ and p on the value of the constant C2. Since C2 ≈ 1, we also have p ≈ 1 (see also
[13]). In [9], the power-law relation between D and ||R|| was measured without any reference to Chirikov’s theory.
Thus, Chirikov’s theory seems to provide a suitable framework for their interpretation. Further results regarding the
connection between normal forms and estimates based on the Melnikov method (as are so the Chirikov estimates)
can be found in [42], [41] and [33].

The structure of the paper is as follows: in section II we briefly summarize the basic Hamiltonian model and choice
of resonance in our study. In section III we discuss the normal form calculation. In section IV we present the estimates
on DC obtained via Chirikov’s method. In section V we compare these results with numerical experiments, in which
we show both the form of the diffusion curves found after transforming the numerical data to good normal form
variables, as well as the main scalings, i.e. DC versus D, and DC versus R. Section VI is a summary of our main
conclusions.

II. HAMILTONIAN MODEL AND CHOICE OF RESONANCE

A. Hamiltonian Model

Our model consists of the Hamiltonian function (7) expressed in action–angle variables. To find the latter, we
consider first the one-dimensional quartic oscillator

H̃(y, x) =
y2

2
+
x4

4
. (10)

Let h be the total energy and a the associated oscillation amplitude, i.e. h = a4/4. The solution x(t) can be expressed
in terms of the Jacobi elliptic cosine (cn) of modulus k = 1/

√
2. Using the Fourier series development of the Jacobi

elliptic cosine, we have [8]:

x(t) = a

√
2π

K0

∞
∑

n=1

1

cosh
(

(n− 1/2)π
) cos

(

(2n− 1)
πat

2K0

)

,

where K0 ≡ K(1/
√

2) denotes the complete elliptic integral of the first kind. Introducing the following constants:

β ≡ π

2K0
≈ 0.847213084793979, αn ≡ 1

cosh
(

(n− 1/2)π
) and ω ≡ βa, (11)

we have

x(t) = 23/2ω

∞
∑

n=1

αn cos
(

(2n− 1)ωt
)

.
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The quantity ω is the fundamental frequency of the motion. The coefficients αn satisfy:

αn+1

αn
≈ 1

23
for n ≥ 1 and α1 ≈ 0.4. (12)

The relation between ω and h is:

ω =
√

2βh1/4. (13)

Since, in action–angle variables (I,θ) we have ω(I) = ∂H(I)
∂I , by means of Eq. (13) we find

h = AI4/3, or equivalently I =

(

h

A

)3/4

,

where A ≡ (3β/2
√

2)4/3 ≈ 0.867145326484821. The dependence of the frequency on the action is given by:

ω(I) =
4

3
AI1/3 . (14)

The cartesian coordinates can be finally expressed in terms of action–angle variables via the equations:

x(I,θ) = (3βI)1/3cn
(

θ
β ,

1√
2

)

y(I, θ) = ̺
√

2
(

AI4/3 − 1
4 [x(I, θ)]4

)

, (15)

where ̺ stands for the sign of y and its dependence on the angle is given by:

̺ ≡
{

1 if 0 ≤ θ < π,

−1 if π ≤ θ < 2π.
(16)

In the numerical computations, we also use the inverse transformation that allows to express the action–angle variables
in terms of the cartesian variables [40]:

I(y, x) =

[

1

A

(

1

2
y2 +

1

4
x4

)]3/4

, (17)

θ(y, x) =







β cn−1
(

x
[3β I(y,x)]1/3 ,

1√
2

)

if y ≥ 0,

2π − β cn−1
(

x
[3β I(y,x)]1/3 ,

1√
2

)

if y < 0.
(18)

Passing now to the 3DoF Hamiltonian (7), by means of Eq. (15), we obtain a similar equation for xj(Ij , θj), j = 1, 2, 3
as the first in (15). In a similar fashion Eq. (14) can be easily extended to obtain the frequency vector in terms of the
actions.

In action–angle variables the Hamiltonian is expressed as:

H(I,θ) = H0(I) + ǫV (I,θ), (19)

where

H0(I) = A(I1
4/3 + I

4/3
2 + I

4/3
3 ), (20)

V (I,θ) = 3βI
2/3
1 cn2

(

θ1

β
,

1√
2

)[

I
1/3
2 cn

(

θ2

β
,

1√
2

)

+ I
1/3
3 cn

(

θ3

β
,

1√
2

)]

.

This Hamiltonian system has been previously studied in [6], [21] and [39]. In the sequel we adopt a fixed value of
the total energy:

h ≡ 0.485 ≈ 1/4β4, (21)
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which corresponds to a characteristic period (of the x2, x3 stable axial periodic orbits) very close to 2π.
The perturbing potential can be developed in a Fourier series as:

V (I,θ) =V̂12(I)

∞
∑

n,m,k=1

αnmk

{

cos
(

2(n+m− 1)θ1 ± (2k − 1)θ2

)

+ cos
(

2(n−m)θ1 ± (2k − 1)θ2

)}

+

+ V̂13(I)

∞
∑

n,m,k=1

αnmk

{

cos
(

2(n+m− 1)θ1 ± (2k − 1)θ3

)

+ cos
(

2(n−m)θ1 ± (2k − 1)θ3

)}

,

(22)

with αnmk ≡ αnαmαk ≈ α3
1/23n+m+k−3 and V̂1j(I) ≡ 25/23β4I

2/3
1 I

1/3
j , and where the ± sign means that both terms

are included in the series.
In [39] it is shown how to group all the coefficients αnmk associated to the same trigonometric function into a

single coefficient αm that satisfies O(α3
1/232) ≤ O(αm) ≤ O(α3

1), in such a way that Eq. (22) can be rewritten as:

V (I,θ) = V̂12(I)
∑

m∈Y
αm cos(m · θ) + V̂13(I)

∑

m∈Z
αm cos(m · θ) + O(α3

1/233), (23)

where Y and Z denote the subsets of wavevectors whose third and second components, respectively, are zero.

B. Choice of resonance

On applying the resonance condition, m · ω(I) = 0, with m ∈ Z
3/{0}, to the unperturbed Hamiltonian, we get

m1I
1/3
1 +m2I

1/3
2 +m3I

1/3
3 = 0 . (24)

Thus, no resonant vector m can have all three components of the same sign. Besides the resonant vectors with
two components equal to zero correspond to harmonics with null amplitude in the perturbation term of the original
Hamiltonian.

A point Ir in the action space is called a resonant point with respect to the resonance wavevector m if the
three components (Ir

1 , I
r
2 , I

r
3 ) satisfy Eq. (24). By construction, every resonance wavevector is tangent, at Ir, to the

unperturbed energy surface, denoted as I0.
There are 12 resonant vectors of O(ǫ) whose Fourier coefficient αm, is at most of O(α3

1/232) and they are grouped
in the following set:

Vr(ǫ, 1/232) =
{

(2,−1, 0), (2,−3, 0), (2,−5, 0), (4,−1, 0), (4,−3, 0), (6,−1, 0), (2, 0,−1), (2, 0,−3), (2, 0,−5),

(4, 0,−1), (4, 0,−3), (6, 0,−1)
}

The main resonances at order O(ǫ2, 1/232) were obtained in [39]. Figure 1 shows a part of the resonant structure
as projected in the action plane (I1, I2), for the given energy h, and ǫ = 0.012. The plot is obtained by computing
the time evolution of 1000 × 1000 orbits with initial conditions θ1 = θ2 = θ3 = π/2, and I1, I2 chosen in the domain
(I1, I2) ∈ [0.2, 0.4] × [0, 0.2]. The value of I3 is obtained by solving the constant energy condition. In fact, after
transforming to cartesian variables, we perform all numerical calculations in these variables, and back-transform,
when needed, to action-angle variables. Along with the original equations, the variational equations of motion are
integrated up to a time t = 104. We compute then, for each orbit, the value of the so-called Smaller Alignment Index
(SALI, [46]), which is an indicator yielding the degree of regular or chaotic character of the associated orbit. That
is, the evolution in time of two different initial deviation vectors computing the norms of the difference d- (parallel
alignment index) and the sum d+ (antiparallel alignment index) of the two vectors is followed, the time evolution
of the smaller alignment index reflecting the chaotic or ordered nature of the orbit. The use of chaotic indicators
is known to yield an efficient method of depicting the resonant structure in the action space of multidimensional
Hamiltonian systems (see [19] for the use of the FLI indicator, [7] for the use of the MEGNO indicator, and [37] for
the use of the APLE indicator in this framework). In the present case, using a color map of the values of the SALI
indicator obtained for the various orbits in our grid, we obtain a clear representation of the web of resonances as well
as the various chaotic layers appearing around each resonance.

In our study of diffusion, we focus on initial conditions (ICs) in the thin chaotic layer around the (guiding) resonance
given by the wavevector:

mG ≡ (2,−3, 0) . (25)
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FIG. 1: SALI map in action space, for ǫ = 0.012. The color palette is such that the more chaotic orbits appear in black while
the regular ones in yellow. The green arrow starts at the point I

r and it is parallel to the vector (2, −3, 0).

This resonance is projected close to the center of the plane (I1, I2) of Fig.1. Two more conspicuous and wide resonances
cross transversally our resonance of interest. These are the resonances (2,−1,−1), crossing mG in the left part of the
plot, and (2, 0,−2), crossing mG in the right part of the plot. Many more resonances of smaller width, transverse to
mG, are visible in the same plot. We have drawn the center of the (unperturbed) high order resonances (6,−7,−1) in
cyan, (6,−4,−3) in yellow and (8, 0,−7) in red. These resonances will play a significant role in Chirikov’s formulation
of the diffusion along the guiding resonance.

In order to avoid as much as possible using initial conditions overlapping with the domains of important resonance
crossings, we chose to study the diffusion in the weakly chaotic layer surrounding the exactly resonant point

Ir = (0.29, 0.08592592592592592, 0.434838361446344)

of the action space. The associated resonant frequencies are

ωr ≡ ω(Ir) = (0.7652969051118440, 0.5101979367412294, 0.8759377456886241).

We consider the following set of values for the perturbation parameter:

ǫ ∈ E = {0.003, 0.005, 0.007, 0.008, 0.010, 0.012, 0.013, 0.015, 0.018, 0.020}.
In section IV we present the results on estimates of the diffusion coefficient after an implementation of Chirikov’s

formula (8) on the data obtained by a local simply-resonant normal form construction valid in a domain that contains
the region covered by our numerical orbits, around the above value of Ir . Then, in section V, we compare these
estimates with the results found by numerical integration of ensembles of orbits in the domain of interest.

III. NORMAL FORM CONSTRUCTION

In computing a resonant normal form for the dynamics in our domain of interest, we used the same method as in
[9]. The main steps of the method are the following:
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i) Expansion around the center: considering a union of polydisks |I ′
i| < ρ, where ρ is a positive constant, and setting

I ′
i ≡ Ii − Ir

i , where Ir is the central resonant value in consideration, we perform an expansion of H0 as a Taylor series

H0 = Hr
0 + ωr · I′ +

3
∑

i=1

3
∑

j=1

1

2
M r

ijI
′
iI

′
j + . . . (26)

where ωr = ∇IH0(Ir), while M r
ij are the entries of the Hessian matrix of H0 at Ir, denoted by M r. Also, writing

the perturbation as

V (I,θ) =
∑

m

hm(I) exp(im · θ) (27)

in a domain where all three angles satisfy 0 ≤ Re(θi) < 2π, |Im(θi)| < σ for some positive constant σ, we expand all
the coefficients hm around Ir, namely

hm = hr
m

+ ∇Ih
r
m

· I′ +
1

2

3
∑

i=1

3
∑

j=1

hr
m,ijI

′
iI

′
j + . . . (28)

Both series (28) and (26) have a common domain of convergence around Ir.
ii) Action rescaling and book-keeping: We re-scale all action variables according to

Ji = ǫ−1/2(Ii − Ir
i ) = ǫ−1/2I ′

i, i = 1, 2, 3 (29)

so that all actions Ji are O(1) quantities in the domain of interest. Since the transformation (29) is not canonical,
we multiply the Hamiltonian function by ǫ−1/2 to restore correctness of the Hamiltonian dynamics in the re-scaled
action variables. Thus, the new Hamiltonian reads: H(J ,θ) = ǫ−1/2H(Ir + ǫ1/2J ,θ).

We then split the Hamiltonian H(J ,θ) in terms of a similar order of smallness. In order to do so, we take into
account the fact that the Fourier harmonics cos(m · θ) in the Hamiltonian (19) have amplitudes whose scaling is
given essentially by Eq.(12). This implies an exponential decay factor ∼ e−σ|m| for a harmonic of order |m|, where
σ = 0.5 ln(23). Taking this fact into account we divide all harmonics in groups of a similar order of smallness, by
introducing an integer constant

K ′ =

[

− 1

2σ
< ln(ǫ) >

]

(30)

where < ln(ǫ) > denotes the average value of ln(ǫ) in the domain of values of ǫ considered in the present study,
namely from ǫ = 0.003 to ǫ = 0.02. In practice, we take K ′ = 2. Then, we re-write the Hamiltonian using a so-called
book-keeping factor λ, whose numerical value is λ = 1, as

H(J ,θ) = ωr · J + λǫ1/2
3
∑

i=1

3
∑

j=1

1

2
M r

ijJiJj + . . .+
∑

m

(

λ1+[|m|/K′]ǫ1/2hr
m (31)

+ λ2+[|m|/K′]ǫ∇Ih
r
m

· J + λ3+[|m|/K′] ǫ
3/2

2

3
∑

i=1

3
∑

j=1

hr
m,ijJiJj + . . .

)

exp(im · θ) .

Setting Z0 = ωr · J , the Hamiltonian (31) takes the form

H(J ,θ) ≡ H(0)(J ,θ) = Z0 +

∞
∑

s=1

λsH(0)
s (J ,θ; ǫ1/2) (32)

where the superscript (0) denotes, as usually, the original Hamiltonian, and the functions H
(0)
s are given by

H(0)
s =

s
∑

µ=1

ǫµ/2

K′(s−µ+1)−1
∑

|m|=K′(s−µ)

H(0)
µ,m(J) exp(im · θ) (33)
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where H
(0)
µ,m(J) are polynomials containing terms of degree µ− 1 or µ in the action variables J . Precisely, we have:

H(0)
µ,m(J) =

µ−1
∑

µ1=0

µ−1−µ1
∑

µ2=0

µ−1−µ1−µ2
∑

µ3=0

1

µ1!µ2!µ3!

∂µ−1hm(Ir)

∂µ1I1∂µ2I2∂µ3I3
Jµ1

1 Jµ2

2 Jµ3

3

if |m| > 0, or

H(0)
µ,m(J) =

µ
∑

µ1=0

µ−µ1
∑

µ2=0

µ−µ1−µ2
∑

µ3=0

1

µ1!µ2!µ3!

∂µH0(Ir)

∂µ1I1∂µ2I2∂µ3I3
Jµ1

1 Jµ2

2 Jµ3

3

+

µ−1
∑

µ1=0

µ−1−µ1
∑

µ2=0

µ−1−µ1−µ2
∑

µ3=0

1

µ1!µ2!µ3!

∂µ−1h0(Ir)

∂µ1I1∂µ2I2∂µ3I3
Jµ1

1 Jµ2

2 Jµ3

3

if m = 0.

iii) Resonant module: After choosing the vector of the guiding resonance according to Eq. (25), we define the
resonant module as the set of all harmonics satisfying

M ≡ {m = 0 or m//mG} . (34)

The set M includes the wavevectors of all possible terms appearing in the normal form.
Hamiltonian normalization: we perform Hamiltonian normalization using a computer-algebraic program written

by one of us (C.E.) in Fortran. In this, we generate canonical transformations using the method of Lie generating
functions. For a review of the advantages of this method from a computational point of view, see [10].

The normalization is performed in steps r = 1, 2, ..., according to the recursive formula

H(r) = exp(Lχr )H(r−1) (35)

where χr is the r-th step generating function defined by the homological equation

{ωr · J(r), χr} + λrH̃(r−1)
r (J(r),θ(r)) = 0 (36)

and H̃
(r−1)
r (J(r),θ(r)) denotes all terms of H(r−1) which do not belong to the resonant module M. The operator Lχ

is the Poisson bracket Lχ ≡ {·, χ}.

Remainder and optimal normalization order: After r normalization steps, the transformed Hamiltonian H(r)

has the form

H(r)(θ,J) = Z(r)(θ,J ;λ, ǫ) +R(r)(θ,J ;λ, ǫ) (37)

where Z(r)(J(r),θ(r);λ, ǫ) and R(r)(J(r),θ(r);λ, ǫ) are the normal form and the remainder respectively. The normal
form is a finite expression which contains terms up to order r in the book-keeping parameter λ, while the remainder
is a convergent series containing terms of order λr+1 and beyond. Since in the computer we can only store a finite
number of remainder terms, we probe numerically the convergence of the remainder function in the domain of interest
in the following way: writing the remainder in the form

R(r)(J(r),θ(r)) =

∞
∑

s=r+1

λs
∑

|m|
R(r)

m,s(J(r)) exp(im · θ(r)) (38)

we define the truncated norms

||R(r)(ξ)||≤p =

p
∑

s=r+1

∑

|m|
|R(r)

m,s(ξ)| (39)

where R(r)
m,s(ξ) = R

(r)
m,s(J1 = J2 = J3 = ξ), and ξ denotes a distance from the central point Ir in the action space,

in re-scaled units, at which the diffusion is measured. By plotting the values of ||R(r)(ξ)||≤p versus p we can have a
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numerical indication of whether the remainder function converges at ξ after a certain value of p. Since the distance
from the center to the chaotic layer is constant in the re-scaled action variables, by plots like in Fig. 1 we have
estimated the value of ξ = 0.07.

Figure 2 (a) shows a calculation of this type for ǫ = 0.01. The middle curve, which corresponds to the normalization
order r = 6, shows the value of ||R(r)(ξ)||≤p as a function of p for p = 7, . . . , 22. Clearly, after p = 9 the cumulative
sum (39) shows no further substantial variation, which indicates that the remainder series converges after just three
consecutive terms p = 7, 8 and 9. The lower and upper curves show now the same effect for the normalization orders
r = 11 and r = 14, respectively. The main effect to note is that the estimated remainder value ||R(r)(ξ)||≤22 found for
r = 14 is larger than the one for r = 11, implying that the optimal normalization order ropt is below r = 14. Fig.2 (b)

shows, precisely, the asymptotic character of the above normalization, showing ||R(r)(ξ)||≤22 against the normalization
order r for various values of ǫ as indicated in the figure. We observe that in the considered range of values of ǫ the
optimal normalization order turns to be always 10 or 11. In fact, it is known from basic theory that the optimal order
of normalization is in general an increasing function of 1/ǫ. However, depending on the number–theoretical properties
of the frequencies ωr, the increase may occur by abrupt steps (see e.g. [12]). These steps are due to the fact that the
smallest possible divisor |m ·ωr| may remain invariant for long transient intervals of values of |m|, before eventually
being forced to follow the ‘envelope’ provided by the Diophantine inequality |m · ωr| > γ/|m|τ . This phenomenon
appears, precisely, for our present choice of resonant frequencies.

8 10 12 14 16 18 20
p

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2
HaL

r=6

r=11

r=14

2.5 5 7.5 10 12.5 15 17.5 20
r

-6

-5

-4

-3

-2

-1

0
HbL

¶=0.005

¶=0.01

¶=0.02

FIG. 2: (a) Values of ||R(r)(ξ)||≤p as a function of p for three normalization orders, r = 6, 11, 14. (b) Values of the remainder
as a function of the normalization order r for three values of ǫ (right panel).

From the normal form calculation we retain three sets of data used in subsequent calculations:
1) The value of the optimal remainder ||R(ropt)|| as a function of ǫ (found from the minima of all curves as in

Fig.2 (b)). This is given in the Table I.

ǫ ||R(ropt)||

0.020 2.4 × 10−4

0.018 1.6 × 10−4

0.015 7.7 × 10−5

0.013 4.4 × 10−5

0.012 3.3 × 10−5

0.010 1.6 × 10−5

0.008 7.1 × 10−6

0.007 4.4 × 10−6

0.005 1.3 × 10−6

0.003 2.4 × 10−7

TABLE I: The value of the optimal remainder ||R(ropt)||≤22 as a function of ǫ for all values ǫ ∈ E according to the simply
resonant normal form calculation performed as exposed above.

2) The form of the normalized Hamiltonian at the optimal normalization order ropt = 10, including the remainder
terms up to the order 22. This is transformed below in the basis used in Chirikov’s theory in order to compute the
amplitudes and wavevectors of the guiding resonances.
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3) The normalizing canonical transformation yielding the old canonical variables as functions of the new canonical
variables. This transformation is provided directly by the composition of the computed Lie generating functions via
the equations:

qnew = exp(−Lχ1
) exp(−Lχ2

)... exp(−Lχr )qold

(40)

where qold and qnew refer to anyone of the three action or angle variables before and after implementing the canonical
transformations. In the case of the old action variables, we first compute the values of the re-scaled actions J =
ǫ−1/2(I − Ir) from the values of the original actions I which are available by our numerical data. Then, we ‘pass’ the
values of the actions J to the transformation (40).

IV. DIFFUSION ESTIMATES USING CHIRIKOV’S THEORY

We will now use the data of the normal form computation exposed in the previous section, in order to obtain
estimates of the diffusion coefficient using the theory of Chirikov. The reader is deferred to [8] and [4] for a detailed
presentation of this theory.

As a preliminary step, we re-express the optimal normalized Hamiltonian functions found in the above section, for
each value of ǫ in the considered set E , into a function expressed in non-scaled action variables (Ij − Ir

j ) = ǫ1/2Jj ,
j = 1, 2, 3. This is done by the back transform

H(ropt)(θ, I − Ir) = ǫ1/2

[

Z(ropt)(θ, ǫ−1/2(I − Ir);λ, ǫ) +R(ropt)(θ, ǫ−1/2(I − Ir);λ, ǫ)

]

. (41)

The lowest order terms in the above expression are of the form

H(ropt) = ωG · (I − Ir) +O
(

(I − Ir)2
)

+ ...+ ǫ[VG +O ((I − Ir)) + ...](cos(mG · θ) + ... (42)

The guiding resonance is the one given by mG = (2,−3, 0). For the constant VG we find the numerical value
VG ≃ 0.005259.

Following Chirikov’s formulation, we perform a ‘change of basis’, i.e. define three new fundamental directions in
the action space and re-write the action variables in terms of components in these new directions. This will be done
through a canonical transformation and, to this end, we define the vectors

µ1 = mG, µ2 = ωr/|ωr|

µ3 = (nr ∧ ωr)/|nr ∧ ωr| = (0.6769019893644146, 0.2005635524042710,−0.7082216872148703),

where

nr = (∂[mG · ω(I)]/∂I)Ir = (1.759303230142170,−5.937648401729823, 0),

is a vector normal to the guiding resonance surface at the point Ir .
Geometrically, we have that µ1 lies in the tangent plane to I0 at the point Ir , µ2 is normal to that plane and µ3 is

simultaneously orthogonal to nr and to µ2, i.e. it is tangent, at Ir, to the intersection between the guiding resonance
surface and I0. These three vectors are linearly independent if and only if mG is not perpendicular to nr. A way to
ensure this geometrical condition is to assume that I0 is convex at the point Ir . This is easily checked to be true in
our specific example.

Let Υ ∈ R
3×3 be the matrix whose i−th row is the vector µi, for i = 1, 2, 3, and let G be a generating function

given by:

G(p,θ) ≡
3
∑

j=1

(

Ir
j +

3
∑

k=1

pkΥkj

)

θj .

The associated canonical transformation (I,θ) → (p,ψ) can be written explicitly as:

ψ = Υθ,

p = Υ−T (I − Ir),

(43)
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where Υ−T ≡ (ΥT )−1 denotes the inverse matrix of Υ’s transpose. This transformation consists of a translation of
the origin to the resonant action, followed by a change of base in the action space.

The new momenta, pk (k = 1, 2, 3), are the components of the vector (I − Ir) in Chirikov’s base such that, p1

measures the deviation of the actual motion from the resonant point across the guiding resonance layer, p2 gives the
unperturbed energy variation H0, and p3 measures the departure from the resonant value along the guiding resonance
layer, i.e., in the direction along which we will measure the diffusion coefficient. The conjugate angle of p1, ψ1 = mG ·θ,
is the resonant angle.

After the transformation (43), the truncated Hamiltonian (up to order 22) takes the form:

H(p,ψ) =
p2

1

2MG
+ |ωr|p2 +

3
∑

l=1

3
∑

k+l>2

pkpl

2Mkl

+ ǫ[VG + V1(p) + V2(p) + . . .+ Vropt(p)] cosψ1 + ǫ

qopt
∑

q=2

Uq(p)] cos(qψ1) (44)

+ ǫ
∑

m

[V0,m + V1,m(p) + . . .+ V20,m(p) cos(m · θ(ψ)) .

In the above expression:
i) We have already computed VG, while

1

Mkl
=

3
∑

i=1

3
∑

j=1

Υki
∂ωr

i

∂Ij
Υlj ,

1

MG
≡ 1

M11
=

3
∑

i=1

3
∑

j=1

mgi

∂ωr
i

∂Ij
mgj . (45)

We find the following values:

MG = 4.68789151245171606 × 10−2,

M−1
12 = M−1

21 = −1.3250433064004110

M−1
13 = M−1

31 = 0,

M−1
22 = 0.95805552130252458,

M−1
23 = M−1

32 = 0.19026669807696181

M−1
33 = 0.81946117880019043.

ii) The functions Vs and Vs,m are homogeneous polynomial of degree s in the variables pi, i = 1, 2, 3.
iii) The functions Uq(p) are polynomial in the variables pi.
iv) The coefficients Vs,m are much smaller in size than the coefficients Vs or Uq, since the former belong to the

remainder, while the latter belong to the normal form.
The Hamiltonian (44) does not have precisely the form required for the implementation of Chirikov’s formulae. We

thus proceed in obtaining an approximate form of the Hamiltonian, by implementing a number of simplifications as
follows:

i) By construction, the initial conditions of all the orbits are taken to lie nearly exactly on the so called ‘plane of
fast drift’ (see section V), which corresponds to setting initially p2 ≃ p3 ≃ 0. Furthermore, if we neglect the effect of
the remainder, p2 and p3 are preserved quantities under the normal form dynamics. We thus set p2 = p3 = 0 in all
estimates for the coefficients Vs, Uq, or Vs,m.

ii) In contrast, p1 is subject to oscillations in time, since, according to Eq.(44), it is a pendulum action variable.
For the separatrix half-width we find the estimate

∆p1 = 2
√

ǫ|MGVG| ≃ 0.0314ǫ1/2 . (46)

Since the orbits actually evolve in a thin separatrix-like layer, instead of an exact separatrix solution, we may assume
that the time evolution of p1(t) ≈ ∆p1 cos(ψ1/2) does not differ much from the evolution of the momentum along an
oscillation solution with period 2π/ΩG and amplitude ∆p1. Then, performing the average over one period of motion,
for all odd powers we have < p1(t)n >≃ 0, while for the even orders we use the approximation:

< p1(t)n >≃ 1

2n

n!

(n/2)!(n/2)!
∆pn

1 . (47)
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Then, we estimate the numerical values of all coefficients Vs,m(p1; p2 = p3 = 0) in Eq.(44), setting Vs,m(p1; p2 = p3 =
0) = 0 if s is odd, and using the expression (47), with ∆p1 given by Eq.(46), if s is even. In practice, the remainder
contains hundreds of thousands of terms, most of which, after the above substitutions, are found to be of negligible
size. We thus impose a size cut-off limit and in subsequent calculations keep only the remainder terms of size larger
than 10−10.

iii) Finally, we ignore all the normal form terms Vs(p), as well as Uq(p). In fact, one can check that these terms
introduce corrections of the order 10−4 of the leading normal form term, i.e. VG cos(ψ1).

With the above simplifications, the Hamiltonian resumes finally an approximate form suitable for the implementa-
tion of Chirikov’s formulae, namely

H(p,ψ) =
p2

1

2MG
+ |ωr|p2 +

3
∑

l=1

3
∑

k+l>2

pkpl

2Mkl
+ ǫVG cosψ1 + ǫ

∑

m

Ṽm cos(m · θ(ψ)) (48)

where the coefficients Ṽm have now constant values.
Under the form (48), the Hamiltonian lends now itself to the computation of Chirikov’s diffusion coefficient as

follows:
For all amplitudes of the remainder, Ṽm, we compute the coefficients (see appendix A)

Wm =
4πν1(m)ν2(m)Ṽm(2|m · ωr|/ΩG)2|ξm|−1

ξmVGΓ(2|ξm|) exp

(−π|m · ωr|
2ΩG

)

(49)

where

νk(m) =

3
∑

i=1

miΥik, k = 1, 2, 3, ξm =

3
∑

k=1

νk(m)

Mk1
.

The coefficients Wm are used in the computation of the per-period variation of the pendulum energy integral (see
appendix A). According to Chirikov, we first isolate the perturbing term Ṽm yielding the largest value of Wm, and we
call this term ‘layer’ resonance, i.e. the resonance mainly responsible for the formation of the thin separatrix chaotic
layer at the border of the guiding resonance. In our data, we found that the layer resonance is in every case associated
to the harmonic ml = (6,−7,−1). This amplitude will be hereafter denoted by Wl.

All other terms Ṽm except for the layer one are called ‘driving’ resonances. These are the harmonics whose average
time variation causes a variation of the values of all the normal form integrals. For the ten values of ǫ considered, we
computed the ratio of the layer resonance amplitude and that of the largest term of the driving resonances. These
ratios are shown in Table II.

ǫ vm = Wl/Wm

0.020 7.6

0.018 8.1

0.015 9.0

0.013 9.6

0.012 9.9

0.010 10.3

0.008 10.4

0.007 10.2

0.005 8.6

0.003 2.0

TABLE II: Amplitude of the layer resonance with respect to the largest driving resonance.

For all values of ǫ, the largest driving resonance corresponds to the harmonic (6,−4,−3), except for ǫ = 0.003, for
which the leading driving resonance is (8, 0,−7). Table III shows the most significant driving resonances for each
value of ǫ, ordered by the size of the corresponding amplitude Wm.

The results shown in Table II are in agreement with the assumption that Wl ≫ Wm for almost all m 6= l. For
ǫ = 0.003, we obtain that Wl ∼ Wm, and although Chirikov [8] pointed out that the approximation vm = Wm/Wl ∼ 1
should be sufficient to justify all estimates, this seems not to be true. For ǫ = 0.003 the amplitudes Wm of three leading
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ǫ Leading Driving Resonances

0.020 (6, −4, −3); (6, −2, −4); (6, −6, −2); (4, −1, −3); (−2, −2, 3); (4, −3, −2)

0.018 (6, −4, −3); (6, −2, −4); (4, −1, −3); (6, −6, −2); (−2, −2, 3); (4, −3, −2)

0.015 (6, −4, −3); (6, −2, −4); (4, −1, −3); (6, −6, −2); (−2, −2, 3); (8, 0, −7)

0.013 (6, −4, −3); (6, −2, −4); (4, −1, −3); (6, −6, −2); (−2, −2, 3); (8, 0, −7)

0.012 (6, −4, −3); (6, −2, −4); (4, −1, −3); (6, −6, −2); (−2, −2, 3); (8, 0, −7)

0.010 (6, −4, −3); (6, −2, −4); (4, −1, −3); (8, 0, −7); (6, −6, −2); (−2, −8, 3)

0.008 (6, −4, −3); (6, −2, −4); (4, −1, −3); (8, 0, −7); (−2, −8, 3); (8, −7, −3)

0.007 (6, −4, −3); (6, −2, −4); (8, 0, −7); (4, −1, −3); (−2, −8, 3); (8, −7, −3)

0.005 (6, −4, −3); (6, −2, −4); (8, 0, −7); (−2, −8, 3); (6, −3, 7); (4, −1, −3)

0.003 (8, 0, −7); (6, −4, −3); (6, −2, −4); (10, −3, −7); (4, −1, −3); (−2, −2, 3)

TABLE III: Principal driving resonances ordered by their amplitude Wm for each ǫ value.

driving resonances are very similar to the one of the layer resonance, so it seems difficult to distinguish between layer
and driving resonances. It is interesting to see from Table III how certain harmonics increase their importance in the
perturbation as ǫ changes from larger to lower values. Notice that the driving resonances (6,−4,−3); (6,−2,−4) and
(4,−1, 3) are always present as leading terms for all values of the perturbation parameter. Anyway, the amplitudes of
the smaller driving resonances shown in Table III are of the order of ∼ 10−1 or ∼ 10−2Wm of the leading one. This
difference is even larger for ǫ = 0.003 where Wm corresponding to the harmonic (−2,−2, 3) is ∼ 3 × 10−3 times the
Wm of (8, 0,−7).

Excluding the layer resonance, the scalar diffusion coefficient along the direction of the vector µ3 can be computed
by Chirikov’s formula

D(Ir ;µ3) ≈ 2π2Fǫ2

Ta|ωr|2
∑

m6=l

ν3(m)2

ν2(m)2

∣

∣

∣

∣

2ωm

ΩG

∣

∣

∣

∣

4|ξm|
V 2
m

Γ2(2|ξm|)e
− π|ωm|

ΩG , (50)

where

Ta(ws) ≈ 1

ΩG
ln

(

32e

ws

)

, Ta ∼
(

1 + ln ǫ√
ǫ

)

+
1

ǫ
ΩG(ǫ) =

√

ǫ|VG|/|MG|, ωm=m·ωr =ν2(m)|ωr|,

Γ(x) denotes the Gamma function and ws is the width of the guiding resonance chaotic layer (see appendix A).
In Eq.(50), F is a positive constant called the ‘reduction factor’, which accounts for correlations between the phases
representing the initial conditions of the various iterates of the orbits in the chaotic layer, as described by the separatrix
mapping. The true value of F is unknown, but for simplicity we set F = 1 (see Section V). Although Chirikov [8]
suggested, by a crude theoretical estimate, the value F ∼ 1/3, we find the introduction of such a ”reduction factor"
rather unnecessary in the regime examined in the present paper, in which theoretical estimates can be compared to
numerical ones only up to an order of magnitude agreement.

Implementing Eq.(50) in our data we obtained the following values for DC in terms of ǫ:
We should emphasize that the obtained values for DC rest under the assumption of normal diffusion, for which the

unperturbed (original or transformed) actions vary as a linear power of t. This is in fact a strong assumption. As
discussed below, our numerical results indicate that the assumption of normal diffusion is an adequate first approx-
imation. However, there are additional features in all our obtained diffusion curves, whose quantitative description
goes beyond the assumptions of Chirikov’s theory. At any rate, as it will be shown in the next section, the diffu-
sion coefficients computed numerically under the assumption of normal diffusion agree very well with the diffusion
coefficients reported in table IV. To this comparison we now turn our attention.

V. NUMERICAL RESULTS. COMPARISON OF ALL ESTIMATES

In the present section, we will present the results of numerical simulations of ensembles of orbits in our system,
aiming to determine the diffusion coefficient D along the simple resonance, as a function of ǫ, in a purely numerical
way. In what follows, we present computations using two different sets of variables, namely the canonical variables
in the original Hamiltonian, and those arising after an optimal canonical transformation. To separate in notation the
former from the latter, we use the superscript (0) to denote the old canonical variables, i.e., the angles θ(0), and the
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ǫ DC

0.020 8.4 × 10−11

0.018 3.0 × 10−11

0.015 5.0 × 10−12

0.013 1.3 × 10−12

0.012 5.9 × 10−13

0.010 1.2 × 10−13

0.008 1.9 × 10−14

0.007 6.9 × 10−15

0.005 6.7 × 10−16

0.003 2.4 × 10−17

TABLE IV: Diffusion coefficient value for ǫ ∈ E . Note the significant decrease of DC for ǫ = 0.003. See text.

actions I(0) (or p(0) in Chirikov’s basis). We use bar, or non-bar, symbols to denote all ensemble quantities defined
over the set of the old, or the new, action variables respectively.

A. Statistical quantities

Using the results from the integration of ensembles of orbits, we measure the time variation of the variance of the

old and new action variables, p
(0)
i and pi respectively, for i = 1, 2, 3. The statistical quantities presented below are

ensemble averages computed numerically over a finite number, Np, of test particles. The initial conditions of these
test particles are chosen in a small domain in the action space, all of them having the same total energy.

Let pj(t, i) be the value of the j–th component of the vector p, at the time t, associated to the i–th particle. Thus,
the (instantaneous) mean value of this component is given by:

µj(t) ≡ 〈pj(t)〉 ≡ 1

Np

Np
∑

i=1

pj(t, i),

and the corresponding variance is:

σ2
j (t) ≡ 〈(pj(t) − µj(t))2〉 ≡ 1

Np

Np
∑

i=1

(pj(t, i) − µj(t))2.

Analogously, we can define the mean and the variance of the old actions:

µ̄j(t) ≡ 〈p(0)
j (t)〉, σ̄2

j (t) ≡ 〈(p(0)
j (t) − µ̄j(t))2〉. (51)

Diffusion processes are commonly characterized by a power law relationship of the form σ2(t) = c tη, with c > 0.
If η = 1 we have normal diffusion, while in case of η < 1, the phenomenon is called subdiffusion, or when η > 1
it is called superdiffusion. In the normal diffusion case, within some time interval [t0, tf ], it is possible to define a
numerical diffusion coefficient, D. In this work, the diffusion coefficient is associated to σ2

3 through a least square fit
of the ansatz:

σ2
3(t) = Dt+ ρ, (52)

where D and ρ are the fitted parameters.

B. The ensembles

For each value of ǫ ∈ E , we consider one ensemble of Np = 103 particles. The ICs of the ensembles are chosen inside
the chaotic layer of the guiding resonance. More specifically, they are located in a neighborhood of the unperturbed
separatrix of the simple pendulum model associated to the resonant action (Ir). All the ICs belong to the same plane
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used to compute the SALI maps (as in Fig.1), i.e. they satisfy θ
(0)
i = π/2 (i = 1, 2, 3) and H(I(0),θ(0)) = h so that

they are solved from: H0(I(0)) ≡ H(I(0), π/2, π/2, π/2) = h. They are selected at random inside a square of size
4 × 10−12.

Fig. 3 display the SALI map in a neighborhood of Ir together with the location of the initial ensemble for ǫ equal
to 0.015 and 0.003, respectively. The left panel of Fig. 3 shows a magnification in the neighborhood of the ensembles
of ICs (green square) for the smallest perturbation parameter.

 0.075

 0.08

 0.085

 0.09

 0.095

 0.28  0.285  0.29  0.295  0.3

I 2
(0

)

I1
(0)

-10

-8

-6

-4

-2

 0

 2

 0.075

 0.08

 0.085

 0.09

 0.095

 0.28  0.285  0.29  0.295  0.3
I1

(0)

-10

-8

-6

-4

-2

 0

 2

 0.089564

 0.089565

 0.089566

 0.089567

 0.089568

 0.089569

 0.08957

 0.287563  0.287564  0.287565  0.287566  0.287567  0.287568  0.287569
I1

(0)

-10

-8

-6

-4

-2

 0

 2

FIG. 3: Location of the ICs for ǫ = 0.015 (left panel) and ǫ = 0.003 (middle and right panels). The green square in the third
plot shows the size and shape of the ensemble.

C. The measurements

The numerical integrations of the trajectories were performed with a 8th order symplectic integrator called S8b
and elaborated by Teloy, Freiburg, as mentioned in [45]. We use a double precision arithmetic in cartesian variables
considering a time step ∆tint = 10−2. For all ǫ ∈ E , the ensembles were numerically evolved up to the time 107.

Before computing the statistical parameters for all the ǫ values, we qualitatively show the dynamics of these
ensembles in the original action space, for ǫ = 0.012 and ǫ = 0.015. We use a double section technique, applied in
[29] among others. While integrating the test particles we consider the surface of section x1 = 0 (y1 > 0) and collect
those points at which the intersecting orbit also satisfies the condition x2

2 + x2
3 ≤ δ2 (y2 > 0, y3 > 0), with δ = 0.002.

In terms of angle variables, the double section is equivalent to θ1 = π/2 with both θ2 and θ3 belonging to a certain
neighborhood of π/2, whose size decays to zero with δ.

In Fig. 4 we plot, for the smaller perturbation parameter, all the intersections with the double section starting at
t = 0 up to four final times: t = 105, 5 × 105, 106, 5 × 106.

Similarly, in Fig. 5 we plot, for a larger perturbation parameter, all the intersections with the double section. There
we can see how the ensemble expands along the stochastic layer of the guiding resonance.

For the whole set E , we have computed the evolution of the variance of the three components of p(0), as given in
Eq. (51). The left panel of Fig. 6 displays σ̄2

j (t) for j = 1, 2, 3, for ǫ = 0.015 in colors red, green and blue, respectively.

We can see that both σ̄2
1(t) and σ̄2

2(t) are bounded quantities within this time interval, as expected. We also notice
that, on average, σ̄2

3(t) has a secular growth. The initial variance is σ̄2
3(0) ≈ 7.2 × 10−15 and has a relatively large

jump that starts at t ≈ 900. The behavior for ǫ = 0.005 is shown in the right panel of Fig. 6. For the rest of the ǫ
values, the observed behaviors are qualitatively similar to the above exposed ones.

From now on we work only with the variance in the µ3 direction, comparing its time evolution as computed using
the original action variables or the ones corresponding to the optimal canonical transformation. Figs. 7(a), 7(c)
and 7(e) show, respectively for ǫ = 0.015, 0.010 and 0.005, the values of σ̄2

3(t), in blue, and σ2
3(t), in black. Figs. 7(b),

7(d) and 7(f) show only the value of σ2
3(t) for the same perturbation parameters.

In Fig. 7(a) the main observation is that the variance σ̄2
3 computed in the original canonical variables exhibits

significant fluctuations, while σ2
3 (in the new canonical variables) evolves in a smooth linear way without any initial

jump. Despite this difference, it is remarkable that, for ǫ = 0.015, both quantities exhibit a quite similar average slope
in time. Now let us focus on ǫ = 0.010 (Fig. 7(c)). We see that σ̄2

3 still has a measurable average slope and equal to
the one of σ2

3 . However, the relative difference between the two quantities is higher than in the previous case. In fact,
the fluctuations in σ̄2

3 are such that the slow systematic time variation is just visible in these variables, up to t = 107.
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This picture changes dramatically for smaller values of ǫ, like 0.005. Inspecting the right panel of Fig. 6, we
cannot distinguish any measurable secular growth in σ̄2

3 . In fact, the growth exists, but it is completely “hidden” by

the large variations due to the ‘deformation’ effects. Thus, in practice the diffusion rate associated to p
(0)
3 cannot

be experimentally measured. Figs. 7(e) and 7(f) show that the variance in the new variable p3 is many orders of
magnitude smaller than σ̄2

3 . Furthermore, all fluctuations due to deformation effects are absorbed by the normalizing
transformation, and do not show up in the time evolution of σ2

3 . This allows to identify and measure the diffusion
rate, in this case using only the new canonical variables.

We have not introduced yet any assumption about the dependence of σ2
3(t) on time. The closeness to normal

diffusion can be graphically estimated in Fig. 8, displaying the values of σ2
3(t) in logarithmic scale ∀ǫ ∈ E . We have

fitted power laws, according to the ansatz given at the end of Subsec. V A, for each element of E , obtaining the values
of the exponent η shown in Table V. These values are not far from η ≈ 1. Thus, from Figs. 7(b), 7(d) and 7(f),
as well as the corresponding plots for the rest of the values of ǫ, that present a similar behavior, we conclude that
the assumption of normal diffusion is a good first approximation. However, in some cases we find values appreciably
smaller than 1, i.e., a slight sub-diffusive behavior. This we propose as a subject for future study.

ǫ 0.003 0.005 0.007 0.008 0.010 0.012 0.013 0.015 0.018 0.020

η 0.75 0.87 0.91 0.95 0.91 1.10 1.18 0.98 0.89 0.86

TABLE V: Power law behavior: values of exponent for the ansatz σ2
3(t) = ctη for the interval t ∈ [104, 107].

We should note at this point that, although Chirikov’s estimates of the theoretical diffusion coefficient concern time-
averages as in (A12), the assumption that time-averages and space-averages are similar is used along his analytical
derivation of DC . In fact, the aim of introducing the reduction factor F to take into account heuristically the
correlations of the driving phases at the borders of the stochastic layer, but assuming that the time-variance grows
linearly with time. However, a numerical derivation of D is in practice only possible considering ensemble averages.
In the lack of sufficient information about the correlations of the driving phases, we will then simply set F = 1 in the
comparison of D with DC below.

The fitted values of the numerical diffusion coefficients D, computed according to Eq. (52) using two different time

 0.07

 0.075

 0.08

 0.085

 0.09

 0.095

 0.1

 0.105

 0.11

 0.27  0.275  0.28  0.285  0.29  0.295  0.3  0.305  0.31

I 2
(0

)  

I1
(0) 

-10

-8

-6

-4

-2

 0

 2

 0.07

 0.075

 0.08

 0.085

 0.09

 0.095

 0.1

 0.105

 0.11

 0.27  0.275  0.28  0.285  0.29  0.295  0.3  0.305  0.31

I 2
(0

)  

I1
(0) 

-10

-8

-6

-4

-2

 0

 2

 0.07

 0.075

 0.08

 0.085

 0.09

 0.095

 0.1

 0.105

 0.11

 0.27  0.275  0.28  0.285  0.29  0.295  0.3  0.305  0.31

I 2
(0

)  

I1
(0) 

-10

-8

-6

-4

-2

 0

 2

 0.07

 0.075

 0.08

 0.085

 0.09

 0.095

 0.1

 0.105

 0.11

 0.27  0.275  0.28  0.285  0.29  0.295  0.3  0.305  0.31

I 2
(0

)  

I1
(0) 

-10

-8

-6

-4

-2

 0

 2

FIG. 4: Intersection of the trajectories with the double section defined by x1 = 0, (x2
2 + x2

3)1/2 ≤ 0.002 and yi > 0 (i = 1, 2, 3),
projected onto the [I1, I2] plane for times: t ≤ 105 (top–left), t ≤ 5 × 105 (top–right), t ≤ 106 (bottom–left) and t ≤ 5 × 106

(bottom–right). The data corresponds to ǫ = 0.012.
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FIG. 5: Intersection of the trajectories with the double section defined by x1 = 0, (x2
2 + x2

3)1/2 ≤ 0.002 and yi > 0 (i = 1, 2, 3),
projected onto the [I1, I2] plane for times: t ≤ 105 (top–left), t ≤ 5 × 105 (top–right), t ≤ 106 (bottom–left) and t ≤ 5 × 106

(bottom–right). The data corresponds to ǫ = 0.015.
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FIG. 6: The left panel displays the variance evolution in the original actions for ǫ = 0.015 along the three directions of the new
basis: σ̄2

j (t), for j = 1, 2, 3, in colors red, green and blue, respectively. σ̄2
1(t) and σ̄2

2(t) are bounded quantities within this time

interval while σ̄2
3(t) presents a secular growth. The right panel displays, for ǫ = 0.005, the values of σ̄2

j (t), for j = 1, 2, 3, in
colors red, green and blue, respectively. The three quantities appear to be bounded in the considered time interval.

intervals: [0, 107] and [106, 107], are shown in the second and third columns of Table VI, respectively. Both computa-
tions of D yield quite similar values. In the fourth column we include the theoretical estimation DC , given in table IV,
for comparison. In Fig. 9–left we superpose all different estimates of the diffusion coefficient in semilogarithmic scale.
The values of D fitted with 0 ≤ t ≤ 107 and DC , are displayed in colors red and green, respectively. Both the theo-
retical and the numerical coefficients have nearly the same functional behavior with respect to ǫ. Moreover, we notice
that 0.1 . D/DC . 3.4 for ǫ ∈ E , which implies that the theoretical and numerical estimates agree rather well; the
lower bound 0.1 corresponding to ǫ = 0.003 as can be seen from Figure 9–middle. The dots in this figure correspond
to the values D = D(DC) in logarithmic scale, for ǫ ∈ E . Considering only parameter values: 0.005 ≤ ǫ ≤ 0.015, we
made a least square fit of the ansatz log(D) = q log(DC) + r, obtaining an exponent q = 1.08333. Thus, we conclude
that the relation D ∼ DC essentially holds true. Notice that while performing the fit of the coefficients we explicitly
discarded the values for ǫ = 0.003, 0.015, 0.020. In fact, in the case of the lowest ǫ value, there are several terms in the
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(c) ǫ = 0.010
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(e) ǫ = 0.005
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(f) ǫ = 0.005

FIG. 7: Variance evolution in the original and optimal actions for ǫ = 0.015, 0.010 and 0.005. The left hand plots display both
σ̄2

3(t) and σ2
3(t), in colors blue and black, respectively. The right hand plots display only σ2

3(t). We observe a transition in
which diffusion can be measured in both families of actions obtaining the same average result (ǫ = 0.015), towards a state in
which diffusion is undetectable in the old actions but precisely measurable in the correct ones (ǫ = 0.005). The case of ǫ = 0.010
is qualitatively similar to the one for ǫ = 0.015 but is close to the limit of undetectability in the old variables.

perturbation of the very same order of magnitude, so that the layer resonance, that should have a coefficient Wl much
larger than the ones of the leading driving resonances, is actually not well defined accordingly to Chirikov’s theory
(see Table II and related discussion). Meanwhile, for the largest ǫ values, an overlap between the layer resonance
and some very close high order resonances is observed, since the variance in p1, σ1, presents at large times, a slight
increasing behavior, indicating that the width of the stochastic layer is not bounded, in contradiction with Chirikov’s
formulation.

As a final estimate, we have performed several fits of the ansatz D, DC ∝ ||Ropt||b, considering different subsets
of E . Although the results depend on the chosen subset, the value b ≈ 2.5 represents the mean situation. Fig. 9–right
shows the corresponding behavior of DC (red) and D (black). The green line corresponds to the function ||Ropt||2.5,
and it is displayed as a ‘guide to the eye’ law for comparison with the laws found for various estimates of the diffusion
coefficient.
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The dashed curve corresponds to a straight line of unitary slope plotted for comparison. For most of ǫ values the diffusion is
close to be normal.

ǫ D (0 < t < 107) D (106 < t < 107) DC

0.020 6.7 × 10−11 7.0 × 10−11 8.4 × 10−11

0.018 3.5 × 10−11 3.5 × 10−11 3.0 × 10−11

0.015 1.1 × 10−11 1.1 × 10−11 5.0 × 10−12

0.013 4.2 × 10−12 4.2 × 10−12 1.3 × 10−12

0.012 1.9 × 10−12 1.9 × 10−12 5.9 × 10−13

0.010 2.3 × 10−13 2.3 × 10−13 1.2 × 10−13

0.008 4.0 × 10−14 4.0 × 10−14 1.9 × 10−14

0.007 1.3 × 10−14 1.3 × 10−14 6.9 × 10−15

0.005 8.9 × 10−16 8.9 × 10−16 6.7 × 10−16

0.003 2.1 × 10−18 2.1 × 10−18 2.4 × 10−17

TABLE VI: Diffusion coefficients for ǫ ∈ E . The second and third columns give the values of the numerical coefficient, D,
using the time intervals [t0, tf ] equal to [0, 107] and [106, 107], respectively. In the fourth column we have added the theoretical
estimation, DC , given in table IV.

VI. CONCLUSIONS

In the present paper, we presented theoretical and numerical results pointing towards an important connection
between the estimates for the diffusion rate along simple resonances in multidimensional nonlinear Hamiltonian
systems that can be obtained using i) the theory of Chirikov [8], and ii) the theory of Nekhoroshev [43]. We
emphasized that, despite a common impression, the two theories are complementary rather than antagonist. In fact,
we exploited this complementarity in order to obtain accurate theoretical predictions for the value of the diffusion
coefficient along a resonance in a particular numerical example. Our main conclusions can be summarized as follows:

1) The theory of Chirikov requires, as a starting point, the construction of a simply-resonant normal form valid
in local domains of the action space, which has to be optimal in the Nekhoroshev sense. In particular, the so-called
driving terms of Chirikov’s theory are identified with the remainder terms of the optimal normal form construction.
Then, for small enough nonlinear perturbations ǫ, the size of the driving terms turns to be of order O(exp(−1/ǫa))
(for some exponent a > 0).

2) We constructed the above optimal normal form in the so-called 3D quartic oscillator model [6], using a computer-
algebraic program in order to implement the normalization algorithm suggested in [9]. We were able to reach the
optimal normalization order, at which the size of the normal form remainder becomes the least possible, and also to
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FIG. 9: The left side panel shows the numerical and theoretical estimates of the diffusion coefficients extracted from table VI:
D (0 ≤ t ≤ 107) in red and DC in black. The middle panel shows the comparison between the numerical and the theoretical
diffusion coefficients. The line is the least square fit of the ansatz log(D) = q log(DC) + r, with q = 1.08333. The right
side panel shows the diffusion coefficients versus the norm of the optimal remainder. The green line corresponds to the
functions ||Ropt||

2.5 and is displayed for comparison with the diffusion coefficients. It can be seen that both coefficients have
an approximate functional trend of the shape D, DC ∼ ||Ropt||

2.5, in black and red respectively.

observe the expected asymptotic character of the normal form series.
3) We used the computed expression for the optimal normalized Hamiltonian in order to transform all data in the

basis of action variables suggested by Chirikov (see [4]). In this way, we identified the main resonant terms in the
latter theory corresponding to i) the layer resonance, and ii) the driving resonances. With the above information at
hand, we finally implemented Chirikov’s formulae and computed a theoretical estimate DC for the diffusion coefficient
along the resonance.

4) We compared the values of DC with a purely numerical measurement of the diffusion coefficient using ensembles
of orbits integrated along the resonance’s chaotic layer up to a quite long time. We found that for small perturba-
tion values ǫ, the diffusion can only be measured after subtracting, from the numerical orbital data, the so-called
‘deformation’ effects. This requires transforming the data in new canonical variables arising by the same normalizing
transformation that leads to the construction of the optimal normal form.

5) We compared the theoretical prediction DC with the numerical value of the diffusion coefficient D for various
values of ǫ. We found a quite satisfactory agreement, so that essentially one has DC ∝ D. The coefficient of
proportionality depends on the so-called reduction factor of Chirikov’s theory. In the lack of sufficient information
about the value of the reduction factor, we simply set it equal to unity, which proves to be an adequate approximation.

6) We pointed out that in the framework of Chirikov’s theory one obtains a power-law relation between D and the
size of the optimal remainder ||Ropt||, i.e. we have D ∼ ||Ropt||2+p, where p is a positive constant of order unity. This
is in agreement with the analysis made in [13]. We applied this relation by a power-law fitting on our numerical data.
We found that the heuristic law D ∼ ||Ropt||2.5 is adequately precise for all practical purposes. This latter fact allows
to estimate directly the value of the diffusion coefficient using only normal form data.

7) Finally, we made a preliminary study of the character of the diffusion along a resonance in the weakly chaotic
regime. Although to a first approximation the diffusion can be characterized as normal, we found secondary features
in all diffusion curves, that we attribute to the passage of some orbits of our ensemble from crossing points with
secondary resonances. Furthermore, we tried power-law fitting of all the diffusion curves σ2 ∼ tw, where σ2 is the
variance of the ensemble in the action variables suggested by Chirikov. We found values of w close to 1, but with a
slight preference towards values smaller than unity. Thus, we conclude that the overall effect of secondary resonances
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is to render the chaotic spreading slightly sub-diffusive. This subject, however, necessitates a focused study that is
proposed as a future subject.
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Appendix A: Chirikov’s main derivations

We start from the expression for the Hamiltonian (48), given in section IV namely,

H(p,ψ) =
p2

1

2MG
+ |ωr|p2 +

3
∑

l=1

3
∑

k+l>2

pkpl

2Mkl
+ ǫVG cosψ1 + ǫ

∑

m

Ṽm cos(m · θ(ψ))

where the coefficients Ṽm have constant values.
In absence of perturbation (Ṽm = 0), the components pk, k = 2, 3 are local integrals of motion, whose value is equal

to zero if Ir is a point of the orbit. Then, the Hamiltonian reduces to:

H(p,ψ) ≈ H1(p1, ψ1) + ǫṼ (ψ), (A1)
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where:

H1 =
p2

1

2MG
+ ǫVG cosψ1 (A2)

is the pendulum Hamiltonian for the guiding resonance, and the perturbing phases θ in Ṽ are written in terms of the
new components ψk.

To transform the phase variables, we take into account that the dot product is invariant under a change of basis.
Recalling that ψk =

∑

l Υklθl then, if ν denotes the vector m in the new basis, we have: ϕm ≡ m · θ = ν ·ψ, where
νk =

∑

i miΥik. As we can readily see, while the mk are integers, the quantities νk are, in general, real numbers.

As mentioned above, for Ṽ = 0 the pk are local integrals of motion and recalling that H1 is also an unperturbed
integral, we have the full set of three local integrals: H1, p2, p3. But if we switch on the perturbation, they will change
with time. This variation is determined by the time dependence of ϕm. To get ϕm(t) we evaluate the dot product
ν · ψ:

ϕm(t) = m · θ = ν ·ψ ≈ ξmψ1(t) + ωmt+ βm, (A3)

where:

ξm =

3
∑

k=1

νk(m)

Mk1
, ωm=m·ωr =ν2(m)|ωr|; (A4)

and βm is a constant.
It can be found that the change in the unperturbed integrals over a half period of oscillation T , given by

T (w) =
1

ΩG
ln(32/|w|), w =

H1

ǫVG
− 1, (A5)

is

∆pi ≈ ǫ

ΩG

∑

m

νi(m)Qm sinϕ0
m

; i = 2, 3, (A6)

while

∆H1 ≈ − ǫ|ωr|
ΩG

∑

m

ν1(m)ν2(m)

ξm
Qm sinϕ0

m
. (A7)

The variation of the integrals depends on Qm = ṼmA2|ξm|(λm) where Am(λ) denotes the Melnikov–Arnold integral
given by

Am(λ) =

∫ ∞

−∞
dt̂ cos

(m

2
ψs(t̂) − λt̂

)

, ψs(t̂) = 4 arctan
(

et̂
)

,

whose asymptotic value for large λ, is

Am(λ) ≈ 4π(2λ)m−1

(m− 1)!
e−πλ/2, λ ≫ m. (A8)

The factorial should be replaced by the Gamma function, Γ(m), for non–integer m. For details, see for instance [14],
[4].

Having already attained the change in the integrals after a period of motion T , we need to compute the variation
for the phases ϕ0

m which are the quantities (A3) evaluated in the separatrix, over the same time interval, in order to
obtain a map describing Arnold diffusion. We have

∆ϕ0
m = ξm∆ψs

1(t0) + ωm∆t0 = ωmT (w) + Cm,

where Cm is a constant. Rewriting (A7) in terms of the dimensionless energy w instead of H1, we arrive at the
following map:
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w̄ = w − |ωr|
ΩG

∑

m

Wm sinϕ0
m, (A9)

ϕ̄0
m = ϕ0

m + ωmT (w̄) + Cm, (A10)

where

Wm =
ν1(m)ν2(m)Qm

ξmVG

is the very same coefficient given by (49). In the above map the bar indicates the values of the variables after crossing
the surface ψ1 = ±π.

The mapping given by (A9)–(A10) is, in some sense, similar to the Whisker or Separatrix map, which has the
following expression

w̄ = w +W sin τ0, τ̄0 = τ0 + ωlT (w̄) mod(2π), (A11)

where W is a perturbation parameter like the Wm’s, ωl = ml · ω and τ0 is the phase of the perturbation. This map
describes the motion in the vicinity of the separatrix of the pendulum under a perturbation.

A well known result of this mapping is that the separatrix becomes a chaotic layer of width, ws. In other words,
the change of the pendulum energy under a small perturbation turns out to be bounded. Experimentally, this bound,
ws, is due to the strong correlations of the phases τ0 for large times (we refer to [8] for details).

Taking into account the similarities of the mappings (A9) and (A11), Chirikov argues that the largest term in
(A9) leads to the so-called layer resonance. In fact this conjecture seems to be true, considering the results given in
Table II.

Finally, the scalar diffusion coefficient along the direction of the vector µ3 is defined as

D =
∆p3(t)2

Ta
, (A12)

where X(t) denotes time average and Ta is the mean period of motion within the stochastic layer of the guiding
resonance defined by

Ta(ws) ≈
∫ ws

0

T (w)dw ≈ 1

ΩG
ln(32e/ws),

with ws ≈ |ωr|Wl|ωl|/Ω2
G and T (w) given by (A5) (see CH79 for details). Therefore, from (A6) for i = 3 and (A12)

the formula for Chirikov’s diffusion coefficient given in (50) can be derived.


	I Introduction
	II Hamiltonian Model and choice of resonance
	A Hamiltonian Model
	B Choice of resonance

	III Normal form construction
	IV Diffusion estimates using Chirikov's theory
	V Numerical results. Comparison of all estimates
	A Statistical quantities
	B The ensembles
	C The measurements

	VI Conclusions
	 Acknowledgements
	 References
	A Chirikov's main derivations

