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ABSTRACT

Context. The mid-transit times of an exoplanet may be nonperiodic. The variations in the timing of the transits with respect to a single
period, that is, the transit timing variations (TTVs), can sometimes be attributed to perturbations by other exoplanets present in the
system, which may or may not transit the star.
Aims. Our aim is to compute the mass and the six orbital elements of an nontransiting exoplanet, given only the central times of transit
of the transiting body. We also aim to recover the mass of the star and the mass and orbital elements of the transiting exoplanet, suitably
modified in order to decrease the deviation between the observed and the computed transit times by as much as possible.
Methods. We have applied our method, based on a genetic algorithm, to the Kepler-419 system.
Results. We were able to compute all 14 free parameters of the system, which, when integrated in time, give transits within the
observational errors. We also studied the dynamics and the long-term orbital evolution of the Kepler-419 planetary system as defined
by the orbital elements computed by us, in order to determine its stability.

Key words. planets and satellites: dynamical evolution and stability – planets and satellites: individual: Kepler-419b –
planets and satellites: individual: Kepler-419c

1. Introduction

The vast majority of the extra-solar planets known to date were
discovered by the method of transits, that is, by detecting the
variation of the luminosity of a star due to the eclipse produced
when a planet crosses the line of sight. A major contributor of
these discoveries was the Kepler space mission, which mon-
itored about 170 000 stars in search of planetary companions
(Borucki 2016; Coughlin et al. 2016). The detection of variations
in the timing of the transits with respect to a mean period (transit
time variations, or TTVs) can be attributed to perturbations by
other planetary bodies in the system (Agol et al. 2005; Holman &
Murray 2005).

In order to compute the mass and orbital elements of the
perturbing bodies from the TTVs, an inverse problem must be
solved; at present, only a handful of extrasolar planets have been
detected and characterized by solving this inverse problem. Fast
inversion methods were developed and tested by Nesvorný &
Morbidelli (2008) and Nesvorný & Beaugé (2010) with excel-
lent results for planets in moderately eccentric orbits. Nesvorný
(2009) also extended the algorithm to the case of eccentric and
inclined orbits. These methods can be briefly summarized as fol-
lows. A deviation function is defined as the difference between
the modeled transit times and the observed ones; subsequently,
the downhill simplex method (e.g., Press et al. 1992) is used
to search for its minima. There can be a lack of generality
if the modeled mid-transit times are computed by means of a
particular truncated planetary perturbation theory to speed up
calculations, for example, when a particular multibody mean

motion resonance occurs, as can be the case of co-orbitals (see
for example, Nesvorný & Morbidelli 2008). Also, as an alterna-
tive to the fast inversion methods, a search for the elements of
the perturbing body can also be made by direct N-body inte-
gration, subsequently refining the result with an optimization
algorithm (Steffen & Agol 2005; Agol & Steffen 2007; Becker
et al. 2015). In particular, Borsato et al. (2014) solved the inverse
problem for the Kepler-9 and Kepler-11 systems by applying a
variety of techniques, including a genetic algorithm, although
none of the reported results were obtained with the latter. In
each experiment, they adjusted a subset of the parameters, keep-
ing the remaining ones fixed. It is worth mentioning that their
best solution was obtained by excluding the radial velocities,
which suggests that the large errors of these data may con-
tribute to spoiling the fit. A common feature of most methods
(see also Carpintero et al. 2014) is that they search in a seven-
parameter space for the mass and orbital elements of the unseen
planet, whereas they fix the values of the orbital elements and
the masses of the transiting planet and of the star, which are
estimated before any search is done.

At present, as said, the number of exoplanets discovered by
the TTV method is small. The exoplanet.eu database, as of
July 1 2018, lists only seven exoplanets discovered solely based
on the analysis of the TTVs time series. The first discovery
was that of Kepler-46c, with an orbital period of 57.0 days,
an eccentricity of 0.0145 and a mass of 0.37 MJ, where MJ
is the mass of Jupiter (Nesvorný et al. 2012). In the case of
Kepler-51 (Masuda 2014), two transiting planets were already
known and their TTV series revealed the existence of a third
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planetary body, KOI-602.02, with a mass of 0.024 MJ, an eccen-
tricity of 0.008, and an orbital period of 130.19 days; later it
was discovered that KOI-602.02 is also a transiting body. All
planetary components in this system have low orbital eccen-
tricities. In the case of the WASP-47 system, there are three
transiting planets (Adams et al. 2015), two of them exhibiting
measurable TTVs due to the existence of an additional body.
To estimate the mass and orbital properties of WASP-47e, the
fourth planet in the system, Becker et al. (2015) first modeled the
TTV series of WASP-47b and WASP-47d using TTVFAST (Deck
et al. 2014) and then used a Markov chain Monte Carlo algo-
rithm (Foreman-Mackey et al. 2013) to search for the solution
of the inverse problem. This methodology allowed them to put
an upper limit on the mass of WASP-47e. It is worth noting that
Becker et al. (2015) used the TTVs not only to determine orbital
elements, but also to determine masses, therefore allowing the
confirmation of the planetary nature of the transiting objects.
Finally, the case of the Kepler-419 system is the most peculiar
one, due to the large eccentricity of the transiting planet, with
a reported value of 0.833, a mass of 2.5 MJ , and a period of
69.76 days (Dawson et al. 2012). Its TTV time series revealed the
existence of a more distant and massive planet, with an approx-
imate orbital period of 675.5 days (Dawson et al. 2014, hereafter
D14).

The peculiarities of the presently known exoplanetary sys-
tems in general, and in multiple systems in particular, place
interesting constraints on the formation scenarios that may
produce the observed distributions of various parameters as
semimajor axes, eccentricities, masses, planetary radii, and so
on. In particular, the formation and evolution scenario of high-
eccentricity planets is, at present, quite heavily debated in the lit-
erature (Jurić & Tremaine 2008; Ford & Rasio 2008; Matsumura
et al. 2008; Moeckel et al. 2008; Malmberg & Davies 2009;
Terquem & Ajmia 2010; Ida et al. 2013; Teyssandier & Terquem
2014; Duffell & Chiang 2015). Naturally, the refinement in the
knowledge of the masses and orbital elements of the known
exoplanets would allow more realistic investigations to be per-
formed, for example, regarding their stability (see for example,
Tóth & Nagy 2014; Mia & Kushvah 2016; Martí et al. 2016).

It was recognized early on that the case of the Kepler-419 sys-
tem offers a superb model to solve the inverse problem (Dawson
et al. 2012). Firstly, the interaction between the two planets is
secular in nature. This can be corroborated through their orbital
evolution since the semi-major axes remain constant and the
eccentricity librates with a single constant period, which guar-
antees that the problem is not degenerate. If the interaction
contained mean-motion resonant terms, which depend on the
mean longitudes of the system, different combinations of these
fast angles might result in the same characteristic period, and
therefore the solution would not be unique. Secondly, the time
span of the data covers about two periods of the more distant,
nontransiting planet, so enough information is available to solve
the inverse problem accurately.

In order to solve this inverse problem, we use a genetic
algorithm (Charbonneau 1995) and seek maxima of a so-called
fitness function, defined as the reciprocal of the sum of the
squares of the deviations between the modeled transit times and
the observed ones. The efficiency of the method is such that the
problem can be solved very accurately even if the number of
unknowns is increased to include all the dynamical parameters
of the system, that is, the orbital elements and masses of the
two planets and the mass of the star, with the exception of the
longitude of the ascending node of the transiting planet, which

can be fixed arbitrarily. To obtain the modeled mid-transit times
used to compute the fitness function, we integrate the three-
body gravitational problem in an inertial frame. We disregard
interactions due to body tides, relativistic approximations, and
non-gravitational terms arising from radiation transfer between
the star and the planets.

By using as initial guesses sets of parameters close to those
previously estimated for the Kepler-419 planetary system, we
have been able to find a solution that, when integrated in
time, gives the observed central transit times entirely within the
observational errors. The solution consists in a set of orbital
parameters of both planets and their masses and the mass of the
central star. We then studied the long-term orbital evolution of
the Kepler-419 planetary system as defined by the orbital ele-
ments computed by us, thus characterizing its general dynamics
and determining its stability.

2. Method

2.1. The genetic algorithm

Since the space of parameters is multidimensional, an optimiza-
tion algorithm based on random searches is inescapable. We
refrained from using the popular MCMC algorithm because it
requires some prior information about the distribution of the
parameters, which in our case is completely unknown and prob-
ably very far from a simple multidimensional Gaussian. Instead,
we chose to work with a genetic algorithm approach that does
not require any previous knowledge of the background distri-
bution. A genetic algorithm is an optimization technique that
incorporates, in a mathematical language, the notion of biolog-
ical evolution. One of its remarkable features is its ability to
avoid getting stuck in local maxima, a characteristic which is
very important in solving our problem (see Sect. 3). We used a
genetic algorithm in this work based on PIKAIA (Charbonneau
1995), which we briefly describe here.

As a first step, the optimization problem has to be coded as a
fitness function, that is a function f : D → R, where the domain
D is the multidimensional space of the n unknown parameters of
the problem, and such that f has a maximum at the point corre-
sponding to the optimal values. Let x be a point in this domain,
which is called an individual. The algorithm starts by dissem-
inating K individuals xi, i = 1, . . . ,K at random. The set of K
individuals is called the population, and, at this stage, they rep-
resent the first generation. Two members of the population are
then chosen to be parents by selecting them at random but with
probabilities that depend on their fitnesses. The coordinates of
the parents are subjected to mathematical operations resembling
the crossover of genes and mutation. The resulting two points
correspond to two new individuals (i.e., two new points xi ∈ D).
Subsequently, a new pair of parents are chosen, not necessarily
different from earlier parents, and the cycle is repeated until a
number K of offspring, that is, a new generation, have been gen-
erated. The new individuals will be, on average, fitter than those
of the first generation (Charbonneau 1995). The loop starts again
from the selection of a pair of parents, and the procedure con-
tinues until a preset number of generations has passed, or until
a preset tolerance in the value of the maximum of the fitness
function is achieved. The fittest individual of the last genera-
tion constitutes the result, which in general will not be an exact
answer, but an approximation to it. For a detailed account of
the numerical procedures, we refer the reader to Charbonneau
(1995).
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Fig. 1. Geometry of the problem. The plane of the sky is the plane
of reference of the orbits, which we choose to be the (x, y) plane. The
observer looks toward the positive z-axis, the center of mass of the sys-
tem being at the origin of coordinates. A transiting planet (small ellipse)
has an inclination close to 90◦, that is, it has an orbit almost perpendic-
ular to the plane of the sky. Another planet (big ellipse) perturbs it. The
ascending node of the transiting planet defines the x-axis on the plane
of the sky; the line of the nodes of the other planet is marked with a
black segment on this plane.

2.2. Setup and computation of the mid-transit times

The problem is stated as follows: given the (nonperiodic)
observed transit times of a planet tobs,i, i = 1, . . . ,N, and assum-
ing the presence of a second, unseen planet which is held
responsible for the lack of periodicity, we want to find the mass
and the six orbital parameters of each planet, and the mass of the
central star.

The geometry of the problem is set as follows. Using Carte-
sian coordinates, we take the plane of the sky as the (x, y) plane
(the reference plane); the z-axis points from the observer to the
sky. On the reference plane, we set the x-axis as pointing to the
direction of the ascending node of the transiting planet (TP),
that is, toward the point at which it crosses the plane of the
sky moving away from the observer. We note that this defines
the longitude of the ascending node of this planet as zero. The
y-axis is chosen so that a right-handed basis is defined (Fig. 1).
The perturbing planet has no constraints.

Let p = {a, e, i,Ω,ω,M,m} be the semimajor axis, eccen-
tricity, inclination, longitude of the ascending node, argument
of the periastron, mean anomaly and mass of a planet, respec-
tively, which we simply refer to as “elements” for brevity. Given
the elements of the TP pt, those of the perturbing planet pp, and
the mass of the star m?, one can integrate the respective orbits,
and compute the transits tcom,i, i = 1, . . . ,N of the TP. The fit-
ness function F[tcom(pt,pp,m?), tobs] is defined in our problem
as

F =

 N∑
i=1

(tobs,i − tcom,i)2

−1

. (1)

ttinit t1,com

t1,obs

t2,com

t2,obs

Fig. 2. Time axis for each individual. The initial time of the integra-
tion and the first computed transits are marked with vertical lines (lower
labels); the observed transits are marked with dots (upper labels). At the
first computed transit, a Julian date is assigned to t1,com corresponding
to t1,obs. In this way, the instant tinit defining the elements gets a BJDTDB
equal to the first transit minus the time elapsed since the start of the
integration.

The larger the value of F, the better the solution. A value F → ∞
would indicate that a set {pt,pp,m?} had been chosen so that
the resulting transits would coincide perfectly with the (central
values of) the observed ones; this would be the “exact” solu-
tion. In terms of the genetic algorithm, an individual x is a set
{pt,pp,m?}.

Once the first generation is generated at random, each indi-
vidual is taken in turn and its fitness is computed by integrating
the respective orbits. To this end, we first transform the elements
of the planets to Cartesian coordinates, with the center of mass at
the origin (e.g., Murray & Dermott 1999). In this inertial frame
and from these initial conditions, we integrate the system as a
full three-body problem using the standard equations of motion
where for each body i (TP, perturbing planet and star),

r̈i = −Gm j
r j − ri

|r j − ri|3 −Gmk
rk − ri

|rk − ri|3 , (2)

with G the gravitational constant, and m j,k, r j,k the masses and
position vectors of the other two bodies. These allow an easy
computation of the transits, that is, the times when the TP is in
the z < 0 semispace and the x coordinate of the TP, xt, and that
of the star, x?, coincide. We note that the star moves during the
integration, so the transits are not, in general, the instants when
xt = 0. To determine the instants of transit, we used Hénon’s
method of landing exactly on a given plane (in our case, the
plane x = x?) in only one backstep after the plane was crossed, a
method that he developed to compute surfaces of section (Hénon
1982, see Appendix A). The numerical integrations were carried
out using a Bulirsch–Stoer integrator (Press et al. 1992) with a
variable time step initially set at ∆t = 0.005 yr ' 1.83 days; the
relative energy conservation was always below 10−11.

Each integration starts wherever the orbital elements put
the planets (tinit; see Fig. 2), that is, the elements correspond-
ing to each individual are defined at tinit. So far, this time has
no Julian date assigned. When the first transit t1,com is found
during the integration, this instant is made to coincide with
the first observed transit t1,obs, therefore receiving the BJDTDB
2 454 959.3308 label, that is, the date of the first observed transit
reported in D14. In this way, the tinit instant also gets a BJDTDB,
thus defining the date to which the elements belong. Later, the
integration comes to a second transit t2,com, which would not be
in general coincident to the observed t2,obs – unless the initial
elements are the exact ones. The integration continues until N
transits have been computed (where N coincides with the num-
ber of observed transits); then, the fitness of the individual is
computed by means of Eq. (1).

We briefly mention here the values of the parameters of the
genetic algorithm used in our experiments (for details of their
meaning, we refer the reader to Charbonneau 1995). We chose
K = 5000 individuals per generation, six (decimal) digits to
define the genotype of each parameter, a probability of genetic
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Table 1. Intervals (min, max) into which the elements of the planets and
the mass of the star were chosen for the first run.

Element min max pf

m? [M�] 1.320 1.470 1.4414540 ± 6 × 10−7

ab [au] 0.364 0.377 0.37473469 ± 5 × 10−8

eb 0.82 0.91 0.8040 ± 3 × 10−4

ib [◦] 86.0 89.1 87.45 ± 0.09
Ωb [◦] 0.0 0.0 0.0
ωb [◦] 90.0 270.0 274.43 ± 0.01
Mb [◦] 60.0 240.0 125.0 ± 0.2
mb [MJ] 1.51 2.80 2.2430 ± 5 × 10−4

ac [au] 1.650 1.710 1.70527 ± 7 × 10−5

ec 0.173 0.186 0.18715 ± 5 × 10−5

ic [◦] 84.0 91.0 87.8 ± 0.9
Ωc [◦] −8.0 16.0 9.0 ± 0.1
ωc [◦] 94.43 ± 0.01
Mc [◦] 180.0 360.0 227.477 ± 0.007
mc [MJ] 6.90 7.70 7.71 ± 0.02

Notes. pf : final values obtained with our algorithm, at BJDTDB
2 454 913.8629.

crossover equal to 0.95, a generational replacement in which,
after a new full generation has been computed, the K best indi-
viduals among the new and the old generations are taken, and we
have selected the parents with a probability directly proportional
to their fitnesses. We also chose a selection pressure of 80% of
the maximum possible value1. The mutation rate was variable,
from 0.5 to 5%. The algorithm was considered finished when
2000 generations had passed.

The entire algorithm, written in FORTRAN, was parallelized
with the MPI paradigm. Using four Intel Core i7 processors at
2.30 GHz, a typical run of 2000 generations lasts approximately
14 h.

3. Experiments and results

We applied our algorithm to the system Kepler-419 (D14).
This system has at least two planets: a transiting warm Jupiter
(Kepler-419b) and a nontransiting super-Jupiter (Kepler-419c).
The transiting planet has a period of approximately 70 days, and
there are N = 21 observed transits, spanning the first 16 quarters
of the Kepler data.

We generated the initial conditions for each of our individu-
als by randomly choosing values from a given interval for each
element. The intervals were initially chosen centered on the val-
ues reported by D14, their Table 4, and according to the errors
reported by them, except the angle Ωb which is zero by definition.
A set of test runs of the algorithm systematically gave values
of periastrons, mean anomalies, Ωb, mb, and ib at the border of
the corresponding intervals. Therefore, we expanded these initial
intervals, in the case of the first five angles to at least one quad-
rant (Table 1). Finally, after investigating the evolution of several
solutions, we found that a difference close to 180◦ between the
arguments of the periastrons of the planets was instrumental to
ensure the long-term stability of the system. Therefore, as an
additional constraint, we imposed that the initial values of those
arguments differ in 180◦.

1 The selection pressure controls how much the fitness influences the
probability of being selected as a new parent.
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Fig. 3. Contours of the root mean square of the differences between
the resulting transits and the central values of the observed ones (i.e.,
1/
√

NF), as a function of the eccentricities of both planets. The con-
tours are labeled with values in minutes. The narrow central band
defines the region into which the eccentricities should lie in order to
obtain one minute or less of error.

Our first run with the extended intervals gave a value of
F = 358 397 for the best individual, with times measured in
days. Computing the mean of the deviations between the result-
ing mid-transit times and the observed mid-transit times yielded
about 24 s. We repeated the run but with angular initial intervals
no greater than one quadrant, choosing the latter according to the
final value of the first run. A fitness F = 478 590 was obtained.
Then a third run was performed, for which new initial intervals
were chosen centered in the values of the output of the last run,
and with widths reduced to 80% of the last values. This new
run gave F = 546 261, equivalent to a mean deviation of about
20 s between observed and computed mid-transit times. New
attempts gave no substantial improvement, so we considered the
outcome of this third run as our result.

To estimate statistical errors for the parameters, we first
perturbed each input time with noise taken from a Gaussian
distribution with zero mean and a dispersion equal to the (maxi-
mum) error reported for it in Table 5 of D14. With this new set of
mid-transit times, we repeated the experiment and registered the
output values of the parameters. We repeated this 50 times, and
computed the dispersion of the results. As a check, we inverted
the procedure and perturbed the elements inside the resulting
intervals of error, surprisingly obtaining solutions that went well
beyond the errors of the observed transits. This behavior is
expected if, for example, there are correlations among the ele-
ments, because independent perturbations lead them out of their
correlated values, and then the solution deteriorates. We looked
for correlations by taking pairs of elements in turn, construct-
ing a dense grid of values for each pair inside their respective
statistical intervals as computed above, and computing for each
point of the grid the root mean square of the differences between
the resulting transits and the central values of the observed
ones (i.e., 1/

√
FN). We found several pairs of elements with

strong correlation. As an example, in Fig. 3 we show the case
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Fig. 4. Panel a: differences tcom,i−tobs,i between the computed transits and the observed ones (plus signs joined with a solid line), and errors in the
observed transits as reported in D14 (crosses with error bars). Panel b: as in panel a but with the parameters taken from D14. We note the different
scales on the plots.

eb versus ec, where it is seen that the perturbations should lie on
a very narrowband if one wishes to keep around 1 min of mean
error. With the help of these plots, we computed the true errors
of the parameters. The final values of the parameters together
with their errors are listed in the fourth column of Table 1, cor-
responding to BJDTDB 2 454 913.8629. As a reference, we also
integrated the system from this epoch to BJDTDB 2 455 809.4010,
that is, the epoch at which the elements of D14 are defined. The
resulting values are equal to the ones listed (within errors), with
the obvious exception of the mean anomalies which gave values
of Mb = 69◦ and Mc = 345◦.

Figure 4a shows the resulting differences tcom,i − tobs,i
between the computed transits and the observed ones, compared
with the errors in the observed transits reported in D14. The
first transit has a null error by construction. In order to compare
the quality of our solution against the previous one of D14, we
also computed the transits resulting from integrating the orbits
that correspond to the central values of their Table 4. Since
they reported that their elements are Jacobian, and we are not
aware of a definition of Jacobian elements, we interpreted this as
referring to Jacobian Cartesian coordinates. Thus, we first con-
verted the elements of D14 to Jacobian Cartesian coordinates
taking the interior planet and the star as the first subsystem of
the ladder; these were in turn converted to astrocentric Cartesian
and integrated. Nevertheless, the differences between Jacobian
and astrocentric Cartesian coordinates are, in this system, neg-
ligible. We also tried an integration by directly converting the
elements of D14 as if they were astrocentric, and no apprecia-
ble differences were found. Another point to take into account is
that these elements are given at BJDTDB 2 455 809.4010, so the
integration includes both a backward and a forward period. The
forward integration gave a first transit about 13 days after the ini-
tial epoch, which came as a surprise because that is the interval
between the initial epoch and the previous transit. During this
process, we realized that the coordinate system of D14 is defined
with the x-axis at the descending node, and the angles ω, M,
and i are measured toward the −z semispace (see Fig. 10 of D14).
This implies that a transit is defined as the passage through y = 0
from x > 0 to x < 0. On the contrary, in a coordinate system like
ours (x-axis at the ascending node and angles measured toward
the +z semispace), the transit occurs from x < 0 to x > 0. In
terms of orbital elements, the only difference is in the argument

Table 2. Transits computed by integrating our model.

No. BJDTDB − 2 454 833 Date

1 126.3308
2 196.0608
3 265.7667
4 335.5755
5 405.3159
6 475.0092
7 544.7264
8 614.4553
9 684.1879
10 753.9192
11 823.6435
12 893.3498
13 963.0388
14 1032.9388
15 1102.6199
16 1172.3055
17 1242.0117
18 1311.7264
19 1381.4431
20 1451.1570
21 1520.8612
– – –
50 3543.0572 2018-09-14
51 3612.7392 2018-11-23
52 3682.4225 2019-01-31
53 3752.3111 2019-04-11
54 3822.0053 2019-06-20
55 3891.7212 2019-08-29

of the periastron: the argument of D14 is obtained by adding π
to ours (see Appendix B); this should be taken into account if
our elements are to be compared with those of D14. Consider-
ing this difference, we integrated the D14 system again, finding
a large drift which causes a difference of the order of one day
at the extreme points (Fig. 4b). In light of our results regarding
the errors of the elements, we suspected that this drift was prob-
ably due to a lack of enough decimal digits in the solution. We
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Fig. 5. RV of the final system (solid curve), and observed values (dots
with error bars).

Fig. 6. Impact parameter b, computed as the fraction of the star radius at
which the point representing the planet sits when it transits. The upper
(red) crosses are computed considering a stellar radius R? = 1.39 R�.
The set of pluses correspond to a stellar radius R? = 1.75 R�. The lower
(blue) crosses with error bars are the values obtained by D14 with the
TAP software (Gazak et al. 2012).

integrated the solution of D14 again with more digits (Dawson,
priv. comm.) and found a sensible improvement: less than a quar-
ter of a day in the backward integration. This supports the need
to give all the necessary digits in Table 1 in order to reproduce
the desired solution. All the integrations were also reproduced
with the Bulirsch-Stoer method implemented in the MERCURY
package (Chambers 1999), with a fixed time step of 1 day and an
added routine to reap the transits.

Table 2 provides a list of the transits computed with our solu-
tion. We also include future transits to allow comparison against
prospective new observations.

We also computed the radial velocity (RV) of the star with
respect to the center of mass of the system. Since the latter is
at the origin of an inertial frame fixed in space with respect to

Fig. 7. Long-term evolution of the semimajor axis, the eccentricity, and
the inclination of Kepler-419c using the elements listed in Table 1 as
initial conditions.

the observer, the RV is simply the velocity ż?. This is plotted in
Fig. 5 (solid line), together with the observed values (points with
error bars).

Considering that the inclination of the orbit of the TP in our
solution is 87.◦4 (cf. 88.◦95 in D14), one may wonder whether the
TP transits at all. We computed the impact parameter b directly
from the dynamical simulation as the difference between the
y-coordinate of the TP minus the y-coordinate of the star at each
transit (both are points without dimension in the simulation), and
compared them to two different stellar radii: 1.75 R�, that is, the
final value reported in D14, and 1.39 R�, the minimum value
found by those authors among the different fits. Figure 6 shows
that the exoplanet indeed transits in spite of the low inclination
of its orbit. We also computed the duration of the transits, using
the formulas of Winn (2010), taking into account that a different
coordinate system is used in that work, namely, our ω is Winn’s
ω − π (see Appendix B). With R? = 1.75 R�, we obtained a
total duration of 3.76 h; with R? = 1.39 R�, the eclipse lasts
2.84 h, very close to the reported value in Dawson et al. (2012)
of 2.92 h.

Why did we use mid-transit times instead of TTVs? The TTV
signal is the result of computing the differences between the
observed transit times (O) and a linear ephemeris value which
corresponds to a periodic orbit (C) for each transit epoch. In this
way it is expected that the deviation of the transits of a planet
from a Keplerian orbit can be visualized in an O−C plot. How-
ever, the actual linear ephemeris is unknown, and therefore it
is estimated from the mid-transit times themselves, usually by
a least-squares fit. Unless the deviations are evenly distributed
above and below the real ephemeris (in a least-squares sense),
this procedure does not guarantee that the computed linear fit
will coincide with the Keplerian period.

For Kepler-419b, for example, the mean period between
transists – obtained from the linear fit of the O−C data – is
69.7546 days (D14). However, computing the Keplerian motion
from our solution yields

Pb = 2π

√
a3

b

Gm?
= 69.7844 days, (3)

that is, about 42 min of difference. That is why we chose to
work with the bare mid-transit times instead of going through
the TTVs.
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Fig. 8. Orbital dynamics of Kepler-419c using
the elements listed in Table 1 as initial condi-
tions.

4. Dynamics and long-term evolution

We studied the general orbital dynamics and the long-term evo-
lution of the system using as initial conditions the orbital and
physical elements that we have determined, in order to evalu-
ate its stability. We integrated the orbits with the Bulirsch–Stoer
method implemented in the MERCURY package (Chambers
1999), with a fixed time step of 0.1 days for a simulated timespan
of 200 Myr.

We find that Kepler-419c, the more massive and distant
planet, follows a stable secular behavior (Fig. 7), that is, the mean
values of the semimajor axis, the eccentricity, and the inclination
remain remarkably constant. Figure 8, corresponding to the first
16 000 yr of integration, shows the short-term evolution of the
elements. It is seen that the semimajor axis has a mean value
of '1.71 au, whereas the variation about this value has a small
amplitude, of less than 0.05 au. The eccentricity librates about
0.2, the main component having a period of about 8000 yr and
an amplitude of less than 0.05. The inclination also librates about
a value of '87.◦5 with a period of the order of 3800 yr. The lon-
gitude of the periastron rotates with a period of about 7000 yr.
The node librates about a value of '13◦ with a period similar to
that of the inclination. As expected, the plot of the Delaunay’s
variable Hc =

√
Gm?ac(1 − e2

c) cos ic shows that it is not con-
served, that is, the planet is not in the Kozai (1962) resonance.
This is further confirmed by the lack of both coupled oscillations
between the eccentricity and the inclination, and libration of the
longitude of the periastron.

In contrast, the long-term evolution of the inner planet
Kepler-419b (Fig. 9) shows a slow variation of its semimajor
axis, probably due to the proximity to a high-order mean-motion
resonance, since the ratio of periods between Kepler-419b and
Kepler-419c is close to one tenth. On the other hand, the eccen-
tricity and the inclination are as constant in the long term as in
Kepler-419c. Figure 10 shows the short-term dynamics. The peri-
ods involved are clearly almost the same as in the other planet.
The semimajor axis maintains a mean value of 0.375 au, with
very small variations around it. The eccentricity librates harmon-
ically about 0.81, the main component having a period of about
8000 yr and an amplitude of about 0.03; there is also a clear

Fig. 9. Long-term evolution of the semimajor axis, the eccentricity and
the inclination of Kepler-419b, using the elements listed in Table 1 as
initial conditions.

second-order libration, with a period of approximately 200 yr.
The inclination also librates about a value of '87.5◦, with a
period somewhat larger than 2000 yr and a rather large amplitude
of '25◦. The longitude of the periastron rotates with a period
of about 7000 yr. The node librates about a value of '15◦ with
a period similar to that of the inclination. Delaunay’s variable

Hb =

√
Gm?ab(1 − e2

b) cos ib is not conserved and, in general,
the eccentricity and inclination do not oscillate in counter-phase
and the longitude of the periastron does not librate, except for an
event at about 60 Myr where there is a temporary capture in the
Kozai’s resonance.

It is remarkable that both planets are in a $̇b = $̇c secular
resonance, that is, both longitudes of the periastron rotate at the
same rate. We define the regular elements:

pb = eb cos$b, (4)
qb = eb sin$b, (5)
pc = ec cos$c, (6)
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Fig. 10. Orbital dynamics of Kepler-419b using
the elements listed in Table 1 as initial condi-
tions.

Fig. 11. pb vs. qb (red dots), pc vs. qc (green dots), and pbc vs. qbc (blue
dots).

qc = ec sin$c, (7)
pbc = eb ec cos($b −$c), (8)
qbc = eb ec sin($b −$c). (9)

We plot these elements in Fig. 11, where it can be clearly
seen that $b −$c librates about a value of 180◦ with a small
amplitude.

It is worth noticing that other solutions found by chang-
ing, for example, the seed of the random number generator or
the amplitude of the initial intervals, were sometimes better
than the reported one with respect to the fit of the mid-transit
times, but they were unstable. The details of some of these
unstable solutions are given in Table 3. After inspecting several

Table 3. Elements of unstable planetary systems S i with a large value
of the fitness F.

Parameters S 1 S 2 S 3 A18

m? [M�] 1.3402 1.3362 1.3402 1.5810
ab [au] 0.3657 0.3654 0.3657 0.3865
eb 0.802 0.811 0.803 0.8070
ib [◦] 87.122 87.190 87.219 87.372
ωb [◦] 259.08 239.33 259.08 95.23
Mb [◦] 223.39 251.40 223.39 352.80
mb [MJ] 1.284 1.986 1.285 3.067
ac [au] 1.6625 1.6591 1.6643 1.7520
ec 0.1877 0.1894 0.1870 0.1797
ic [◦] 87.236 86.470 87.298 85.720
Ωc [◦] −4.47 −4.82 −4.70 184.77
ωc [◦] 82.73 65.71 82.53 276.75
Mc [◦] 236.00 237.02 236.20 248.35
mc [MJ] 7.176 7.176 7.176 8.494
τ [106 yr] 1.1 4.8 0.45 0.60
F 535582 190228 511254 –

Notes. The timescale τ is the time for the inner planet to reach a distance
larger than 10 au from the star, at which point we consider it detached
from the system.

outcomes, it was apparent that an (close) antialignment of the
arguments of the periapses all along the evolution of the sys-
tem was a necessary condition for the stability of the system:
this ensured that the distance of closest approach between the
planets occured at the maximum possible value, when one of
them was at the periastron and the other one at the apoastron.
Although a more detailed dynamical description of this condi-
tion is necessary, it is beyond the scope of this investigation. In
Table 3 we also report the outcome of the long-term integra-
tion of the elements of the Kepler-419 system as proposed in
Almenara et al. (2018), which turns out to be unstable as well.
We note that in the latter case the longitude of the node of
Kepler-419b is 180◦, due to a different choice of the coordinate
system.
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Fig. 12. Qb (red dots) and qc (blue dots) as a function of time, for an
unstable system.

As an example, Fig. 12 shows the apoastron Qb of
Kepler-419b and the periastron qc of Kepler-419c as a function
of the time for the unstable system S 1; as can be seen, the
planets suffer a close encounter, the inner one falling on the star
as a consequence of this. Therefore, a solution like this must be
discarded in spite of it yielding a better fit.

5. Conclusions

We have solved the inverse problem of the TTVs for the
Kepler-419 system, obtaining remarkable agreement with the
observed times of transit, since the mean of the deviations is of
the order of 20 s.

We must note that the methodology that we applied to solve
the inverse problem was able to produce an accurate and stable
solution after a reasonable computing time because we started
with a good first guess, as provided by D14. If this informa-
tion were not available, the extremely complex landscape of the
13-dimensional fitness function would turn any attempt to find a
solution into a daunting if not impossible task. We also note that
the observed transits of Kepler-419b cannot be reproduced using
the orbital elements and masses of the initial solution (i.e., the
values of the parameters from D14) evolved with the equations
of the full three-body gravitational problem integrated with both
the Bulirsch–Stoer subroutine from Press et al. (1992) and the
MERCURY package using the option “BS2” (Chambers 1999).

By finding a solution for the problem, we were able to com-
pute a set of values for the orbital elements of both planets and
the mass of the star that give central transit times within the
observational errors.

The dynamics of the Kepler-419 system computed with the
initial conditions listed in Table 1 is qualitatively similar to
the one assuming the initial elements found by D14. However,
the differences are nonnegligible since the mid-transit times dif-
fer considerably, meaning that the validity of one or the other set
should require confirmation through future observations of the

transits of Kepler-419b. It would also be interesting to decipher
the quality of the fit of the light curve of the individual transits
to models constructed using the orbital and physical parameters
determined in this investigation, which was based solely on the
series of transits.
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Appendix A: Hénon’s step

We briefly explain here Hénon’s (1982) method of landing
exactly on a given plane in only one step of integration.

Consider a dynamical system defined by the n differential
equations:

dx1

dt
= f1(x1, . . . , xn),

... (A.1)
dxn

dt
= fn(x1, . . . , xn).

We want to find the intersections of a solution of Eqs. (A.1)
with an (n−1)-dimensional (hyper) surface, defined by the equa-
tion

S (x1, . . . , xn) = 0. (A.2)

To this end, we first define a new variable,

xn+1 = S (x1, . . . , xn), (A.3)

and add the corresponding differential equation to the system
(A.1):

dxn+1

dt
= fn+1(x1, . . . , xn), (A.4)

where

fn+1 =

n∑
i=1

fi
∂S
∂xi
. (A.5)

This allows defining the surface S as the (hyper)plane

xn+1 = 0. (A.6)

Now, we want to turn xn+1 into the independent variable: if this
is done, all we have to do to land exactly on S = 0 is to inte-
grate the new equations from whatever value xn+1 has to 0. The
transformation can be easily achieved by dividing Eq. (A.1) by
the new Eq. (A.4), and inverting the latter:

dx1

dxn+1
=

f1
fn+1
,

...

dxn

dxn+1
=

fn
fn+1
, (A.7)

dt
dxn+1

=
1

fn+1
.

The variable t has now become one of the dependent variables,
and xn+1 the independent one.

In practice, one integrates until a change of sign is detected
for S . Then, one shifts to the system (A.7), and integrates it one
step from the last computed point, taking

∆xn+1 = −S (A.8)

as the integration step. After that, one reverts to the system (A.1)
to continue the integration.

The only error involved is the integration error for the system
(A.7), which is usually of the same order as the integration error
for one step of the system (A.1).

Appendix B: Coordinate systems

Fig. B.1. The standard system of reference.

We briefly describe here the differences between the three coor-
dinate systems mentioned in the text, due to the fact that these
differences are somewhat subtle and not easy to recognize.

B.1. The standard celestial mechanical system of reference

Murray & Dermott (1999) show in their Fig. 2.13 the standard
coordinate system used in Celestial Mechanics (hereafter the
standard system); Fig. B.1 reproduces it.

The relevant definitions, taken from Murray & Dermott
(1999), are (a) the x−y plane defines the reference plane, and
the +x semiaxis defines the reference line of the system; (b) the
point where the orbit crosses the reference plane moving from
below to above (−z to z) is the ascending node; (c) the angle
between the reference line and the radius vector to the ascend-
ing node is the longitude of the ascending node, Ω; (d) the angle
between the radius vector to the ascending node and that to the
pericentre of the orbit is the argument of pericentre, ω; (e) the
angle between the radius vector to the pericentre and that to
the planet is the true anomaly, f . The planet orbits in the sense
of increasingω (or f ).

In the present work, we use this standard coordinate system.
We put the reference plane in the sky (a standard choice) and
the observer in Earth at the −z semiaxis. With this, a transit is
defined as the point on the orbit where ω + f = 3π/2. Alterna-
tively, the transit may also be defined as the point where x = 0
and ẋ > 0, or as the point where x = 0 and z < 0.

B.2. The Winn’s system of reference

Murray & Correia (2010) describe Keplerian orbits using the
standard system. In the same book, Winn (2010) says that “As
in the chapter by Murray and Correia, we choose a coordinate
system centered on the star, with the sky in the x−y plane and
the +z axis pointing at the observer”. But then Winn defines the
+x semiaxis pointing to the descending node, giving Ω = 180◦
when the line of the nodes coincide with the +x axis. It is worth
noting that the descending node in this system is the same point
as the ascending node in the standard system, because the z-axis
is inverted. Besides, Winn defines the conjunctions as the con-
dition x = 0, which gives him f +ω = π/2 for the transit; this
means that the argument of pericentre is measured as in the stan-
dard system from the nodal line, that is, from the ascending node.
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is measured. In the Dawson

Fig. B.2. Winn’s system of reference.

The transit can also be defined in this system as the point where
x = 0 and ẋ > 0 (as in the standard system), or where x = 0
and z > 0 (contrary to the standard system). Another difference
is that a prograde orbit in the standard system (with respect to
the +z axis) is a retrograde orbit in this system. Maintaining
the same physical situation than in Fig. B.1, the elements of the
Winn system are shown in Fig. B.2.

In terms of values of angles (subindex W stands for Winn,
subindex S for standard), we have ΩW = ΩS + π, and ωW =
ωS + π.

B.3. The Dawson et al.’s system of reference

D14 used a third system of reference. Their axes have the same
orientation as in the standard system (x−y plane on the sky,
+z axis pointing away from the observer), and also the reference
line is on the +x axis. However the argument of the pericen-
tre is measured from the nodal line toward the −z semispace
(see their Fig. 10). Therefore, the nodal line is in reality the

is measured. In the Dawson

et al. system, this origin is the anti-nodal line. Therefore the two
classes of systems are defined in an essentially di

Fig. B.3. System of reference used in D14.

anti-nodal line, and the +x axis correspond to the descending
node, as in Winn, though the +z axis is similar to that in the
standard system. Figure B.3 shows this third system.

In the standard and Winn systems, the line of nodes (ascend-
ing node) is the origin from which ω is measured. In the
Dawson et al. system, this origin is the anti-nodal line. Therefore,
the two classes of systems are defined in an essentially different
way. The same can be said about the definition of Ω: in the stan-
dard and Winn systems, this angle is defined between the +x axis
and the nodal (ascending) line; in the Dawson et al. system, it is
defined between the +x axis and the anti-nodal (descending) line:
Dawson et al. define Ω = 0 at this descending node, contrariwise
to the standard definition. The transits are at ω + f = π/2, as
in Winn. Also they can be defined as the points where x = 0 and
ẋ < 0 (contrary to the standard system), or where x = 0 and z < 0
(as in the standard system).

In terms of values of angles (subindex D standing for Dawson
et al.), we have ΩD = ΩS = ΩW − π andωD = ωW = ωS + π.
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