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As a new promising crossover method, multiple crossovers per couple (MCPC) deserves special

attention in evolutionary computing field. Allowing multiple crossovers per couple on a selected pair of
parents provided an extra benefit in processing time and similar quality of solutions when contrasted against
the conventional single crossover per couple approach (SCPC). These results, were confirmed when
optimising classic testing functions and harder (non-linear, non-separable) functions.

Despite these benefits, due to a reinforcement of selective pressure, MCPC showed in some cases
an undesirable premature convergence effect. In order to face this problem, the present paper attempts
to control the number of crossovers, and offspring, allowed to the mating pair in a self-adaptive manner.

Self-adaptation of parameters is a central feature of evolutionary strategies, another class of
evolutionary algorithms, which simultaneously apply evolutionary principles on the search space of
object variables and on strategy parameters. In other words, parameter values are also submitted to the
evolutionary process. This approach can be also applied to genetic algorithms.

In the case of MCPC, the number of crossovers allowed to a selected couple is a key parameter and
consequently self-adaptation is achieved by adding to the chromosome structure “ labels” describing the
number of crossover allowed to each individual. Labels, which are bit strings, also undergo crossover and
mutation and consequently evolve together with the individual. During the stages of the evolution process, it is
expected that the algorithm will return the number of crossovers for which the current population exhibits a
better behaviour.

Descriptions of different self-adaptation methods used, experiments and some of the results
obtained are shown.

tFuwv%xzy%{}|D~}�
 genetic algorithms, self-adaptation, crossover, function optimisation.

                                                       
∗ Proyecto UNSL-3384031. Departamento de Informática. Universidad Nacional de San Luis (UNSL). Ejército de los Andes 950 - Local 106.

5700 - San Luis, Argentina. E-mail: { esquivel, aleiva, rgallard} @unsl.edu.ar. Phone: + 54 2652 420823. Fax    : +54 2652 430224.
The Research Group is supported by the Universidad Nacional de San Luis and the ANPCYT (National Agency to Promote Science and
Technology).



2

�s���n���������K���K�����z�
MCPC as proposed in [1] allows multiple children per couple by replicated application of

crossover operator. In those experiments the number of crossover allowed to a couple remain fixed
during a single run. The rationale behind this implementation was to isolate MCPC effects to obtain a
set of preliminary results. Previous experiments showed a quality of results as good as under SCPC,
and sometimes better, when 3 and 4 crossovers per couple were allowed. Also an extra benefit in
processing time was detected; this benefit was achieved by making a lesser number of selections.
Despite these benefits, due to a reinforcement of selective pressure by increasing the production of
similar individual, MCPC showed in some cases an undesirable premature convergence effect.

Parameter control is a new field in evolutionary computation that proposes to dynamically tune
algorithm parameters by adjusting their values while the algorithm is running trying to solve a particular
problem. Inside this field there are three categories, the one concerned here is called ���}� �Y�A���%�������D�M���Y   ¡A¢£�¤�¥§¦?¨�©ª¨�«K¥;£M¥}©­¬}¨�®°¯%¥w±

which evolves them as part of the chromosome structure. Previous work of Spears
[2] suggested self-adaptive approaches to select the type of crossover operator to be applied to each
couple during a genetic algorithm execution. In this paper we propose a self-adaptive approach to
determine the number of crossovers to be applied to a selected couple under MCPC. A parameter
control general classification scheme, the criteria to implement self-adaptation when optimizing hard
testing functions, a description of experiments and results are shown in the following sections.

²�³­´�µ�¶9µ�·¹¸lº�¸P¶!»K¼z½^º�¶�¼�¾z¿­ÀÂÁ9Ã�ÀZÄ§ÄDÅ�ÆaÅ�ÁlÀZÇ�Å�È�É!ÄHÁ9ÊÌËÎÍ(Ë
Today a great interest exists in methods including mechanisms to control parameters used by

evolutionary algorithms during execution. Eiben, Hinterding and Michalewicz [3] gave the following
main categories of parameter control:

• ÏFÐ;ÑMÐ}ÒÔÓKÕMÖ�ÕM×}ÑMÕ�ØWÙ­Ú�ÒÛÚ�ÓÜÐ;ÑMÐ}ÒÞÝ�ßnÖàÑMÒ�ß%á : This is the case in which the parameter value is modified
according with a deterministic rule, without taking care of any feedback of the searching process
performed by the strategy. For example, the crossover probability rate value can be updated as a
function of the number of generations reached.

• â9ã%äÔå�æMçMè;éPê­ä�ëÛä�ìKé;æíé}ëïî�ðYñàæMëÔð%ò : In this case some feedback information of the searching process is
used to determine the direction and magnitude of the change in the parameters. Rather than being
changed by a deterministic rule, here a parameter value can be changed by considering the search
convergence degree for example.

• ó�ô}õ ön÷Aø%ù%ø�ú�ûíüMý;ô
þ­ø�ÿÛø��Kô;ûMô}ÿ ����� ûíÿ � õ : Here the parameters to be adapted are codified within the
chromosomes and undergo genetic operations. The best individuals of the population have better
chances of survival and reproduction. Hence it is expected that better parameter values be more
intensively propagated.

As the number of crossovers to be applied, to a couple, in MCPC is one of the parameters of the
algorithm that is included as a part of an individual, our present approach appertains to the last above-
mentioned category.
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���������������������� ��!���"�������!$#&%('��)!�%(*+��"���*���"���'��	�,���-%('
As we previously said, we attempt to self-adapt the number of crossovers per couple in MCPC.

Because we are using a binary representation of chromosomes, the number of crossovers allowed for an
individual is codified in a field at the rightmost positions of the bit string. Let us call it the .0/21�354�47698�:<;2=?> .
In some experiments we allowed a maximum of three and in others a maximum of seven crossovers per
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couple. So, two or three extra bits were enough for that purpose. More generally the last
( )@A)B�CED5FEG9HJIKIL HNMPO +  bits of each individual are used to find an expected optimum number of crossovers.

In that way the individuals of each new population are exploring two searching spaces: one
corresponding to the objective function and other associated to the parameter value, the number of
crossovers to apply.

Each individual preserves information about the number of crossovers originally applied to their
parents. In this way it is expected that, based on the Q-RTSVUXW?U2Y0Z<[]\_^�[9`ba0c2[ ^5W_`d`?c-QJ`  principle, good solutions
carry information about the number of crossover applied to their ancestors and that this number would
be an appropriate one.

According to Spears [2] there are two possible criteria for determining the way by which the
change will take place, edfhg-i0e  or jlk<mTn�o0k . With plq<rTs�t0q  adaptation the choice of how many crossover
operations should be applied is not tied to a particular couple but to the population as a whole. For
example, if we have the u0v2w�x�yEy7z9{�|d}2~���v2x�u��?}-ul�  distributed through the whole population as shown in the
following table:

���T�&�T�2�������2�����������	�E�T�T�����?�J�?�E�d�T�0�?�<���
1 0.25

2 0.45

3 0.30

That means the 25% of the individuals were created using one crossover operation, the 45% were
generated using two and the remaining 30% using three crossovers per couple. It is expected also that
this remains unchangeable unless any of the following things happen:

• the ���2�������7�K�� d¡2¢?£  is disrupted by crossover or mutation or,

• some of the couple, appertaining to one of the above shown classes, produces more children
than before.

Here in this paper we analyse the behaviour of a modified GA using only a ¤d¥T¦-§�¤ criterion of self ¨
adaptation. Different individuals are traversing different trajectories through the search space, thus
possibly requiring different amount of recombination. The bits in the ©�ª2«�¬�­�­7®K¯�°d±2²?³  with each individual
are used to choose the times the crossover operator will be applied on the selected pair. The later is
made by checking the corresponding number of crossover carried by each parent and;

• If they match, then we apply the recombination operator a number of times specified by the´0µ2¶�·5¸�¸7¹9º�»<¼2½?¾0¿
• Otherwise we choose a random number in the permitted range.

In the second situation and following the Spears’  approach, when decoded numbers of crossovers
are different, we are violating our attempt to preserve information because the children do not keep the
number of crossover by which them were created. If the crossover point does not disrupt theÀ0Á2Â�Ã�ÄEÄ7Å9Æ�ÇdÈ2É�Ê  (and this event has low probability of occurrence) then children retain information from
either parent, but they do not preserve information about how they were created.

In order to either retain information about how an individual was created or how their parents were
created, we devised two different approaches for experimentation.

• ËÍÌ  (see the illustration in the next page):  In any situation, exchange of information from parents
to children is done in he traditional way applying the genetic operators with their corresponding
probabilities. Parent’s chromosomes are mated and undergo crossover a certain number of times
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according to the specified values in Î0Ï2ÐEÑ�Ò�Ò7Ó9Ô5ÕdÖ2×?Ø  if they match, or to a random allowed value
otherwise. After recombination, mutation is applied to the children.
In the Ù0Ú�ÛÝÜ Þ ß�à�Þ�á-â  situation, this approach, preserving parent’s information, enforces population
diversity in the parameter searching space, because most of the time one child inherits
characteristics from one of the parent and the other child inherits features from the other parent.

• ã�ä  (see the illustration beneath): If the values specified in å0æ2ç�è5é�é7ê9ë�ì<í2î?ï  do not match then the new
random value for the number of crossovers is inserted first in the parent’s ð0ñ2ò�ó�ô�ôVõ9ö�÷dø2ù?úhû  and
afterwards crossover is performed for the number of times specified by this random value. This
approach by preserving individual information creates more similar individuals in the parameter
searching space and increases loss of genetic diversity.

üþý�ÿ��������	��
���
����������������
Experiments E1 and E2, to verify the parameter control mechanisms were designed. For this we

choose two hard testing functions: Easom’s [5] and Schweffel’s [6] functions (see table 1 for a detailed
description of them). A modified version of the non-canonical genetic algorithm (Goldberg [4]) was
implemented.

Series of many runs were performed on each function, with randomised initial population of size fixed
to 1000 individuals, using binary representation, proportional selection, elitism, one point crossover and bit
flip mutation. The number of generations was fixed to 500 and probabilities for crossover and mutation were
fixed to 0.65 and 0.05, respectively.

The relatively big population size of 1000 individuals was chosen in order to allow a significant
contribution of selected individuals to the evolution process when high number of crossovers are allowed. For
example in the case of six crossovers per couple only 16.5% of the available individuals in the old population
will intervene when building the new generation (i.e. 165 individuals of 1000 in this case).

�
1 1 0 0 -------------- 1 1 ���
0 1 1 0 -------------- 1 0 ���

1 1 0 0 -------------- 1 0  "!
0 1 1 0 -------------- 1 1 #%$
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(
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Table 1. Objective functions

The following variables were chosen for the analysis

u�v8w�x y�xXzX{X|=} ~���}��8�

��� v��f}I� � Is the ratio 


 �S�4�I�8������
�G�4�I�4�� ��� �

_
_  between the best value and the optimal value.

It measures the quality of a solution, how good is a solution contrasted against the
optimum value known or estimated..

��������� Mean number of crossover allowed per selected couple. This is the variable subject
of this study.

�����I��  Defined as in [1]. Running time difference. It is the percentage of time reduction when
compared with classic crossover (single crossover per couple).

¡�¢¤£¦¥�§E¨ª©�«�§
Results concerning ¬�­8®V¯�°�± ²  were similar under E1 and E2, but different when ³�´fµ·¶=¸  is considered.

Hence the following figures alternatively show ¹�º4»V¼f½�¾ ¿  results under experiments E1 or E2. Results in
regard to À�ÁfÂ·Ã=Ä  are summarised in the same graph for both experiments.Å�ÆÈÇ�ÉXÊ�ËfÌ8ÇÎÍ6Ï

We started optimizing Ð4Ñ , and for this unimodal function two bits were used to code theÒVÓ]Ô�Õ8ÖnÖØ×ÚÙ8ÛfÜ]ÝßÞ  , allowing a maximum of three crossovers (six children per couple).

In figure 1 à�á4âVãfä�å æ  values for the Easom’s function, show a slightly slower convergence of MCPC
when compared with SCPC, but after 80 generations the former results are better. In fact during the
simulation, values of ç·è8éVêfë�ì í  reach 1.0 under MCPC and 0.9998 under SCPC.
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Regarding î�ïfð�ñ=ò  values, it can be observed that they oscillate between 2.5 and 2.8 after the few
first generations under E1 and between 2.3 and 2.6 under E2.

Here the behaviour of the self adaptive parameter control mechanism is clear: when genetic
diversity in the parameter searching space is low then lesser number of crossovers are allowed and
viceversa. This behaviour favours the evolutionary process.

Concerning to óõôßöf÷	ø  values they were 37,7% and 33,6% under E1 and E2 approaches
respectively.

ù�úÈû�üXý�þfÿ8û����
When optimizing  ��� , we decided to use two and also three bits to code the �	��

�����������������  , allowing

a maximum of three and seven crossovers respectively.

In figure 2 �����	�� "! #  values for the Schwefel’s function with two bits for $	%�&�'�(
(�)�*,+�-�.0/ , show a
slightly faster convergence of MCPC when compared with SCPC, but both converge to the optimum
reaching a 132�4	5�687 9  value of 1.0.

Regarding :<;�=�>@?  values, it can be observed that they oscillate between 2.6 and 2.8 remaining
stable after 152 generations under E1, and oscillate between 2.3 and 2.6 under E2.
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Here again the behaviour of the self-adaptive parameter control mechanism is shown. Parameter
setting is adapted to the population diversity in the parameter searching space. In this case this
behaviour prevent the evolutionary process of being trapped in a local optima.

Concerning to ²´³�µ�¶¸·  values they were 22.1% and 21.3% under E1 and E2 approaches
respectively.

Another set of experiments studied the behaviour of the control mechanism for the Schwefel’s
function with three bits for the ¹	º�»
¼�½
½¿¾�À�Á�Â�Ã0Ä .

In figure 3 Å3Æ�Ç	È�É8Ê Ë  values for the Schwefel’s function with three bits for Ì[Í�Î
Ï�Ð
Ð�ÑgÒ�Ó�Ô�Õ0Ö , are shown.
Here we cannot clear differences on convergence velocity. At the beginning MCPC shows to be faster
and after that SCPC is faster 110 generations both reach the optimum.

Regarding ×ÙØ�Ú3Û@Ü  values, it can be observed that they oscillate between 4.5 and 5.6 under E1, and
between 5.2 and 6.3 under E2.

Here again the behaviour of the self-adaptive parameter control mechanism is shown. Parameter
setting is adapted not only to the population diversity but to the maximum number of crossovers
allowed. Concerning to ÝßÞ0à�á¸â  values they were 50% and 48% under E1 and E2 approaches
respectively.

ã�äÙåçæWèêé�ëíìïîKð@æWèêî
The present paper proposes an alternative approach to assign the number of crossovers allowed for

a selected couple. Instead of doing that based on the couple fitness as in [8], here we suggest to use a
self-adaptive parameter control approach. The parameter considered is coded in a ñ	ò�ó
ô�õ
õ¿ö�÷�ø�ù�ú0û  of two or
three bits in the chromosome structure, and further submitted to genetic operations in the same way as
any evolutionary technique does. Within this approach two  searching processes are carried out
simultaneously: one on the problem (objective function) space and the other on the parameter space. In
this way it is expected an adaptive parameter setting, retaining best settings through the survival of the
fittest individuals in the problem space.

Two different strategies were approached in order to overcome loss of information about offspring
or parents creation. As they were conceived, approach üþý  maintains population diversity in the
parameter searching space while approach ÿ��  leads to a loss of diversity.

Being consequent with this situation the control mechanism adapts the number of crossovers for
exploration (under E1) or exploitation (under E2) accordingly. And this behaviour is preserved for
diverse maximum number of crossover allowed.
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Self-adaptation of MCPC parameters has been addressed to find the most appropriate number of
crossover operation to be applied to a mating pair and, from the above shown results, we can conclude
that this can not be a fixed number. Usually, when locally self-adapting, this number oscillates between
couples and runs. And this oscillation seems to show best results compared against the cases where we
allow a fixed number of crossover per couple.

It is also remarkable that on each experiment MCPC outperforms SCPC most of the time on quite
different fitness landscapes.

Future work will consider more biased methods, tied to the fitness of individuals in the couple, to
choose the number of crossovers in the 9;:"<>= ?�@BA�C�?�DFE case.
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