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Abstract

Our interest is to define evolutionary algorithms to solve Constraint Satisfac-
tion Problems (CSP), which include benefits of traditional resolution methods
of CSPs as well as inherent characteristics of these kind of problems.

In this paper we propose a criterion to be able to evaluate the performance of
genetic operators within evolutionary algorithms that solve CSP.
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1 Introduction

This paper involves two research areas: Constraint Satisfaction Problems (CSP)
with finite domains and evolutionary methods. We focus our attention on ge-
netic operators. CSPs are NP-hard problems. A finite domains CSP is a set of
variables, their related domains and a set of constraints between these variables.
The aim is to find a value for each variable from its respective domains, such
that all the CSP constraints are satisfied, [13], [14], [11].

Evolutionary methods are based on the evolutionary theory and they are
a particular class of stochastic search methods to solve optimization problems,
[15]. They have been applied to solve Constraint Satisfaction Optimization
Problems [23], and CSP [3], [6], [7], [8], [9], [21], [22], [10], arguing that they are
efficient methods for large scale constraint problems resolution.

The methods currently proposed in the literature have focused their study
on the genetic representation and reproduction mechanisms (specially in genetic
operators). One of the most current problems for this kind of methods is about
the performance evaluation of the genetic operators.

On the other hand, the constraint research community has more focused on
developing techniques to improve the algorithms performance, using the con-
straints knowledge, [5], [13], [11], [2], for instance reducing the search tree. The
algorithms that use a systematic search are usually evaluated according to the
number of constraint checks needed to find a solution or to decide that the
problem doesn’t have one.

This paper is organized as follows: Section 2 defines some CSPs and Evo-
lutionary Algorithms(EA) notions. We introduce in section 3 two genetic op-
erators. In section 4 we propose a suitable model for comparing the genetic
operators performance. Section 5 presents a set of tests for solving randomly
generated CSPs which have at least one solution. Finally, section 6 gives some
conclusions.

2 CSPyEA

In this section we talk about the CSP basic notions, such as: constraint matrix,
instantiation, and partial instantiation. Then we present the evolutionary algo-
rithm structure and its components that we will use afterwards. For simplicity
we restrict our attention here to binary CSPs, where the constraints involve two
variables. N-ary CSP has an equivalent binary one [19].



2.1 CSP

A Constraint Satisfaction Problem (CSP) is a set of variables V = {X1,...,X,},
their related domains D,,...,D, and € a set of 5 constraints between these
variables. A variable must be instanciated from values within its domain. The
domain sizes are respectively myq,...,m,, with m equal to the maximum of
m;. Each variable X; is relevant (denoted by “be relevant to” r>), for a
subset Cj,,...,C;, of constraints where {ji,...,jr} is some subsequence of
{1,2,...,n}. A binary constraint has exactly two relevant variables. A binary
CSP can be represented by a constraints graph where nodes are the variables
and arcs are the constraints. We talk about inconsistency or constraint viola-
tion when the relevant variables for a given constraint don’t have values that
can satisfy the constraint. An instantiation of the variables that satisfies all the
constraints is a solution of the CSP. Generate & Test is the simplest algorithm,
it only tries every possible values for the variables.

Definition 2.1 (Constraint Matriz)
A Constraint Matrix R is a n X n matriz, such as:

B - [ 1 if variable X; > Cy
R = Rle, j] = { 0 otherwise

Remark 2.1 With binary constraints, each row of R has only two values equal
to one.

Definition 2.2 (Instantiation)
An Instantiation I is an assignment from a n-tuple of the variables (X1,...,X,) —
Dy x ... %X Dy, such that it gives a value from its domain to each variable in V.

Definition 2.3 (Partial Instantiation)

Given V, C V, an Partial Instantiation I, is an assignment from a j-tuple of
variables (Xp,,...,Xp;) = Dp, X ... X Dy, such that it gives a value from its
domain to each variable in V.

Remark: We speak about satisfaction (or insatisfaction) of Cy in Iy iff all
the relevant variables of Cy are instantiated

2.2 Evolutionary Algorithms

The structure of an evolutionary algorithm is shown in figure 1.

The evolutionary algorithm used in this paper generates in a random way the
initial population. To construct a chromosome the variables values are selected
from their domains with a uniform probability. We have used a non-binary
genetic representation because it is the most natural representation for this kind
of problems. Finally the selection algorithm is biased to the best chromosomes.



Begin /* Evolutionary Algorithm */

t=0
inicialise population P(t) (1)
evaluate the individuals in P(t) (4)
while (not end-condition) do
begin
t=t+1
Parents = select-parents-from P(t-1) (5)
Childs = alter Parents (3)
P(t) = Childs
evaluate P(t) 4)
end
endwhile

End /* Evolutionary Algorithm */

Figure 1: Structure of the EA and its components

Remark 2.2 An instantiation I corresponds to a chromosome (individual) in
our evolutionary algorithm.

2.2.1 Evaluation Function

Evolutionary Methods have usually been applied to solve optimization problems.
They search a solution guided by the evaluation function. A CSP doesn’t have a
function to be optimized, thus in order to solve it with an evolutionary algorithm
we require to define an ad-hoc fitness function. For instance, the number of
satisfied constraints [12].

In [20] we proposed a fitness function specially defined for CSPs. We roughly
describe it in the following paragraph:

Definition 2.4 (Involved Variables)
For a CSP and an Instantiation 1 of its variables, we define a set of involved
variables Eqqy CV for each constraint Co (a=1,...,7), as follows:

o Eqa) = ¢ iff Co is satisfied
o X; € Eqqy if XiD> Cy and Cy, id not satisfied under 1

o X; € Eqq if Xi> Cy and 3Cs # Cy such that both X; and X; > Cjs, and
C, 1is not satisfied under 1

This definition shows that there exists variables that are relevant for many
constraints. When C,, is violated the involved variables are: the variables direct-
ly connected by C,, and the other variables connected to them. More precisely,



for an instantiation I, the consequence of changing a value of a variable can
affect many constraints. We have incorporated this idea in the fitness function.
Before to define the fitness function we need the next definition:

Definition 2.5 (Error Evaluation)
For a CSP with a constraint matriz R and an Instantiation 1, we define the
Error Evaluation e(Cy,I) for a constraint Cy as:

e(Cq,I) = Number of variables in Ey1)

e(Cqy,I) = { 3 w=1 Rlo, u] (22:1 R[ﬂ,w]) if Cy is violated 1)

0 otherwise

Remark 2.3 If a binary constraint C, has Xy and X as relevants variables
and the constraint is violated, then:

e(Cqy,1) = (Number of relevant variables of C,) + (Propagation effect X
and X;)
where the propagation effect X and X, in a binary network constraint is defined
by the number of constraints Cg, 8 =1,...,n,8 # o that have either X or X,
as relevant variables.

Definition 2.6 (Contribution to the evaluation)
For a CSP, we define the contribution of Cy, to the evaluation function ¢(Cy)
as:

c(Cy) = e(Cy,I;), when Cy is violated on I;.

Remark 2.4 The value of ¢c(Cy) does not depend on the values of the instan-
tiation but of the fact that the instantiation violates the constraint.

Finally, the evaluation function is the sum of the evaluation of the error
(equation 1) of all the constraints in the CSP, that means:

Definition 2.7 (Fitness Function)

For a CSP with a constraint matriz R and an instantiation I, and the error
evaluation e(C,,I) for each constraint C,,(a = 1,...,n), we define a Fitness
function Z(I) as:

Z(I) =y e(Ca,]) 2)

a=1

The goal is to minimize the fitness function Z(I), which will be equal to zero
when all the constraints will be satisfied. The evaluation function reflects that
it is more important to satisfy those constraints that involve more variables,
i.e., those that are more strongly connected with other constraints.



3 Genetic Operators

In this section we present a comparison between two evolutionary algorithms
that only differ in their genetic operators. Therefore the genetic operators used
in this paper are roughly presented in the following sections:

3.1 Asexual Operator: (n,p,g)

It is an specialized operator defined by Eiben in [8]: The operator selects a
number of positions from its parent and then it selects new values for these
positions. The parameters to be defined are the number of values to be modified,
the criteria to identify the positions of the variables to be modified and the
criteria to define the new values for the child. The operator is denoted by
(n,p,g) where n is the number of modified values and p,g values that will be
chosen from the set {r,b}, where r is for a random uniform selection and b is
for a biased selection using some heuristics. The best parameters found for this
operator are (n,p,g) = (#,r,b) where # means that the number of values to
be modified is randomly chosen but less or equal than } of the number of total
positions.

3.2 Arc-operators

In [22] we proposed two operators denoted in a generic way as arc-operators.
They are based on the constraint network.

3.2.1 Arc-crossover

This operator makes a crossover between two randomly selected individuals
from the population, and creates a new individual (the son). The son inherits
its values using a greedy procedure which analyzes each constraint according to
a pre-established order. The first arc which it analyzes is the more difficult to
satisfy, that is the one which is stronger connected. According to the functions
defined in the previous section, the first constraint to take into account is the one
which has the higher value for the error evaluation function, when the constraint
is violated. We need the following definitions:

Definition 3.1 (S,)

Given a CSP and a partial instanciation I,. For a fully instanciated con-
straint Cy (i.e. all its relevant variables are instanciated) we define a set S, C 0
for Cg € S, iff

e X, : X; > Cy and X; > Cg (Cy,Cp have a commun variable)

o VX; relevant for Cg, X; is instantiated



This definition shows that changing a variable value could affect other con-
straints. This is used when the algorithm is creating the son, that is when it is
instanciating the son’s variables.

Remark: C, € S,

Definition 3.2 (Partial Crossover Evaluation Function) Given a CSP with a
partial instanciation I, the sets Sy, and the functions e(Cy,Ip).For all fully

instanciated constraint C,, we define the crossover partial evaluation function
cff(Cy) for Cy as:

cff(Co, Ip) = Z e(Cy, Ip) 3
C, €8

Remark 3.1 We extend the domain of the previously defined functions for I to
I and I, computing these functions only considering involved constraints (related
with Cy) which variables are instanciated in I,

Definition 3.3 (M;)
Given o CSP with a partial instanciation I,. For an instantiated variable X;
we define a set of constraints M C 0 by C, € M; iff:

o Xj > Cy
o C, is fully instantiated on I (i.e. VX > Cy 1 X}, is instantiated)

Definition 3.4 (Partial mutation evaluation function)

Given a CSp with a partial instanciation Iy,the sets Mfor all variables instan-
ciated in Iy, and the functions e(Cy,Ip).For oll fully instanciated constraint
Cy, we define the mutation partial evaluation function miff for X; as:

mff(X;,Ip) = Z e(Cy, Ip) 4)
CyeM;

Remark 3.2 his function is computed considering only the involved constraints
(related con X;) which variables are instanciated in I,

Definition 3.5 (Number of violations)

Given a CSP and the error evaluation functions e(Cy,11) associated to each
constraint C,, under an instanciation I, and e(Cqy,12) for each constraint C,
under an instantiation Io. We define for each constraint C, the number of
violations nv(Cy,11,12) as:

0 e(Ca,I1) = e(Cy,Iz) =0

nv(Cy,I1,I2) = ¢ 1 either e(Cy,I1) # 0 or e(Cy,I2) #0
2 e(C,,11) #0, and €(Cy,I2) #0



Figure 2 shows the arc-crossover algorithm.

The idea is the following: we select two individuals from the population and we
will use their values to create a son, which is expected to satisfy more constraints
than his parents. The algorithm starts with the more connected constraint in
the graph and checks if it is satisfied or violated by the parents. If it is satisfied
for both parents, the son will take the two relevant variables of this constraint
from the parent which has the best evaluation . If only one parent satisfies
the constraint, then the son inherits its values from the two variables of this
parent. If both parents violate the constraint, then the algorithm crosses the
parents’ values for each variable which belongs to the constraint (with two pos-
sibilities). Within these two possibilities for the son’s values, we select the one
that will give it a better evaluation (taking into account the variables that have
already been instanciated), that is a partial revision of the son is made before
instanciating the variables. Once almost all the constraints have been analyzed,
they are going to be left some constraints to consider. It is probable that some
constraints, without being yet analyzed, already have the values of their vari-
ables instanciated in the son (due to the connectivity with previously analyzed
constraints). If a constraints only lacks a variable to be instanciated during it
analysis, the selection of its value is made taking into account the evaluation
that would have the son with each value coming from both parents. The best
values for the son is selected according to already instanciated variables.

4 Comparing Genetic Operators

4.1 Number of constraints checks

In this section we estimate the number of constraints checks made by an al-
gorithm which uses arc-mutation and arc-crossover, and compare it with an
algorithm based on (#,r,b) and mutation. Given an individual, arc-mutation
randomly selects the variable to modify. This variable’s value is chosen com-
puting the partial evaluation mutation function for each value from its domain
(given by definition 3.4. The selected value is the one with the best value for
mff.
4.1.1 The comparison model
Parameter of the model:

® p. crossover probability

® p,, mutation probability

e {, population size

e 1 number of variables



Algorithm Arc-Crossover (Parent:,Parents)
Begin
For each C, using the evaluation-error order
Analise C, (x;,z;) in both Parent; and Parent;
if ((X;11)* vy (X; 11p)) then
if (nv(C,,Parent;, Parentz) = 0) then
if (Z(Parentz) > Z(Parent1)) then
Ip(Xi, X;) = (@41, 251)
else
if (Z(Parent1) > Z(Parents)) then
Ip(Xi, X;j) = (245, 2j5)
else
Ip(Xi, X;) = random((€iy, xj1), (Tiz, Tj5))
else
if (nv(C,,Parent;,Parents) = 1) then
if (Cy |= Parent:)® then
Lo (Xi, X;) = (@41, 25:)
else I,(X;, X;) = (24, 25,)
else
In(Xi, X;) = argmins, es, (cH(Ca, (Ip U (241, 255))),
cff (Ca, (Tp U (2iy, 2;1))))°
else
if (X; 4Ip) or (X; 41Ip)) then
if (X; 11I;) then k=i else k=j
Ip(X3) = argmins,es, (mfF(Xp, (Ip U 2k, )), mfF(Xe, (Tp U 2k,)))?
End

¢X; is not instantiated in Ip
b= satisfied by
Cargmingcs{as} gives s* such that as» < as,Vs € S.
51 = {(®i1,%52), (Tia, 251 ) }
Sz = {@ky, Thy }

Figure 2: Structure of Arc-crossover



e m domain size

e p; connectivity probability, i.e., the probability to have a constraint be-
tween two variables.

Model Consequences:

e Average number of constraints = ﬂ"—;lm

e Average connectivity of each variables = p;(n — 1)
arc-crossover: we are going to analyze the worst case for arc-crossover, when
the constraint C, is violated by both parents, and the two involved variables
in C have not been yet instanciated in the son. In this case, arc-crossover has
to select between the two combinations of values from the parents, with two

evaluation of cff. Each constraint is only verified once, with combinations of
values. Therefore we have the following:

e 27 < number of constraint checks of arc-crossover< 4g

Thus, the minimum number of constraints checks for arc-crossover is 2n,
when at least one of the parents satisfies all of the constraints in the graph.

arc-mutation: Evaluates with mff all other values of the variable domain
(saving the actual). Therefore:

e Number of constraint checks of arc-mutation = 2n(m — 1)p,,

Thus, the number of constraints checks for the whole algorithm which uses the
arc-operators (Nyq1go) is:

® Nyalgo < (4772526 + 277(7" - 1)pm) tp

(#,r,b) is the asexual operator. Therefore the number of constraint checks
nm

for (#,r,b) is equal to 5. For the whole algorithm which uses (#,r,b) and
mutation, the number of constraint checks is:

tpPenm

e N'valgo = =55

because the standard mutation operator does not verify any constraint.
Obviously, the number of constraint checks for arc-operators is much more
than other algorithms. However, the performance of an algorithm is related to:

e The ratio of cases where the algorithm finds a solution.

e The number of generations to find a solution.



5 Tests

We have executed the two algorithms to solve the classic constraints satisfaction
problem of coloring a graph with three colours (3-colours). The 3-colours prob-
lem consists in assigning a color to each node such that every adjacent nodes
will have a different colour. The tests was executed on a SUN Sparc Station IPX
running Solaris 2.5. We have randomly generated 100 problems (with solution)
according to their connectivity, with a connectivity ratio between [10%..90%].We
fixed a maximum number of iterations of 500 for the arc-operators algorithm,
and a maximum of 1500 for the other one. The following table shows the aver-
age CPU time to solve 100 graphs, and the average number of constraint checks.

Constraints | N} ., CPU’time | Nygigo | CPU time
30 11141 67 7609 18
45 185671 1144 44967 110
60 843709 4891 422426 | 1053
90 1401437 | 6372 465359 | 917
120 1311153 | 5908 250505 | 632
150 1060255 | 5938 219715 | 452
180 1070010 | 5961 219847 | 580
210 1022748 | 5693 201619 | 419
240 936505 5296 220700 | 419
270 1153107 | 5087 252820 | 673

The performance of the arc-operators algorithm is much better than the one
which uses (#,r,b) and mutation. This behavior comes from the fact that the
first algorithm converges faster to a solution, and also because it has been able
to solve more problems.

6 Conclusion

The main objective of systematic algorithms which solve CSPs is to minimize the
number of constraint checks. However, evaluating methods based on stochastic
searches is not an easy task. This comes from the fact that we deal with evolu-
tionary algorithms where we don’t a priori know the number of iterations that
will be completed, neither the number of times that genetic operator(s) will be
applied.

In this paper we proposed a model to evaluate the number of constraint
checks completed by operators, to compare the efficiency of genetic operators
for CSP solving. Moreover, we propose to evaluate the performance of the al-
gorithm according to the CPU time and the number of constraint checks. This
allows to have a vision of the algorithm for solving CSPs.
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