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Abstract

In scheduling, a set of machines in paralld is a setting that is important, from both the theoretical and
practical points of view. From the theoretical viewpoint, it is a generadlisation of the single machine
scheduling problem. From the practical point of view the occurrence of resources in parald is common in
red-world.

When machines are computers, a paralel program can be conceived as a set of paralle components (tasks)
which can be executed according to some precedence relationship.

In this case efficient scheduling of tasks permits to take full advantage of the computational power provided
by a multiprocessor or a multicomputer system. This kind of planning involves the assignment of partialy
ordered tasks onto the system architecture processing components.

This paper shows the problem of allocating a number of non-identical tasks in a multiprocessor or
multicomputer system. The model assumes that the system consists of a number of identical processors and
only one task may execute on a processor at atime. All schedules and tasks are non-preemptive. The well-
known Graham'’s list scheduling algorithm (LSA) is contrasted with an evolutionary approach using a direct
representation of solutions.
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1. INTRODUCTION

A paralle program is a collection of tasks, some of which must be completed before than others begin. The
precedence relationships between tasks are commonly outlined in a directed acyclic graph known as the fask
graph. Nodes in the graph identify tasks and their duration while arcs represent the precedence relationship.
Factors, such as number of processors, number of tasks and task precedence constraints contribute to make
difficult agood assignment.

The problem to find an schedule on m > 2 processors of equal capacity, that minimizes the whole processing
time of independent tasks has been shown as belonging to the NP-complete class (Horowitz and Sanhi 1976
[9])

Task scheduling can be classified as static and dynamic. In the case of static scheduling some strong reasons
make it applicable. First, static scheduling sometimes results in lower execution times than dynamic
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scheduling. Second static scheduling alows only one process per processor, reducing process creation,
synchronisation and termination overhead. Third, static scheduling can be used to predict speedup that can be
achieved by a particular paralld algorithm on a target machine, assuming that no preemptions of processes
occur.

3. A DETERMINISTIC MODEL

In a determinigic model, the execution time for each task and the precedence relations between them are
known in advance. Thisinformation isillustrated in adirected graph, usually known asthetask graph. In Fig.
1 we have eight tasks with the corresponding duration and their precedence relations

A task graph is a simplified representation of a
paradle program execution, ignoring overheads
due to interrupts for accessing resources etc.
Nevertheless, it provides a basis for datic
allocation of processors.
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T4 A schedule is an allocation of tasks to
processors which can be depicted by a Gantt
chart.

T5/3 T6/3 In a Gantt chart, the initiation and ending times
for each task in the available processors is
indicated and the makespan (total execution
time of the pardle program) of the schedule

— can be easily derived.
T8/1
Fig. 1. Themode task graph
P, Ts | T4 Te
P Ty T Ts T7 Ts
Timeslot | 1 | 2 3 | 4 | 5 6 | 7 | 8 | 9 | 10
Time 0 1 2 3 4 5 6 7 8 9 10

Fig. 2. Scheduling 8 tasks onto 2 processors by LSA

Figure 2, shows a Gantt chart corresponding to one possible schedule of the paralle tasks of the task graph of
figure 1 onto two processors. By simple observation we notice a makespan’ of 10 and an utilisation of a 100%
for processor P; and an utilisation of 60% for processor P,. Also an speed-up of 1.6 can be easily derived.

Connected with the makespan, an optimal schedule is such that the total execution time is minimized. Other
performance variables, such as individual processor utilization or evenness of load distribution can be
considered. As we can see some simple scheduling problems can be solved to optimality in polynomia time
while others can be computationally intractable. As we are interested in scheduling of arbitrary tasks graphs
onto areasonable number of processors we would be content with polynomial time scheduling algorithms that
provide good but no optimal solutions.

2 For any arbitrary environment it is defined as the completion time of the last task |eaving the system.



3. THE LIST SCHEDULING ALGORITHM (LSA)

For a given list of tasks ordered by priority, it is possible to assign tasks to processors by always assigning
each available processor to the first unassigned task on the list whose predecessor tasks have already finished
execution. Let be:

T={Ty,....,Tn} aset of tasks,

w: T (0, o) afunction which associates an execution time to each task,

< apartial order in T and

L apriority list of tasksin T.
Each time aprocessorsisidle, it immediately removes from L the first ready task; that is, an unscheduled task
whose ancestors under < have all completed execution. In the case that two or more processors attempt to
execute the same task, the one with lowest identifier succeed and the remaining processors look for another
adequate task. The Gantt chart of Fig. 2, resulted of applying the list scheduling algorithm to the task graph
of Fig. 1, with the priority list L = [Ty, Ty, Ts, T4, Ts, Ts, T7].

3.1 ANOMALIES OF THE LIST SCHEDULING ALGORITHM

Using this heuristic, contrary to the intuition, some anomalies can happen. For example, as shown in Fig. 3,
increasing the number of processors, decreasing the execution times of one or more tasks, or eliminating
some of the precedence constraints can actually increase the makespan. In his work Graham [8] presented the
following examples using the same priority task list L = [Ty, T, T3, T4, Ts, Te, T7,Tg, To] fOr each schedule.

Ps Ts Te Ts
P, T Ta Ts T,
T3 o9 Py T To
ts | 1] 2 [ 3[]4[5][6] 78] 9 10]11]12

T2/2 T5/4

T3/2 T6/4 P4 T4 T7
Ps| Ts Te
T4/2 T7/4
P, T Ts Ty
T8/4 Py Lk Ts
ts| 1] 2[3|4 /5|6 7|8|9]10[11]12|13|14]15
(a
T2 T9/8
T2/1 T5/3 P3 T3 T7
T3/1 T6/3 P2 T2 T4 TG Tg
Py T Ts Ts
ts| 1] 23] 45| 6|78 9]|10]11]12]13
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T8/3 (b)
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Fig. 3. Increasing number of processors, decreasing tasks duration and eiminating precedence
constraints can increase the makespan using the Graham'’ s heuristic.



4. USING EVOLUTIONARY ALGORITHMS TO PROVIDE NEAR-OPTIMAL SOLUTIONS

The task allocation problem has been investigated by many researchers [3] ,[4], [5], [6], [7], [10], [11].
Several heuristics methods has been proposed, such as mincut-based heuristics, orthogona recursive
bisection, smulated annealing, genetic a gorithms and neura networks.

From the representation perspective many evolutionary computation approaches to the general scheduling
problem exists. According to solution representation these methods can be roughly categorised as indirect
and direct representation (Bagchi et a, 1991 [1]).

In the case of indirect representation of solutions the algorithm works on a population of encoded solutions.
Because the representation do not directly provides a schedule a scheduler builder is necessary to transform a
chromosome into a schedule, validate and evaluate it. The scheduler builder guarantees the feasibility of a
solution and its work depends on the amount of information included in the representation.

In direct representation (Bruns 93 [2]) a complete and feasible schedule is an individua of the evolving
population. The only method that performs the search is the evolutionary algorithm because the represented
information comprises the whol e search space.

We devised different evolutionary computation approaches to task scheduling, regarding two different
representation schemes; direct and indirect. In this paper we present a direct approach with the as-soon-as-
possible crossover method and an indirect-decode representation. We will concentrate only on results of
direct representation.

4.1. DIRECT REPRESENTATION OF SOLUTIONS

Here we propose to use a schedule as a chromosome. Suppose we have two different schedules, (a) and (b)
(Fig. 4), for the model task graph of Fig. 1, represented by the following Gannt charts.

P, Ts | T4 Te
Py T T Ts T7 Ts
ts 1 | 2 3 | 4 | 5 6 | 7 | 8 9 10
Schedule (a)
P> Ts | Ts | E
Py T T T, Te T,
ts 1 | 2 3 | 4 | s 6 | 7 8 | 9 | 10 11 12
Schedule (b)

Fig. 4. Feasible schedules for the model task graph.

The precedence relation described in the task graph can be properly represented in the corresponding
precedence matrix 4, where element a;; is set to 1 if task i precedes task j and it is set to O otherwise. A gene
in the chromosome can be the following four-tuple:

<task _id, proc_id, init time, end time >
where,
task id, identifies thetask to be allocated
proc_id, identifies the processor where the task will be allocated
init_time, it isthe commencing time of thetask id in proc_id.
end _time, it isthe termination time of the fask id in proc_id.

With this structure the list of the corresponding predecessors tasks is easily retrieved by entering the column
of A indexed by therask id value.
The corresponding chromosomes C, and Cy, for schedules (a) and (b) are:



Ca: | 1102 | 2125 | 3223 | 4235 | 5158 | 6258 | 7189 | 81910 |

Co: | 1,102 | 2125 | 3223 | 4157 | 5258 | 61710 | 7,1,10,11 | 8,211,12 |

This representation has a problem. If we use conventional crossover such as one-point crossover invalid
offspring (unfeasible schedules) can be created. For example, if we decide to apply this operator after the fifth
position we would obtain two invalid chromosomes.

Ca: | 1,102 | 2125 | 3223 | 4235 | 5158 | 61710 | 7,1,10,11 | 8,211,12 |

Co: | 1,102 | 2125 | 3223 | 4157 | 5258 | 6258 | 7,189 | 81910 |

Both of them violate the restriction that a processor processes atask a atime. Genes5and 6 in C; and Cy
describe invalid schedules where the same processor (P; for the case of C; and P, for the case of Cy)
processes two tasks at the sametime interval.

Penalty functions or repair algorithms can be used to remedy this stuation [12]. Penaty functions of varied
severity can be applied to invalid offspring in order to lower their fithess values but alowing them to remain
in the population aiming to retain val uable genetic material.

Repair algorithms attempt to build up avalid solution from an invalid one. This approach is embedded in the
knowledge-augmented crossover operator proposed by Bruns. Here a collision occurs if an operation (task
processing) inherited from one of the parents cannot be scheduled in the specified time interval on the
assigned processor. In this case the processor assignment is unchanged and it is delayed into the future until
the processor isavailable.

In our example, this advanced crossover would generate the following chromosomes and corresponding
feasible schedules (Fig. 5):

Ca : | 1,102 | 2125 | 3223 | 4235 | 5158 | 61811 | 7,1,11,12 | 821213 |
Co: | 1102 | 2125 | 3223 | 4157 | 5258 | 62811 | 711112811213 |
P, Ts | Ty Ts
P L T, Ts Ts T7
ts 1 2 3 4 5 6 7 8 9 10 11 12 13
Schedule (")
P, Ts | Ts | Te
P L T, Ta T, | Ts
ts 1 | 2 3 | 4 | s 6 | 7 8 | 9 | 10 | 11 12 13
Schedule (b”)

Fig 5. Feasible offspring schedules for the model task graph (Bruns).



As expected both children have a larger makespan but ill are feasible. In the proposed Bruns's knowledge-
augmented crossover only a child is generated where the part taken from the first parent build a consistent
schedule. Then the assignment of the missing tasks are chosen from the second parent maintaining the
assignment order and the processor alocations to tasks. Timing adjustments are included if neccesary. The
latter decision can imply, as we showed, larger makespans for the children.

In our work we adopted an as-soon-as-possible (ASAP) approach similar to the Brun’s proposal but modified
because delays are avoided. This wasimplemented by moving the assignment to the earliest possible time, by
random selection of one available processor at the ready time of the unassigned task. In this way no processor
will remain idleif atask isavailable to be executed and the precedence constraints are satisfied.

The available processor is sdected in way such to minimize the assignment changes in the part of the
offspring corresponding to the second parent.

In our exampl e this decision provides only one aternative and would give us the following chromosomes and
their corresponding schedules, which differs from their parentsin the assignments of tasks T;and Tg only. See
figure 6.

Ca- | 1,102 | 2125 | 3223 | 4235 | 5158 | 6258 | 7,189 | 82910 |
Cy: | 11,02 | 2125 | 3223 | 4157 | 5258 | 617,10 | 7,1,10,11 | 8,1,11,12 |
P> T3 T, Ts Tg

P L T, Ts T7
ts | 2 3 4 | 5 6 7 8 9 10
Schedule (@)
P, Ts | Ts |
P L T, Ts Te T7 Ts
Ts 1 | 2 3 | 4 | s 6 | 7 8 | 9 | 10 11 12
Schedule (b))

Fig 6. Feasible offspring schedules for the modd task graph (ASAP).

For mutation also asimilar operator was conceived. If the chromosome undergoes mutation then a search is
done, from l€ft to right, until one geneis modified in the following way: choosing an aternative free
processor or moving the assignment to the earliest possible time Thiswould imply modifying subsequent
genes of the chromosometo create a valid offspring.

4.2, INDIRECT REPRESENTATION OF SOLUTIONS

Under this approach a schedule is encoded in the chromosome in away such that the task indicated by the
gene position isassigned to the processor indicated by the corresponding dlele, as shown in Fig. 7:

processor - | 1]/2|3[2[1[3[1]2
task - 1 2 3 4 5 6 7 8
Fig. 7. Chromosome structure for the task allocation problem

Theideaisto useadecoder. A decoder isamapping from the space of representations that are evolved to the
space of feasible solutions that are evaluated. Here the chromosome gives ingructions to a decoder on how to
build a feasible schedule. Regarding the task dlocation problem, to build a feasible schedule, a decoder is
instructed in the following way: By following the priority list, traverse the chromosome and assign the



corresponding task to the indicated processor as soon as the precedence relation is fulfilled. Under this
approach the restriction on avoiding processor idleness while a task is ready is relaxed. We believe that this
less restrictive approach will contribute to population diversity. One advantage of decoders resides in their
ability to create vaid offspring even by means of simple conventiona operators. One disadvantage is an
dower evaluation of solutions. For the mode task graph of Fig. 1, with three processors, parent
chromosomes C; and C,, and one point crossover after the fourth position we obtain the valid offspring C;-
and C,.

C: [1]2]3]1]1]1[3]2] Cr [1]2]3[1]3/1][2]3]

Cx [3]1]2]2|3][1]2]3] C. [3]1]2]2]1]1][3]2]

The interpretation of these four decoders with priority task list Z = [Tq, To, T3, T4, Ts, Te, T7, Tg] arethe
schedules of Fig. 8.

P, B 7, [ 1, [
P, T2 L T

Py LB Ts Ts Te
ts| 1 | 2 3 | 4 5 | 6 | 7 8 | 9 | 10 | 11 | 12 |

¢) Offspring C';

P, _| Ts | _-I T i
Ts N

ts| 1 | 2 | 3 | 4 | 5 6|7|8 9|1o|11|12|

Pl T _l T, [

13 |

d) Offspring C',,
Fig 8. Parents and feasible offspring schedules using decoders
Also, simplest mutation operators can be implemented by a simple swapping of values at randomly sdlected

chromosome positions or by arandom changein the allele. The new alde value identifies any of theinvolved
processors.



5. EXPERIMENTS AND RESULTS

The prdiminary experiments implemented a generational GA with direct representation of chromosomes and
randomised initial population of size fixed to 50 individuals. Many runs were performed on five testing cases,
using ditism, one point crossover and big creep mutation. The maximum number of generations was fixed to
100, but an stop criterion was used to accept convergence when after 20 consecutive generations, mean
population fitness values differing in € < 0.001 were obtained. Probabilities for crossover and mutation were
fixed to 0.65 and 0.001.

The testing cases corresponded to:

Case 1; Task graph of Fig. 1, excluding task 8 (7 tasks and 3 processors)

Case 2:  Task graph of Fig. 3.a(9 tasks and 3 processors)

Case 3: Task graph of Fig. 3.a(9 tasks and 4 processors)

Case4; Task graph of Fig. 3.b (9 tasks and 3 processors, decreasing task’s duration)

CaseS; Task graph of Fig. 3.c (9 tasks and 3 processors, eliminating precedence constraints)

The following performance variables were considered to contrast the genetic approach (GA) versusthe LSA:

Alt: Number of alternative solutions. It is the mean number of distinct alternative solutions found by the
algorithm including optimum and non-optimum solutions.

Opt: : Number of optimal solutions. It is the mean number of distinct optimum solutions found by the
algorithm per run.

Topt : Total number of optima. It is the total number of distinct optimal solutions found by the algorithm
throughout al the runs.

Case Alt Opt Topt
GA LSA GA LSA GA LSA
1 10.6 1 9.2 1 57 1
2 4.2 1 4.2 1 15 1
3 9.1 1 9.1 - 56
4 3.6 1 3.6 - 10 -
5 4.0 1 4.0 - 10 -

Table 1. GA versus LSA, comparative performance

The stop criterion allowed to run the GA anumber of generations between 40 to 80. In some of the dternative
solutions, 1 or more processors remained idle (no tasks allocated to them). As the permutation of processors
provides new aternative solutions, all the allocation list of an occupied processor can be switched to an idle
one. Consequently a fault tolerance scheme can be implemented when the GA provides schedules with idle
processors.

By observing table 1 the following comparisons can be done:
. The genetic approach found many and no a single optimal solution for any case as L SA does.
. All the anomalies observed with LSA do not hold when GA is applied, because:

*  When the number of processorsisincreased the minimum (optimum) makespan isaso
found.

*  When the duration of tasks isreduced thisreduction isreflected in areduced optimum
makespan.

*  When the number of precedence restrictionsis reduced the optimum makespan is
preserved.



A more detailed analysis on each run detected that in most of the cases aternative solutions do not include, or
include a low percentage, of non-optimal dternative solutions. That means that the final population is
composed of many replicas of the optimal solutions due to a loss of diversity. This fact stagnate the search
and further improvements are difficult to obtain.

To avoid this behaviour it would be necessary to continue experimentation with different parameter settings
and recombination approaches.

6. CONCLUSIONS

The dlocation of a number of paralle tasks in paralle supporting environments, multiprocessors or
multicomputers, isadifficult and important issue in computer systems.

In this paper we approached alocation attempting to minimize makespan. Other performance variables such
asindividual processor utilization or evenness of load distribution can be considered.

Also results from this research can be applied to more general problems of parallel machine scheduling.
Aswe are interested in scheduling of arbitrary tasks graphs onto a reasonable number of processors, in many
cases we would be content with polynomial time scheduling agorithms that provide good but no optimal
solutions. Thelist scheduling algorithm (LSA) satisfy this requirement.

Here a genetic approach was undertaken to contrast its behaviour against the LSA. Preliminary results on the
selected test suite showed two important facts. Firstly, GA provides not a single but a set of optimal
solutions, providing fault tolerance when system dynamics must be considered. Secondly, GA is free of the
LSA anomalies. Thisfacts do not guarantee finding optimal solutions for any arbitrary task graph but show a
better approach to the problem.

Consequently further research is necessary to investigate potentias and limitations of the GA approach under
more complex test suites, different representations, and convenient genetic operators.
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