
���������	��
����������������������
�������
������ �!������� �"���#�����$��
%�&�'��()�*��+����#
���&�
(,���'���$�-�.������+	+���+/�0�$��12�3�"�4�����5+�
6� ��������7�+��#8

ESQUIVEL S.C., GATICA C. R., GALLARD R.H. 1

9	:�;=<?>A@CB�<

In scheduling, a set of machines in parallel is a setting that is important, from both the theoretical and
practical points of view. From the theoretical viewpoint, it is a generalisation of the single machine
scheduling problem. From the practical point of view the occurrence of resources in parallel is common in
real-world.
When machines are computers, a parallel program can be conceived as a set of parallel components (tasks)
which can be executed according to some precedence relationship.
In this case efficient scheduling of tasks permits to take full advantage of the computational power provided
by a multiprocessor or a multicomputer system. This kind of planning involves the assignment of partially
ordered tasks onto the system architecture processing components.
This paper shows the problem of allocating a number of non-identical tasks in a multiprocessor or
multicomputer system. The model assumes that the system consists of a number of identical processors and
only one task may execute on a processor at a time. All schedules and tasks are non-preemptive. The well-
known Graham’s list scheduling algorithm (LSA) is contrasted with an evolutionary approach using a direct
representation of solutions.

DFECG�H�I"JLKNM%OQP

Parallel task allocation, Genetic Algorithm, List Scheduling Algorithm, Schemes of representation, Indirect
and Direct representation, Optimisation.

RCSNTVUXWZY\[^]*_X`3WFab[^U

A parallel program is a collection of tasks, some of which must be completed before than others begin. The
precedence relationships between tasks are commonly outlined in a directed acyclic graph known as the cedgfihjZk d=lQm . Nodes in the graph identify tasks and their duration while arcs represent the precedence relationship.
Factors, such as number of processors, number of tasks and task precedence constraints contribute to make
difficult a good assignment.
The problem to find an schedule on n > 2 processors of equal capacity, that minimizes the whole processing
time of independent tasks has been shown as belonging to the NP-complete class (Horowitz and Sanhi 1976
[9])
Task scheduling can be classified as static and dynamic. In the case of static scheduling some strong reasons
make it applicable. First, static scheduling sometimes results in lower execution times than dynamic

1The Research Group is supported by the Universidad Nacional de San Luis and the ANPCYT (National
Agency to Promote Science and Technology). Proyecto UNSL-338403. Departamento de Informática.
Universidad Nacional de San Luis. Ejército de los Andes 950 – Local 106. 5.700 – San Luis, Argentina. E-
mail { esquivel, crgatica, rgallard }@unsl.edu.ar

scheduling. Second static scheduling allows only one process per processor, reducing process creation,
synchronisation and termination overhead. Third, static scheduling can be used to predict speedup that can be
achieved by a particular parallel algorithm on a target machine, assuming that no preemptions of processes
occur.

oFpCqsr\t�uFtFvxw5y{z*yi|}uFyi~	w��^r\tQ�

In a deterministic model, the execution time for each task and the precedence relations between them are
known in advance. This information is illustrated in a directed graph, usually known as the task graph. In Fig.
1 we have eight tasks with the corresponding duration and their precedence relations

P2 T3 T4 T6

P1 T1 T2 T5 T7 T8

Time slot 1 2 3 4 5 6 7 8 9 10

Figure 2, shows a Gantt chart corresponding to one possible schedule of the parallel tasks of the task graph of
figure 1 onto two processors. By simple observation we notice a makespan2 of 10 and an utilisation of a 100%
for processor P1 and an utilisation of 60% for processor P2. Also an speed-up of 1.6 can be easily derived.

Connected with the makespan, an optimal schedule is such that the total execution time is minimized. Other
performance variables, such as individual processor utilization or evenness of load distribution can be
considered. As we can see some simple scheduling problems can be solved to optimality in polynomial time
while others can be computationally intractable. As we are interested in scheduling of arbitrary tasks graphs
onto a reasonable number of processors we would be content with polynomial time scheduling algorithms that
provide good but no optimal solutions.

2 For any arbitrary environment it is defined as the completion time of the last task leaving the system.

T3/1

T1/2

T2/3 T4/2

T5/3 T6/3

T8/1

T7/1

A task graph is a simplified representation of a
parallel program execution, ignoring overheads
due to interrupts for accessing resources etc.
Nevertheless, it provides a basis for static
allocation of processors.
A schedule is an allocation of tasks to
processors which can be depicted by a Gantt
chart.
In a Gantt chart, the initiation and ending times
for each task in the available processors is
indicated and the makespan (total execution
time of the parallel program) of the schedule
can be easily derived.

Time 0 1 2 3 4 5 6 7 8 9 10

Fig. 1 . The model task graph

Fig. 2. Scheduling 8 tasks onto 2 processors by LSA

�F�N�.�,�	�Q���}�"�A���,�F�*�\�Q�{�\� �\�Q���^�*�i���,���{�0�F�	�

For a given list of tasks ordered by priority, it is possible to assign tasks to processors by always assigning
each available processor to the first unassigned task on the list whose predecessor tasks have already finished
execution. Let be:

T={T1,....,Tn} a set of tasks,��� → (0, ∞) a function which associates an execution time to each task,
≤ a partial order in T and
L a priority list of tasks in T.

Each time a processors is idle, it immediately removes from L the first ready task; that is, an unscheduled task
whose ancestors under ≤ have all completed execution. In the case that two or more processors attempt to
execute the same task, the one with lowest identifier succeed and the remaining processors look for another
adequate task. The Gantt chart of Fig. 2, resulted of applying the list scheduling algorithm to the task graph
of Fig. 1, with the priority list L = [T1, T2, T3, T4, T5, T6, T7].

�F�¡ �¢#£x¤^¥"¦\§Q¨b©�ª�¤\«	¬C,©s§®¨iª}¬�ª}¯°,©F±*²\§F¨{£X³ ¦\§Q³X¤^´\¨i¬Z�¥

Using this heuristic, contrary to the intuition, some anomalies can happen. For example, as shown in Fig. 3,
increasing the number of processors, decreasing the execution times of one or more tasks, or eliminating
some of the precedence constraints can actually increase the makespan. In his work Graham [8] presented the
following examples using the same priority task list µ = [T1, T2, T3, T4, T5, T6, T7,T8,T9] for each schedule.

P3 T3 T6 T8

P2 T2 T4 T5 T7

P1 T1 T9
ts 1 2 3 4 5 6 7 8 9 10 11 12

P4 T4 T7

P3 T3 T6

P2 T2 T5 T9

P1 T1 T8

ts 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T1/3

T2/2

T3/2

T4/2

T9/9

T5/4

T6/4

T7/4

T8/4

(a)

Fig. 3. Increasing number of processors, decreasing tasks duration and eliminating precedence
 constraints can increase the makespan using the Graham’s heuristic.

P3 T3 T7

P2 T2 T4 T6 T9

P1 T1 T5 T8
ts 1 2 3 4 5 6 7 8 9 10 11 12 13

T1/2

T2/1

T3/1

T4/1

T9/8

T5/3

T6/3

T7/3

T8/3 (b)

T1/3

T2/2

T3/2

T4/2

T9/9

T5/4

T6/4

T7/4

T8/4

P3 T3 T5 T8

P2 T2 T4 T7

P1 T1 T6 T9
ts 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(c)

¶F·e¸	¹%º{»x¼4½F¾\¿.ÀFÁXÂNºi¿^»3Ã3Ä*Å5Ã\À�¼X¿^Ä3ºiÂZÆÈÇ ¹�Â®¿�ÉFÄx¿^¾\º{Ê\½�»\½FÃ3Ä\ËiÌ3Í�ÎNÏbÐ�Ñ\ÒÔÓ%Ì.ÒFÕXÎFÏbÌ^Ö^Ó

The task allocation problem has been investigated by many researchers [3] ,[4], [5], [6], [7], [10], [11].
Several heuristics methods has been proposed, such as mincut-based heuristics, orthogonal recursive
bisection, simulated annealing, genetic algorithms and neural networks.
From the representation perspective many evolutionary computation approaches to the general scheduling
problem exists. According to solution representation these methods can be roughly categorised as ×ÙØÛÚ%×ÙÜ?ÝßÞ�à
and áAâÙã?äæå6ç}ã?ä{èQãiäæé?äæêAçìëAçÙâîígê (Bagchi et al, 1991 [1]).
In the case of indirect representation of solutions the algorithm works on a population of encoded solutions.
Because the representation do not directly provides a schedule a scheduler builder is necessary to transform a
chromosome into a schedule, validate and evaluate it. The scheduler builder guarantees the feasibility of a
solution and its work depends on the amount of information included in the representation.
In direct representation (Bruns 93 [2]) a complete and feasible schedule is an individual of the evolving
population. The only method that performs the search is the evolutionary algorithm because the represented
information comprises the whole search space.

We devised different evolutionary computation approaches to task scheduling, regarding two different
representation schemes; direct and indirect. In this paper we present a direct approach with the ï%ð?ñòð?ó}ó�ôÛñ{ï%ðVñõ ó%ð=ð?öì÷Aøìù crossover method and an úeûCüAúÙýiþ�ÿ���� ü%þ�ÿ��}ü%þ representation. We will concentrate only on results of
direct representation.

���
	������������������������������������! "�# "$%�� '&�(���) "���

Here we propose to use a schedule as a chromosome. Suppose we have two different schedules, (a) and (b)
(Fig. 4), for the model task graph of Fig. 1, represented by the following Gannt charts.

P2 T3 T4 T6

P1 T1 T2 T5 T7 T8
ts 1 2 3 4 5 6 7 8 9 10

Schedule (a)

P2 T3 T5 T8

P1 T1 T2 T4 T6 T7
ts 1 2 3 4 5 6 7 8 9 10 11 12

Schedule (b)

The precedence relation described in the task graph can be properly represented in the corresponding
precedence matrix * , where element +-, . is set to 1 if task / precedes task 0 and it is set to 0 otherwise. A gene
in the chromosome can be the following four-tuple:

< 132547698�:�;=<9>@?BA-CB8�:�;�<D:FE-:�1 8�1�:HGJIK<DIBE�;�8L1F:FGMI >
where,N�O5P7Q�RLSHT5U

 identifies the task to be allocatedVXW9Y[Z9\�]3^=_ identifies the processor where the task will be allocated`Fa�`3b cLb�`FdfeKg
 it is the commencing time of the h�i�jlk9mLn�o in p@q9r�sBtLu�v .wKxDy=zL{F|H}Mw�~ it is the termination time of the �H�5�7�����3� in �@�B�-�B����� .

With this structure the list of the corresponding predecessors tasks is easily retrieved by entering the column
of A indexed by the �����!���L��� value.
The corresponding chromosomes Ca and Cb for schedules (a) and (b) are:

Fig. 4. Feasible schedules for the model task graph.

This representation has a problem. If we use conventional crossover such as one-point crossover invalid
offspring (unfeasible schedules) can be created. For example, if we decide to apply this operator after the fifth
position we would obtain two invalid chromosomes.

Both of them violate the restriction that a processor processes a task at a time. Genes 5 and 6 in Ca’ and Cb’

describe invalid schedules where the same processor (P1 for the case of Ca’ and P2 for the case of Cb’)
processes two tasks at the same time interval.

Penalty functions or repair algorithms can be used to remedy this situation [12]. Penalty functions of varied
severity can be applied to invalid offspring in order to lower their fitness values but allowing them to remain
in the population aiming to retain valuable genetic material.
Repair algorithms attempt to build up a valid solution from an invalid one. This approach is embedded in the�=�D�5�����=�����=���- ���¡f�K�-¢����¤£�¥B��¦l¦9��§=��¥

 operator proposed by Bruns. Here a ¨K©-ªHª�«F¬9«F©� occurs if an operation (task
processing) inherited from one of the parents cannot be scheduled in the specified time interval on the
assigned processor. In this case the processor assignment is unchanged and it is delayed into the future until
the processor is available.
In our example, this advanced crossover would generate the following chromosomes and corresponding
feasible schedules (Fig. 5):

P2 T3 T4 T8

P1 T1 T2 T5 T6 T7
ts 1 2 3 4 5 6 7 8 9 10 11 12 13

Schedule (a”)

P2 T3 T5 T6

P1 T1 T2 T4 T7 T8
ts 1 2 3 4 5 6 7 8 9 10 11 12 13

Schedule (b”)

1,1,0,2 2,1,2,5 3,2,2,3 4,2,3,5 5,1,5,8 6,2,5,8 7,1,8,9 8,1,9,10

1,1,0,2 2,1,2,5 3,2,2,3 4,1,5,7 5,2,5,8 6,1,7,10 7,1,10,11 8,2,11,12

Ca :

Cb:

1,1,0,2 2,1,2,5 3,2,2,3 4,2,3,5 5,1,5,8 6,1,7,10 7,1,10,11 8,2,11,12

1,1,0,2 2,1,2,5 3,2,2,3 4,1,5,7 5,2,5,8 6,2,5,8 7,1,8,9 8,1,9,10

Ca’ :

Cb’:

1,1,0,2 2,1,2,5 3,2,2,3 4,2,3,5 5,1,5,8 6,1,8,11 7,1,11,12 8,2,12,13

1,1,0,2 2,1,2,5 3,2,2,3 4,1,5,7 5,2,5,8 6,2,8,11 7,1,11,12 8,1,12,13

Ca” :

Cb”:

Fig 5. Feasible offspring schedules for the model task graph (Bruns).

As expected both children have a larger makespan but still are feasible. In the proposed Bruns’s ®K¯D°�±�²�³�´Kµ�³=¶·[¸ µ�¹M³�¯-º�³=´ crossover only a child is generated where the part taken from the first parent build a consistent
schedule. Then the assignment of the missing tasks are chosen from the second parent maintaining the
assignment order and the processor allocations to tasks. Timing adjustments are included if neccesary. The
latter decision can imply, as we showed, larger makespans for the children.

In our work we adopted an »5¼9½¾¼9¿-¿5ÀD½
»5¼9½ Á�¿5¼7¼9Â�Ã[ÄHÅ (ASAP) approach similar to the Brun’s proposal but modified
because delays are avoided. This was implemented by moving the assignment to the earliest possible time, by
random selection of one available processor at the ready time of the unassigned task. In this way no processor
will remain idle if a task is available to be executed and the precedence constraints are satisfied.
The available processor is selected in way such to minimize the assignment changes in the part of the
offspring corresponding to the second parent.
In our example this decision provides only one alternative and would give us the following chromosomes and
their corresponding schedules, which differs from their parents in the assignments of tasks T7 and T8 only. See
figure 6.

P2 T3 T4 T6 T8

P1 T1 T2 T5 T7
ts 1 2 3 4 5 6 7 8 9 10

Schedule (a’ ’ ’)

P2 T3 T5

P1 T1 T2 T4 T6 T7 T8
Ts 1 2 3 4 5 6 7 8 9 10 11 12

Schedule (b’ ’ ’)

For mutation also a similar operator was conceived. If the chromosome undergoes mutation then a search is
done, from left to right, until one gene is modified in the following way: choosing an alternative free
processor or moving the assignment to the earliest possible time. This would imply modifying subsequent
genes of the chromosome to create a valid offspring.

Æ�ÇHÈ�Ç�ÉBÊ�Ë�Ì�ÍÏÎ�Ð�ÑÒÍ�ÎLÓ�Í�Î�Ô�Î�Ê�Ñ�Õ�Ñ�Ì)Ö"Ê×Ö�Ø%Ô�Ö'Ù�Ú�Ñ�Ì!Ö"Ê�Ô

Under this approach a schedule is encoded in the chromosome in a way such that the task indicated by the
gene position is assigned to the processor indicated by the corresponding allele, as shown in Fig. 7:

1 2 3 2 1 3 1 2
1 2 3 4 5 6 7 8

The idea is to use a decoder. A Û�Ü=Ý�Þ�Û[Ü�ß is a mapping from the space of representations that are evolved to the
space of feasible solutions that are evaluated. Here the chromosome gives instructions to a decoder on how to
build a feasible schedule. Regarding the task allocation problem, to build a feasible schedule, a decoder is
instructed in the following way: By following the priority list, traverse the chromosome and assign the

1,1,0,2 2,1,2,5 3,2,2,3 4,2,3,5 5,1,5,8 6,2,5,8 7,1,8,9 8,2,9,10

1,1,0,2 2,1,2,5 3,2,2,3 4,1,5,7 5,2,5,8 6,1,7,10 7,1,10,11 8,1,11,12

Ca’ ’ ’ :

Cb’ ’ ’:

Fig 6. Feasible offspring schedules for the model task graph (ASAP).

processor →
task →

Fig. 7. Chromosome structure for the task allocation problem

corresponding task to the indicated processor as soon as the precedence relation is fulfilled. Under this
approach the restriction on avoiding processor idleness while a task is ready is relaxed. We believe that this
less restrictive approach will contribute to population diversity. One advantage of decoders resides in their
ability to create valid offspring even by means of simple conventional operators. One disadvantage is an
slower evaluation of solutions. For the model task graph of Fig. 1, with three processors, parent
chromosomes à�á and âXã , and one point crossover after the fourth position we obtain the valid offspring ä"å9æ
and çéè�ê.

The interpretation of these four decoders with priority task list ë = [T1, T2, T3, T4, T5, T6, T7, T8] are the
schedules of Fig. 8.

P3 T3 T7

P2 T2 T8

P1 T1 T4 T5 T6

ts 1 2 3 4 5 6 7 8 9 10 11 12

a) Parent C1

P3 T1 T5 T8

P2 T3 T4 T7

P1 T2 T6

ts 1 2 3 4 5 6 7 8 9 10

b) Parent C2

P3 T3 T5 T8

P2 T2 T7

P1 T1 T4 T6

ts 1 2 3 4 5 6 7 8 9 10

 c) Offspring C’1

P3 T1 T7

P2 T3 T4 T8

P1 T2 T5 T6

ts 1 2 3 4 5 6 7 8 9 10 11 12 13

d) Offspring C’ 2

Also, simplest mutation operators can be implemented by a simple swapping of values at randomly selected
chromosome positions or by a random change in the allele. The new allele value identifies any of the involved
processors.

1 2 3 1 1 1 3 2

3 1 2 2 3 1 2 3

C1:

C2:

1 2 3 1 3 1 2 3

3 1 2 2 1 1 3 2

C1’:

C2’:

Fig 8. Parents and feasible offspring schedules using decoders

ìLí[î'ï�ð�ñ�ò�ó�ôõñLö�÷�øÏù�ö�úõò�ñ�øKû�ü�÷�ø

The preliminary experiments implemented a generational GA ý�þ�ÿ�����þ������=ÿ	�
�������������ÿ���ÿ�þ���� of chromosomes and
randomised initial population of size fixed to 50 individuals. Many runs were performed on five testing cases,
using elitism, one point crossover and ���������� � �! mutation. The maximum number of generations was fixed to
100, but an stop criterion was used to accept convergence when after 20 consecutive generations, mean
population fitness values differing in ε ≤ 0.001 were obtained. Probabilities for crossover and mutation were
fixed to 0.65 and 0.001.

The testing cases corresponded to:

"$#&%('*)&+
Task graph of Fig. 1, excluding task 8 (7 tasks and 3 processors),$-&.(/$0�1
Task graph of Fig. 3.a (9 tasks and 3 processors)2$3&4(5$6�7
Task graph of Fig. 3.a (9 tasks and 4 processors)8$9&:(;$<�=
Task graph of Fig. 3.b (9 tasks and 3 processors, decreasing task’s duration)>$?&@(A$B�C
Task graph of Fig. 3.c (9 tasks and 3 processors, eliminating precedence constraints)

The following performance variables were considered to contrast the genetic approach (GA) versus the LSA:

DFE�G
: Number of alternative solutions. It is the mean number of distinct alternative solutions found by the

algorithm including optimum and non-optimum solutions.HJI	K
: : Number of optimal solutions. It is the mean number of distinct optimum solutions found by the

algorithm per run.LNMPO	Q
 : Total number of optima. It is the total number of distinct optimal solutions found by the algorithm

throughout all the runs.

Alt Opt ToptCase
GA LSA GA LSA GA LSA

1 10.6 1 9.2 1 57 1
2 4.2 1 4.2 1 15 1
3 9.1 1 9.1 - 56 -
4 3.6 1 3.6 - 10 -
5 4.0 1 4.0 - 10 -

Table 1. GA versus LSA, comparative performance

The stop criterion allowed to run the GA a number of generations between 40 to 80. In some of the alternative
solutions, 1 or more processors remained idle (no tasks allocated to them). As the permutation of processors
provides new alternative solutions, all the allocation list of an occupied processor can be switched to an idle
one. Consequently a fault tolerance scheme can be implemented when the GA provides schedules with idle
processors.

By observing table 1 the following comparisons can be done:

• The genetic approach found many and no a single optimal solution for any case as LSA does.

• All the anomalies observed with LSA do not hold when GA is applied, because:

• When the number of processors is increased the minimum (optimum) makespan is also
found.
• When the duration of tasks is reduced this reduction is reflected in a reduced optimum

 makespan.
• When the number of precedence restrictions is reduced the optimum makespan is

 preserved.

A more detailed analysis on each run detected that in most of the cases alternative solutions do not include, or
include a low percentage, of non-optimal alternative solutions. That means that the final population is
composed of many replicas of the optimal solutions due to a loss of diversity. This fact stagnate the search
and further improvements are difficult to obtain.
To avoid this behaviour it would be necessary to continue experimentation with different parameter settings
and recombination approaches.

RTSVU*WYX[Z]\T^Y_a`bWYX[_

The allocation of a number of parallel tasks in parallel supporting environments, multiprocessors or
multicomputers, is a difficult and important issue in computer systems.
In this paper we approached allocation attempting to minimize makespan. Other performance variables such
as individual processor utilization or evenness of load distribution can be considered.
Also results from this research can be applied to more general problems of parallel machine scheduling.
As we are interested in scheduling of arbitrary tasks graphs onto a reasonable number of processors, in many
cases we would be content with polynomial time scheduling algorithms that provide good but no optimal
solutions. The list scheduling algorithm (LSA) satisfy this requirement.
Here a genetic approach was undertaken to contrast its behaviour against the LSA. Preliminary results on the
selected test suite showed two important facts. Firstly, GA provides not a single but a set of optimal
solutions, providing fault tolerance when system dynamics must be considered. Secondly, GA is free of the
LSA anomalies. This facts do not guarantee finding optimal solutions for any arbitrary task graph but show a
better approach to the problem.
Consequently further research is necessary to investigate potentials and limitations of the GA approach under
more complex test suites, different representations, and convenient genetic operators.

cedgfih]jlkNmNnporqTs[tlqVuvqTkYwrx

We acknowledge the cooperation of the project group for providing new ideas and constructive criticisms. Also to
the Universidad Nacional de San Luis, and the ANPCYT from which we receive continuous support.

yTz�{}|T~T|T�N|T�[�]|��

 [1] Bagchi S., Uckum S., Miyabe Y., Kawamura K. – �]�������P�
����������P�&�����F�����]����� �����$�������a�F�&���	�&�����a�����]���
�P���P���
�P�a�&�����*���	�������
�	���P��������� - Proceedings of the Fourth International Conference on Genetic Algorithms, pp
10-17, 1991.

 [2] Bruns R. – �¡�¢�£�¤�¥p¤�¦¨§a©F§Pª
§P©$£«¢�£¬r¢
£�ª
£�®&¥�¯�¥°¡�§P®±¯a®¨²³¯�²�´µ¯a®&¤�£�²·¶�£�®¨£�¥�¡�¤³§�¬�£�¢�¯�¥°§P¢¸ªº¹P§P¢»¬r¢�§�²&¼P¤�¥°¡�§P®
ª
¤�¦	£�²�¼P½�¡°®�¶ . Proceedings of the Fifth International Conference on Genetic Algorithms, pp 352-359,
1993.

 [3] Cena M.,Crespo M., Gallard R., - ¾¨¿�ÀPÁ�Â�Ã]ÀP¿�Ä�Á&ÅTÆ[Ä�ÇFÈPÅ�ÄFÉ�ÊPÄ�Ë�Ì&Å°Í�ÈaÁÎÍ�ÁÐÏPÑlÒÔÓ*ÕYÖÎ×�ØÚÙÛÄ�ÀaÁ&Â}È�ÜÐÀÝÓ$Ä�Ìa¿�À&Þ
Ó�Ä�Å�ßàÈa¿�á[â*Ä�ã�Í�Ë�Ä�ä ACM Press, Operating Systems Review , Vol. 29, Nr. 1, pp 17-28, January 1995

 [4] Ercal F.- å*æ�çaè�é�ê�ë�é°ì�í�î&îè�ï�íPì�ð	æ�ê[ë�ï�ñòíPê�óÔô$õ�õ�ïPì�í�ë°é�ïPöø÷PïPèrî�íaè�í&õ�õ�æ�õrùøïPú�î]ç&ë�é°ö�û - Doctoral Dissertation, Ohio
State University, 1988.

 [5] Flower J., Otto S., Salama M. üþýTÿ��������	�
���¸ÿPÿ������������������������������������ �!���!�"�#����$��	���	��&%'���Ðÿ����(�������!�
ÿ)�(��*��#%�%+�	��% - Caltech C3P#292b, 1987.

 [6] Fox G. C. – ,.-(/+0	1�/#2436587&9	:�3�;�7&:�1�<
=�3	7�>@?	7�=�7	A&<B1CA�D'7BA�>E>&/!<B3	;�FG3	H(1:�1�3�A8;�/!:I�3�>	H&5	3�-J:I&/�I&1 F�/#-(<B9&?	/ - In M
Shultz, ed., Numerical algorithms for modern parallel computer architectures, Springer Verlag, pp 63-
76, 1988.

 [7] Fox G.C., Kolawa A., Williams R. – K�LNM�OPRQGS�M!P"M!TNU�V�U�OW	T@W�XYVEZ�[\T�V	P"O�]�S�W	V&Z_^	V&S�V�T&]�M#`Ja Proc. of the 2nd

Conf. on Hipercube multiprocessors, pp 114-121, 1987.

 [8] Graham R. L. – b�c�d	e&f	g�c�e�h�d&ij�k l)m(c	nBo!g�g(ke!prqBe�c�h�q&i�k�o#gsq�e�f�lGq	n!t	kCeBp@q�i puc	m�k�jv&h"g .- Proceedings of the
AFIPS 1972 Spring Joint Computer Conference, pp 205-217, 1972.

 [9] Horowitz E. and Sahni S – wGx&y	zB{Ny	|&}~y��	�)�(�Bx	���y&{��"y	� �u�	�(�{�&�"���	���s�+z+���B}&�	���|!�_|&�	|N��}	�#|�{��z!y&�+���+�&z!�#���+�	��� –
Journal of the ACM, vol. 23, No. 2, pp 317-327, 1976.

 [10] Kidwell M. – �)�(�����r���#�&������Y��� ���	�(����&�"�����_�+�!�&�B�&�	���8���	���B�Y�����r &���(¡¢ &�	�+�!�r��£\�(���#� . - Proceedings of the
Fifth International Conference on Genetic Algorithms, pp 368-374, 1993.

 [11] Mansour N., Fox G.C. – ¤¦¥(§�¨�©(ª�«"¬�#®&B¯�ª�°�±�² ¬�³�©(ª�¯C¥�´�µ�³�©¶¯±	·�¸¹±	²²�³&°B±	¯�ª�³B®@ª®_´�º	²�¯�ª�°�³�´�»�º&¯!©�· . Proceedings
of the Fourth International Conference on Genetic Algorithms, pp 466-473, 1991.

 [12] Michalewicz Z., ¼¾½+¿&½!ÀÁ�ÂÄÃ"Å Æ�ÇBÈ�ÁÀCÉ�ÊJË8Ì Í
Î	À�ÎÐÏ&ÀCÈ+Ñ	Â!À�ÑBÈ�½#Ë@Ò'ÓGÔ�Ç	Å�Ñ	ÀÁ�ÇB¿rÕ�È�Ç#ÆNÈ�Î	Ê"Ë , Springer Verlag , Third,
Extended Edition, 1996.

