
Translating Fork Speci�cations into Logic Programs

Gabriel A. Baum

LIFIA

Facultad de Inform�atica

Universidad Nacional de La Plata�

gbaum@sol.info.unlp.edu.ar

Nazareno M. Aguirre Marcelo D. Arroyo
�Area de Computaci�on

Facultad de Ciencias Exactas, F��sico-Qu��micas y Naturales

Universidad Nacional de R��o Cuartoy

fnaguirre, marroyog@dc.exa.unrc.edu.ar

Abstract

In this work a compiler from fork speci�cations into logic programs

is presented. The technique implemented by the compiler consists

of transforming a set of fork equations (with some restrictions) into

normal logic programs in such a way that the semantics of the fork

equations is preserved.

After translating a fork speci�cation, it can be executed by con-

sulting the generated logic program. The fork compiler, a tool for the

translation, is also introduced.

1 Introduction

Fork algebras are a kind of algebras of binary relations especially developed

for program speci�cation and construction [3]. Every relation in this formal-

ism represents a program, relating the input data (problem domain) with

the output data (solutions). Fork algebras have several important properties

[4][6]. One of their main features as speci�cation language is their relational

nature, which allows to write speci�cations very easily, especially for non-

deterministic tasks [5]. The main property of (abstract) fork algebras as

environment for calculating programs is the representability of abstract fork

algebras into proper ones [7]; due to this property, the programmer can port

knowledge from the problem domain to the abstract calculus.

�50 y 115 - 1er. Piso. (1900) La Plata, Argentina.
yEnlace Rutas 8 y 36, Km. 601. (5800) R��o Cuarto. C�ordoba. Argentina

1

However, fork algebras, as many other formal languages, are not widely

used, partly because of the absence of software tools for development within

the methodology.

There exist some software tools for supporting relational methods, such

as RELVIEW [11], RALF [10] and LIBRA [8]. RELVIEW is a relational

evaluator, RALF is a theorem prover, and LIBRA, closer to our compiler, is

a programming language based on the algebra of binary relations. However,

LIBRA is di�erent to our compiler, because it is not focused on an abstract

calculus of relations.

Here we present a compiler that allows to translate fork speci�cations

into normal logic programs. Although the semantics of logic programs that

we use is not the standard (based on Herbrand models), the resulting pro-

grams may be executed by a common Prolog intepreter in a sound way.

2 Fork Algebras

Proper Fork algebras are algebras of binary relations extended with a bi-

nary operation called fork. For formally de�ning proper fork algebras, it is

necessary �rst to de�ne the class of Full�PFA:

Definition 2.1 A Full�PFAis a two sorted structure with domains P(U �

U) and U

h P (U � U) ; U;[;\; {; ;; U � U; j ; Id;�; r; � i

such that

1. j , Id, � and { denote respectively composition of binary relations, the

identity relation on U , converse of a binary relation and set comple-

mentation w.r.t. U � U ,

2. � : U � U ! U is an injective function,

3. RrS = f hx; � (y; z)i : xRy and xSz g.

Definition 2.2 The class of FullPFA is de�ned as RdFull�PFA, where Rd

takes reducts of the similarity type h [;\; {; ;; U � U; j; Id;�; r i, and the

class PFA is de�ned as SPFullPFA, where S takes subalgebras and P closes

a class under direct product.

The abstract counterpart of the class PFA is the class of abstract fork

algebras, which is de�ned as follows:

Definition 2.3 An abstract fork algebra is an algebraic structure

hR; +; � ; {; 0; 1; ;; 1
,
;�; r i

where +; � ; ; ; r are binary operations, { and � are unary, and 0; 1; 1
,

are

constants, and the following set of axioms is satis�ed:

Those axioms stating that hR; +; � ; {; 0; 1 i is a Boolean Algebra,

x ; (y ;z) = (x ;y) ;z; (Ax. 1)

(x+y) ;z = x ;z + y ;z; (Ax. 2)

(x+y)� = �x+ �y; (Ax. 3)

��x = x; (Ax. 4)

x ;1
,

= 1
,
;x = x; (Ax. 5)

(x ;y)� = �y ; �x; (Ax. 6)

x ;y � z = 0 i� z ; �y � x = 0 i� �x;z � y = 0: (Ax. 7)

rrs = (r ; (1
,
r1)) � (s ; (1r1

,
)) ; (Ax. 8)

(rrs) ;(trq)� =
�
r ;�t

�
� (s ; �q) ; (Ax. 9)

(1
,
r1)�r(1r1

,
)� + 1

,
= 1

,
: (Ax. 10)

An useful operator for program speci�cation using AFA is the operator

cross (denoted by
), which can be de�ned from the other operations as

R
 S = ((1
,
r1)� ; R) r ((1r1

,
)� ; S):

and whose meaning in the standard models of AFA is depicted in Figure 1.

-

-

x

�

y

w 2 R(x)

z 2 S(y)

 �

R

S

Figure 1: The operator cross.

@@
@
@R

��

���

x

�

y

r x

1
,

1

@@

@@R

��
�
��

x

�

y

r y

1

1
,

Figure 2: The projections � and �.

Also, operations that behave as projections in standard models can be

abstractly de�ned as follows

� = (10r1)� and � = (1r10)�

The interpretation of � and � in the standard models is described pictorally

in Figure 2.

2.1 Fork Algebras as Speci�cation Language

Within fork algebras, program speci�cations are made up by sets of abstract

fork equations. The intended meaning of a fork equation is a binary relation

that relates data (input) to results (output); hence, relational composition

represents sequential composition of programs, relational join represents pro-

gram joining, and so on. Program transformation rules are the theorems of

abstract fork algebras. for example, the term t1+t2 can be transformed into

t2+t1 due to Commutativity of + (recall that the structure hR; + ; �; {; 0; 1 i

is a Boolean algebra).

Programs are homogeneous relations, so programs can have input or

output from multiple data types in this formalism.

Some extra constant relations are included, and its meaning is related

to basic operations on datatypes.

During the development process, the fork and cross operations are very

important and useful. The reason is that they are convenient for specifying

programs composed by subprograms that share data, and, in the case of

cross, it allows to perform parallel computations on data constructed by ?.

Example: Let us consider the operation that sums the elements of a list of

natural numbers. Let us suppose further that 10L=0 is the partial identity on

the empty list, and 10L>0 be the partial identity on nonempty lists, zero be

the constant that relates any element with the natural number 0; �nally, let

add be the relation that sums two natural numbers. The operation SUM

can be speci�ed as follows:

SUM = 10L=0; zero + 10L>0;

hd

r

tl

;

10

SUM

; add

where hd and tl yield respectively the head and the tail of a (nonempty)

list.

Let us explain the meaning of the above speci�cation. The sum of the

elements of the empty sequence is zero; if a list is nonempty we calculate

the sum of the tail, and we add the head to that result.

As it is shown in the previous example, the combination of partial iden-

tities and the operator + can be used to construct case-like compositions of

programs.

3 Logic Programs

Opposed to the untyped setting of common logic programming systems, we

consider a typed universe; instead of using the Herbrand universe, we choose

a restriction of it, in which the terms are constructed as follows:

Suppose that the language supports types �1; :::; �k. Consider a �rst order

language L composed by:

� A numerable set of variable symbols,

� A numerable set of predicate symbols,

� for each n-ary constructor f from a type �i, we include f in the alpha-

bet as an n-ary function symbol of type �i ,

� a binary function symbol ?, which will be called star.

Constructors from types must be injective functions, and the ranges of two

di�erent constructors of the same type must be disjoint sets.

Definition 3.1 The set of ur-terms for language L is constructed as fol-

lows:

� Each variable symbol is an ur-term,

� each 0-ary function symbol f0 of type �i is an ur-term of type �i

� If f is a k-ary function symbol, where k � 1, corresponding to a

constructor

f : �j1 ; :::; �jk ! �i

and t1; :::; tk are ur-terms of type �j1 ; :::; �jk respectively, then f(t1; :::; tk)

is an ur-term of type �i.

Definition 3.2 The set of terms for language L is constructed in the fol-

lowing way:

� If t is an ur-term then it is a term,

� if t1; t2 are terms, so is ?(t1; t2).

3.1 Syntax of Programs

Let L be a language as described above. If p is an n-ary predicate symbol,

and t1; :::; tn are terms, then p(t1; :::; tn) is an atom. A literal is an atom or

a negated atom (it is to say, :hatomi).

The S-base of L, denoted by BL, is the set of all ground atoms (i.e., the

set of all atoms that do not contain variables).

A clause is an expression of the form:

p p1; :::; pn

for each n � 0, where p is an atom and every pi, 1 � i � n is a literal.

A program is a pair

hP;mi

where P is a set of clauses and m is a predicate symbol.

We will denote the class of all logic programs by Prog.

3.2 Semantics of Programs

Let S be a subset of BL and Cl be a set of clauses. We will say that S is a

model of Cl if S satis�es every clause in Cl. A clause of the form

p p1; :::; pk

is interpreted as the universal closure of the formula p1 ^ :::^ pk ! p (inter-

preting the symbol : as logical negation).

We cannot choose as semantics for our programs the minimal model

semantics, because negation is allowed in the body of clauses. This produces

that many distinct minimal models could exist for a particular program; it

could be worst: a set of clauses could be inconsistent. So, we restrict the

class Prog to a set of programs, called strati�ed, for which always there

exist a minimal model. We consider for these programs the standard model

semantics [2], which consists in dividing a program into (monotonic) strata,

where each stratum uses negatively only predicates from previous strata,

and construct the minimal model of each stratum based on the result on the

previous one.

Definition 3.3 Let hP;mi 2 Prog. We construct the dependecy graph

DG(P) for P as follows:

� For every predicate symbol q occuring in P , there is a node in DG(P)

labeled by q,

� if there exists a clause in P of the form:

q(:::) :::; p(:::); :::

then there is an arc in DG(P) from the node labeled by p to the node

labeled by q,

� if there exists a clause in P of the form:

q(:::) :::;:p(:::); :::

then there is an arc in DG(P) labeled by `:' from the node labeled by

p to the node labeled by q.

We will say that hP;mi is strati�ed if DG(P) has no cycles with an arc

labeled by :.

We will denote by ProgStrat the class of all the strati�ed programs.

Definition 3.4 Consider a set of clauses Cl. Cl = Cl1 [Cl2 [::: [Cln is

called a strati�cation of Cl is for i 2 [1; n] Cli uses

� positively only predicates de�ned in
Si
j=1Clj,

� negatively only predicates de�ned in
Si�1
j=1Clj.

Definition 3.5 Let Cl be a strati�ed set of clauses. Assume a strati�cation

Cl = Cl1 [Cl2 [::: [Cln, and let M jS, where M � BL and S is a set of

clauses, denote the interpretation M restricted to predicates in clauses of S.

Then, we de�ne:

M1 = minimal model for Cl1,

M2 = minimal model for Cl2 such that M2jCl1 = M1,

...

Mn = minimal model for Cln such that MnjCl1 = M1; :::;MnjCln�1 =

Mn�1.

Mn is called the standard model of Cl.

It is shown in [2] that the standard model is minimal and supported,

and that it does not depend on the strati�cation.

Definition 3.6 Let hP;mi 2 ProgStrat. We will call general meaning

of hP;mi the standard model of P . The meaning of hP;mi, denoted by

M(hP;mi) is the set of atoms in the general meaning that have m as pred-

icate symbol.

4 The Language of Speci�cations

Basically, a speci�cation is a set of fork equations, where a fork equation

has the form

h variable i = h term i

An equation may be thought of as the de�nition of a program module,

where the variable is the \name" of the module and the term is its imple-

mentation. The term may contain variables, that may be seen as \calls" to

other program modules.

A variable is simply an identi�er, composed by any sequence of charac-

ters, not beginning with `n'. A term is a (possibly nonground) abstract fork

term, where the names of the fork operations are the following:

1 nuniv

10 nid

0 nempty

� npi

� nrho

arg1; arg2 arg1; arg2
arg1 + arg2 njoinfarg1gfarg2g

arg1 � arg2 nmeetfarg1gfarg2g

arg1rarg2 nforkfarg1gfarg2g

arg1
 arg2 ncrossfarg1gfarg2g

arg� nconverfargg

arg ncomplfargg

Example: Consider the following fork speci�cation

TWO PARALLEL X =

10

r

10
;

X

X

that intuitively performs two parallel computations of X to the same argu-

ment; in our language it is written as follows:

TWO_PARALLEL_X = \fork{\id}{\id} ; \cross{X}{X}

4.1 Types

It is obvious that without further constant relations it is not possible to

write interesting speci�cations; in fact, we could not use datatypes if only

the basic fork operations are available.

Thus, we include some extra operations whose behavior is related to

datatype manipulation.

Natural numbers

The extra relational operations that our language supports for manipu-

lating natural numbers are:

� nzero: This operation relates any element (an element from any datatype)

to the natural number zero.

� nsucc: relates a natural number to its successor.

� npred: relates a nonzero natural number to its predecessor.

Lists of natural numbers

The relations that act on lists of natural numbers are:

� nnil: relates any element to the empty list.

� ncons: Given a pair, constructed by `?', whose �rst component is a

natural number n and the second one is a list l, relation ncons relates

this pair to the list constructed by putting n in front of l.

� nhd: relates a nonempty list to its head.

� ntl: relates a nonempty list to its tail.

Booleans

The relations that manipulate boolean values are:

� ntrue: relates any element to the boolean value true.

� nfalse: relates any element to the boolean value false.

Binary Trees of natural numbers

The following relations allow to use binary trees:

� nniltree: relates any element to the empty tree.

� nmaketree: Given a 3-uple (actually is a pair) whose �rst component

is a natural number n, and whose second and third components are

binary trees b1 and b2 respectively, nmaketree relates this triuple to

the tree composed by b1 as left child, b2 as right child, and n as root.

� nlch: relates a nonempty tree to its left child.

� nrch: relates a nonempty tree to its right child.

� nroot: relates a nonempty tree to its root.

We include also relations that correspond to \�lters" on the range of

constructor relations, such as nidnil, which is the partial identity on the

empty list. The grammar of our speci�cation language is shown in Figure

3.

Example:

1. Let us consider the following speci�cation:

LENGTH = 10L=0; zero + 10L>0; tl;LENGTH; succ

where 10L=0 is the partial identity on the empty list, 10L>0 is the partial

identity on nonempty lists, zero relates any element to zero, tl calcu-

lates the tail of a list, and succ adds 1 to a natural number. Clearly,

LENGTH recursively computes the length of a list. In our language

it is written as:

LENGTH = \join{\idnil;\zero}

{\idcons;\tl;LENGTH;\succ}

2. Let us consider now the following speci�cation:

add =

10N=0

10Nat

; � +

10N>0

10Nat

;

pred

10
; add; succ

where pred calculates the predecessor of a natural number, and the

identities 10N=0
, 10N>0, 10Nat are respectively �lters on the natural zero,

nonzero natural numbers and natural numbers. The relation add com-

putes the sum of two natural numbers. This speci�cation can be writ-

ten in our language in the following way:

add = \join{\cross{\idzero}{\join{\idzero}{\idsucc}};\rho}

{\cross{\idzero}{\idsucc};

\cross{\pred}{\id};

add;

\succ

}

4.2 Translation of Speci�cations

In this section we will briey show how equations are translated into logic

clauses. In order to do this, we �rst need to show how to translate terms.

4.2.1 Translation of Fork Terms

We will describe the way in which some fork-algebraic operations are trans-

lated. The interested reader is referred to [1] for a more detailed description

about the translation.

As we have already explained, one assumes some intuitive meaning of the

operations when manipulating abstract fork speci�cations. Our translation

follows this intended meaning. For example:

<program> : <eqlist>

<eqlist> : <equation>

| <eqlist> . <equation>

<equation> : <VAR> = <term_list>

<term_list>: <term>

| <term_list> ; <term>

<term> : <VAR> | \fork <arg> <arg> | \join <arg> <arg>

| \meet <arg> <arg> | \cross <arg> <arg> | \cons

| \conver <arg> | \compl <arg> | \succ | \pred

| \hd | \tl | \dom <arg> | \ran <arg> | \id

| \idnil | \idcons | \idzero | \idsucc | \univ

| \empty | \pi | \rho | \zero | \nil | \niltree

| \maketree | \root | \leftchild | \rightchild

| \idniltree | \idnvtree | \true | \false

| \idfalse | \idtrue

<arg> : { <term_list> }

Figure 3: Grammar of the speci�cation language.

1. Translation of variables: Variables are translated just by using a �xed

(binary) predicate symbol:

X 7! h;; p Xi

2. Translation of constants: Constants of abstract fork algebras are trans-

lated in the following way:

1 7! hfm(X;Y) g;mi

0 7! h;;mi

10 7! hfm(X;X) g;mi

The constants that were introduced by type de�nitions are translated

using the corresponding constructors. For example, the constant re-

lation zero, which corresponds to the constructor 0, is translated into

the following program:

hfm(X; 0) g;mi

3. Translation of join: The intended semantics of join is program joining,

so the translation of join, denoted here by �, is recursively de�ned by:

R1 +R2 7! hCR1+R2
[P1 [P2; newi

where

�(R1) = hP1;m1i and �(R2) = hP2;m2i

and CR1+R2
= fnew(X;Y) m1(X;Y):new(X;Y) m2(X;Y)g.

4. Translation of fork: The intended semantics of fork is the tupling of

outputs of each relation involved. Fork is translated as follows:

R1rR2 7! hCR1rR2
[P1 [P2; newi

where CR1rR2
= fnew(X; ?(Y 1; Y 2)) m1(X;Y 1);m2(X;Y 2)g.

Here we can see the usefulness of the star function symbol.

5. Translation of composition: Composition is translated in the following

way:

R1;R2 7! hCR1;R2
[P1 [P2; newi

where CR1;R2
= fnew(X;Y) m1(X;Z);m2(Z; Y)g.

4.2.2 Translation of Equations

Once the right-hand side of the equations is translated, we only need to relate

the resulting programs with their corresponding left-hand side variable. This

is done by adding clauses of the form:

p V (X;Y) m(X;Y)

for every equation V = T in the speci�cation, where m is the main predicate

in �(T).

Example: Let us consider the above-mentioned speci�cation of LENGTH.

Its right-hand side term is translated into hP; leni, where P is the set:

f len(X;Y) idnil(X;Z); zero(Z; Y);

len(X;Y) notnil(X;Z1); tl(Z1; Z2); p LENGTH(Z2; Z3); sig(Z3; Y);

idnil(X;Y) nil(X;Y); id(X;Y);

tl(X;Y) cons(Z;X); rho(Z; Y)

g

Now, we relate len with LENGTH by adding the clause:

p LENGTH(X;Y) len(X;Y)

4.3 Restrictions

There exist some restrictions on the speci�cations. As it is indicated in [1],

a set of equations must be strati�ed with respect to complementation; this

means that if a relation R depends on the complementation of S then S

cannot depend on R.

It is also necessary that all the equations from a set have di�erent vari-

ables in their left-hand side (no multiple de�nitions of relations).

4.4 Semantics of Fork Speci�cations

Although the semantics of fork speci�cations will not be studied in this

paper, it is important to note that, as it is explained and proved in [1], the

way in which speci�cations are de�ned and translated is completely natural,

and yields a straightforward de�nition for semantics of strati�ed sets of

equations.

5 The Fork Compiler

The fork compiler that we describe in this section is a tool that allows to

execute fork speci�cations. It works translating a fork speci�cation into a

normal logic program in such a manner that the semantics of the original

speci�cation is preserved.

5.1 Executing a Speci�cation

Once a speci�cation is written, it can be translated into a logic program by

using the fork compiler. Then, the programmer can execute the speci�cation

by interpreting the generated code in a logic programming interpreter.

For each relation de�nition of the form

X = T

a predicate p X is generated in the output logic program, so the programmer

may consult predicate p X to execute the relational program X.

Example: Let us consider the LENGTH speci�cation given above. The

logic program generated by the compiler include the predicate p LENGTH,

which can be used to execute LENGTH. If the programmer wants to

compute the length of the list [1; 2; 3; 4], he would make the following consult

to the generated program:

p_LENGTH([1,2,3,4], X).

5.2 Using a Common Prolog Interpreter to Execute Speci�-

cations

The declarative meaning of logic programs is given by the standard model

semantics [2]; although Prolog does not support this semantics, the refu-

tation procedure [9] (procedural semantics of programs in Prolog) is sound

with respect to this meaning. Thus, a Prolog interpreter can be used to

evaluate a program generated by the fork compiler. However, two problems

could arise if a Prolog interpreter is used to evaluate fork logic programs:

� the refutation procedure could fail to �nd successful results, especially

when the original fork speci�cation use the complementation opera-

tion,

� because of the untyped nature of Prolog semantics, a program could

yield meaningless terms as results if it is evaluated on a non-well-

formed term (it is not controlled by the interpreter). For example, if

the relation pred (that relates a nonzero natural number to its prede-

cessor) is evaluated on the term s(?(0; 0)), which is not well-formed,

it will yield ?(0; 0) as result.

6 Future Work

The tool that we have presented allows to translate a fork speci�cation into

a logic program preserving the meaning of the original speci�cation. This

tool can be extended in many ways. At �rst, an interpreter that checks

the correct construction of predicate arguments when consulting a program

should be made; also, the strati�cation of speci�cations should be checked

statically. Some simple optimizations should be made to the generated pro-

grams, that does not a�ect the performance of programs, but improve their

reading. These optimizations are unfolding of predicates, in order to avoid

the use of unnecessary predicate de�nitions, and the elimination of repeated

predicate de�nitions, produced by the sharing of some subexpressions in fork

speci�cations.

Another useful extension is the construction of a visual tool for editing

fork speci�cations; by such an editor, the speci�er could avoid dealing with

the details of the generated code, and work entirely on a fork-algebraic

environment.

References

[1] Aguirre, N., A logical interpretation of abstract fork speci�cations, in

Proceedings of Workshop Argentino de Inform�atica Te�orica WAIT'99,

28o Jornadas Argentinas de Inform�atica e Investigaci�on Operativa 28

JAIIO, 1999.

[2] Apt, K.R., Blair, H.A., Walker, A., Towards a Theory of Declarative

Knowledge, in J. Minker (Ed.), Foundations of Deductive Databases

and Logic Programming, Morgan Kaufmann Pub., Washington D. C.,

1988.

[3] Baum, G.A., Frias, M.F., Haeberer, A.M. and Mart��nez L�opez, P.E.,

From Speci�cations to Programs: A Fork{algebraic Approach to Bridge

the Gap, in Proceedings of MFCS'96, LNCS 1113, Springer-Verlag,

pp. 180{191, 1996.

[4] Brink, C., Kahl, W. and Schmidt, G. (Eds.), Relational Methods in

Computer Science, Springer, Wien New York, 1997.

[5] Frias, M. F., Baum, G. A. and Haeberer, A. M., Representability and

Program Construction within Fork Algebras, to appear in Journal of the

IGPL.

[6] Frias, M. F., Baum, G. A., Haeberer, A. M. and Veloso, P. A. S., A

Representation Theorem for Fork Algebras, (Technical Report) MCC.

29/93, PUC-RJ, August 1993.

[7] Frias, M. F., Baum, G. A., Haeberer, A. M. and Veloso, P. A. S.,

Fork Algebras are Representable, in Bulletin of the Section of Logic,

University of L�od�z, Vol. 24, No. 2, pp.64{75, 1995.

[8] Libra Programming Language, Department of Computer Sci-

ence, University of Adelaide, Adelaide, South Australia, URL:

www.cs.adelaide.edu.au/users/dwyer/TR95-10 TOC.html.

[9] Lloyd, J. W., Foundations of Logic Programming, Springer-Verlag,

1987.

[10] Ralf System, Home Page of RelMiCS, URL: inf2-

www.informatik.unibw-muenchen.de/Research/Tools/Ralf/ralfmanual.html.

[11] Relview System, Department of Computer Science and Applied Math-

emathics, University of Kiel, Germany. URL: www.informatik.uni-

kiel.de/~progsys/relview.html.

