
Coscheduling Techniques and Monitoring Tools for

Non-Dedicated Cluster Computing∗

Francesc Solsona1, Francesc Giné1, Porfidio Hernández2 and Emilio Luque2

1Departamento de Informática e Ingeniería Industrial, Universitat de Lleida, Spain.
{francesc,sisco}@eup.udl.es

2Departamento de Informática, Universitat Autònoma de Barcelona, Spain.
{p.hernandez,e.luque}@cc.uab.es

Abstract

Our efforts are directed towards the understanding of the coscheduling mechanism in a NOW
system when a parallel job is executed jointly with local workloads, balancing parallel perfor-
mance against the local interactive response. Explicit and implicit coscheduling techniques
in a PVM-Linux NOW (or cluster) have been implemented.

Furthermore, dynamic coscheduling remains an open question when parallel jobs are
executed in a non-dedicated Cluster. A basis model for dynamic coscheduling in Cluster
systems is presented in this paper. Also, one dynamic coscheduling algorithm for this model
is proposed. The applicability of this algorithm has been proved and its performance ana-
lyzed by simulation.

Finally, a new tool (named Monito) for monitoring the different queues of messages in
such an environments is presented. The main aim of implementing this facility is to provide
a mean of capturing the bottlenecks and overheads of the communication system in a PVM-
Linux cluster.

Keywords: coscheduling, monitoring tool, PVM, Linux, distributed and cluster systems.

1 Introduction

Combining parallel and sequential workloads on a non-dedicated Cluster system, with rea-
sonable performance for both computation kinds is an open research goal. Researchers in this
∗This work was supported by the CICYT under contract TIC98-0433

area have shown that coscheduling techniques can offer this functionality, although the lit-
erature demonstrates that coscheduling is critical for parallel programs in order to achieving
acceptable performance. This is an alternative to load balancing, which may be excessively
time costly in Cluster computing. In addition, it may cause subsequent problems, such as
redirection of messages (due to the migration of tasks), extra overhead and communication
traffic (in managing and controlling the overall system), and so on [11].

Over the years, researchers have been developing time-shared distributed schedulers us-
ing coscheduling techniques, trying to adapt them to the new situation of mixing local and
parallel workloads [1], [2], [3], [4] and [12].

Coscheduling ensures that no process will wait for a non-scheduled process for synchro-
nization/communication and will minimize the waiting time at the synchronization points
[1]. Some of the relevant coscheduling work is shown below.

Explicit coscheduling, all processes in a parallel application are scheduled simultane-
ously, with coordinated time-slicing between them. Generally, this yields good parallel pro-
gram performance and this is widely used to schedule parallel processes involving frequent
communication [1]. Coscheduling will ensure that no process will wait for a non-scheduled
process for synchronization/communication and will minimize the waiting time at the syn-
chronization points.

Sobalvarro introduced in [5] and recently implemented in a Cluster system in [6], the
concept ofdemand-basedcoscheduling, divided betweendynamiccoscheduling andpredic-
tive coscheduling. Indynamiccoscheduling, messages arriving at a node, if addressed to a
process other than the one currently running, sometimes cause preemption of the running
process in favor of the process to which the message is addressed. Thepredictivemethod
is based on coscheduling at the same time processes that have recently communicated with
each other, but this is outwith the scope of this article.

A variation of dynamic coscheduling, namedimplicit coschedulingin [2, 3, 4, 7], is based
on the spin-blocking technique. In this, the blocked process waiting for messages, spins
for a determined time and if the response is received before the time expires, it continues
executing. If not, the requesting process blocks and another one is scheduled.

Dynamic coscheduling, in contrast to implicit coscheduling, deals with all message ar-
rivals (not just those directed to blocked processes), thus increasing the range of potential
cases for coscheduling. In [6], only the execution of one distributed application was eval-
uated, due to the limitations of Fast Messages (a user messaging level under which a dy-
namic coscheduling algorithm was implemented), where in addition to providing dynamic
coscheduling facilities for distributed applications, equal shares of the CPU for both dis-
tributed and local tasks were taken into account. In [7], implicit coscheduling was imple-
mented (in a MPI [9, 10] environment) and evaluated, achieving performance for various
coarse-grain message-passing distributed applications. More research needs to be done on
dynamic coscheduling.

Algorithms for implementing new explicit and implicit coscheduling environments as
well as studies of the parameters and overheads involved in them are presented in this paper.
Also, a dynamic coscheduling model for cluster systems, named DCNDC, and some related
dynamic performance metrics are explained. Multiple concurrent execution of distributed

applications is supported by this model. In this, it is assumed that Cluster nodes have to be
mono-processor. A dynamic coscheduling algorithm based on this model is also proposed.
Extensive performance analysis based on the model metrics presented, demonstrated by sim-
ulation, the applicability of both the proposed model and the dynamic algorithm in Cluster
computing.

One of the most important goals in distributed computing and specially in PVM [8]
environments is performance evaluation as Paradyn [18], Aims [15] and XPVM [14]. To
study this, some questions must be answered: how good the message passing libraries of the
distributed environment are, where there is room for improving their performance and so on.

The /proc Linux file system offers much information about the communication subsys-
tem, but this information is insufficient to obtain a global view of its behavior on each instant
(bottlenecks, saturations, reasons for crashing in distributed applications, and so on). With
this aim, a monitoring tool, calledMonito, was designated to provide a means of investigat-
ing and localizing these phenomena.

The remainder of the paper is organized as follows. In Section 2, real explicit and implicit
implementations are described. A dynamic coscheduling model and a dynamic algorithm
based on this model are developed in Section 3. In Section 4, a monitoring tool for commu-
nicating system evaluation is presented. In Section 5, the different coscheduling techniques
an tools are evaluated by real executions and by simulation. Finally, the conclusions and
future work are detailed.

2 Explicit and Implicit Coscheduling

In this section, the methods and metrics to measure their cost for explicit and implicit
coscheduling distributed tasks in a PVM-Linux NOW are described.

2.1 Explicit Coscheduling

The aim of explicit coscheduling is to schedule all the distributed tasks in the cluster at the
same time and let them execute during a period of time. From one global controller process
running in one node namedmaster, control messages are sent (in a broadcast form) to every
explicit process (nameddts) running in the composing workstations of the cluster, which are
responsible for implementing explicit coscheduling. One of these control messages (init)
informs all thedtsprocesses to start delivering STOP and CONTINUE signals to their local
high-priority distributed processes at regular intervals (see also [12]). The time spent in
starting (Tstart) all the distributed tasks is:

Tstart = Ws(local)+Ww(dts)+Ssig(CONT)+Ww(dis)+Ws(dts), (1)

whereWw/Ws is the elapsed time in waking up/suspendingdts, a local task (local) or a dis-
tributed task (dis). Ssig(CONT) is the maximum elapsed time in sending a CONTINUE
signal to all the distributed tasks in the node. The time spent in stopping (Tstop) all the

distributed tasks is:

Tstop= Ws(dis)+Ww(dts)+Ssig(STOP)+Ww(local)+Ws(dts), (2)

whereSsig(STOP) is the maximum elapsed time in sending a STOP signal to all the dis-
tributed tasks in the node. Because the time in delivering a signal to a group of processes
does not depend on the signal to deliver, we consider thatSsig(STOP) = Ssig(CONT) = Ssig.
Similarly, the valuesWw = Ws = W are considered to be equal. In consequence 1 and 2 can
be reformulated as:

Tex = Tstart = Tstop= 4W +Ssig. (3)

2.2 Implicit Coscheduling

The implicit coscheduling aim is to schedule only communicating distributed tasks at the
same time. We are interested in only spinning the tasks during at most a context-switch
period and not in spinning during the deliver of a round-trip message as in [2, 3, 4], as
distributed tasks can follow many types of communication patterns and the messages can
arrive asynchronously to distributed tasks, at any time. The metricTim is used to compute
the maximum overhead added in spinning, which also gives us a first reference to choose the
spin interval(sp):

Tim = Ws(dis)+Ww(local) (4)

3 Dynamic Coscheduling Model (DCNDC)

In this section, a Dynamic Coscheduling model for Non-Dedicated Cluster systems (named
DCNDC) is formalized. Also a dynamic coscheduling algorithm (SDCA) for such a model
is given.

Algorithm 1 shows the pseudo-code of the appropriative Round Robin Scheduling policy,
for a time-shared o.s. of a cluster node, assumed in the DCNDC Local Scheduler. Other
typical scheduler functions (like saving/restoring task contexts) that do not influence our
model are not considered. The scheduler works indefinitely while the RQ (sorted Ready to
run task Queue) wasn’t empty. In this case, the scheduler dispatches (assigns the CPU to)
the top task.

When the executing task finishes execution, or its assigned time slice expires, or another
task preempt the CPU due to a dynamic decision, the execution in the CPU continues in
line 4 (label DISPATCH), where some dynamic statistical information of such task must be
carried out after this point.

Algorithm 2 shows the pseudo-code of the proposed dynamic coscheduling algorithm
(SDCA). The INITIALIZATION and RESIDUAL CODE sections are the place where the
different initializations (these may be global variables) of the algorithm and where the rest
of the original source of the routine receive reside respectively. It is assumed that message

Algorithm 1 DCNDC Local Scheduler of a cluster node.
1 do forever
2 if (number of processes in RQ6= NULL)
3 dispatch.(first process of RQ);
4 DISPATCH:
5 accountingfor the CPU out-coming process;
6 moveCPU out-coming process to the bottom of RQ;
7 endif;
8 enddo;

reception (m) is done asynchronously, so we calledasync_receivethe entry point for such
a routine. Note the action of reception routine only differs from the original one (with the
async_receivefunction and the RESIDUAL CODE section) when the receiving tasks are not
executing. This means that dynamic coscheduling techniques will only be applied when this
condition was satisfied. In line 7, the receiving process, according to a dynamic condition is
re-ordered (moved) into the RQ. The dynamic condition applied are the following:

• number of received messages (a process can overtake another one if has more pending
messages in the Message Buffer Queue (MBQ) than such a last)

• maximum number of overtaking (a process can not overtaking another one if this max-
imum is reached by such a last)

Algorithm 2 Share Dynamic Coscheduling Algorithm (SDCA).

Routine Receive
1 INITIALIZATION
2 async_receive(message,process):
3 if (process/∈ RQ) insert_RQ_bottom(process); endif;
4 RESIDUAL CODE
5 markprocessas potential coscheduling;
6 if (process6= first RQ process)
7 moveprocessin the RQ according to adynamic condition;
8 increment the overtaking field for the overtaken processes
9 if (process reaches top position in RQ) Goto DISPATCH; endif;
10 endif;

4 Monito: The Monitoring Tool

Monito(aMonitoring tool), provides different facilities for collecting and analyzing the com-
munication subsystem in a PVM-Linux cluster. Monito obtains on time state of the main
queues involved in the communication process, from the PVM (version 3.4) to the physical
network device layer.

Table 1: Netmon arguments.
$Netmon -dsp-tmt [-s -f] [Interface]

-d sp: sampling period (sp) in milliseconds
-t mt : monitoring time (mt) in seconds

-s : output to display
-f : output to file Netmon.dat

[Interface] : sampling interface, default eth0

The most interesting transmission/reception queues to be analyzed in each layer are
hosts, locltasks and txlist/pvmrxlistin the PVM,write_queue/receive_queuein the socket,
buffs/backlogandCBL/RFAin the logical and physical device respectively.

The set of implemented utilities are: two PVM services,pvm_getpvmdstatsandpvm_get-
askstats, thestadsoc, stadqueandstaddevmodules, thedev_queuessystem call and finally
Netmon, an application that monitors and collects information about these utilities.

4.1 Netmon

TheNetmonarguments are shown in Table 1. Netmon does the following operations in every
sampling period(sp):

1. Obtain PVM information

(a) Obtainpvmd(PVM daemon) statistics. It is carried out by the pvm callpvm_get-
pvmdstats(see Fig. 1(a)). The functionpvm_getpvmdstatssends a TM_PVM-
DSTAT message to the PVM daemon and waits for a response from it (1). In the
daemon a new function,tm_pvmdstatwas implemented to replyto Netmonwith
another TM_PVMDSTAT message containing the information of thehostsand
locltasksstructures (2), like, for example, the packets to deliver to remote hosts
(in hosts) and packets to deliver to the local tasks (inlocltasks).

(b) Obtain PVM tasks statistics. It is begun by the new pvm callpvm_getaskstats(see
Fig. 1(b)). The functionpvm_getaskstatssends a TM_TASKSTAT message to
the daemon and waits for a response from it (1). In the daemon, a new function
for dealing with this kind of messages was implemented, namedtm_taskstat.
This function sends a TC_TASKINFO message to all the pvm tasks (2). Next,
this function waits for the reply from all the pvm tasks by a newpvm_tc_taskinfo
function (3) and then sends a TM_TASKSTAT message toNetmon(4). The
information obtained is the number and size of the buffered messages, waiting
for sending intxlist (or to be taken inpvmrxlist) queues.

(a) (b)

Figure 1: (a)pvmdmonitoring; (b) pvm tasks monitoring.

2. Obtain Linux information

(a) Obtain the sockets statistics. Netmon reads the file/proc/net/stadsoc, created and
maintained by thestadsocmodule for storingwrite_queueand receive_queue
information. Table 2 column stadsoc, shows the information provided by this
module. Note that this information is also supplied by the kernel in three dif-
ferent/proc files but the overhead in reading these can be unacceptable in small
sampling periods. This is the reason for implementing this facility.

(b) Obtain logical device statistics. The method used to get information about the
backlog and buffs queues of the logical devices is the same as in the previ-
ous explained module. This module is namedstadqueand its associated file
is /proc/net/stadque(see Table 2 column stadque). There is no known utility that
gets this kind of information.

3. Obtaining network device information. To capture additional information of the phys-
ical network device (see Table 2 column staddev), not supported in the/proc/netfile
system and also to sample their RFA and CBL queues, another module,staddevhas
been implemented. Its associated file is/proc/net/staddev.

Note that the PVM data is collected by message passing; this can produce some monitoring
overhead. When it finalizes, Netmon shows on the display the additionalNetmonexecution,
the percentage of samples which overlapped thesampling periodand the maximum extra
time required in asampling period.

Table 2: stadsoc, stadque and staddev information.
stadsoc stadque staddev

protocol type (tcp, udp, raw) # of queues received collision packets
@IP and port Source max. queue length pending packets in RFA
@IP and port Target Interactive queue delayed transmission packets

sk_buff’s in recv_queue Normal queue # one trans. collision
sk_buff’s in write_queue Background queue # multiple trans. collisions
total bytes in recv_queue # of backlog sk_buff’s pending packets in CBL
total bytes in write_queue

of retransmissions
i-node socket

5 Experimentation

The experimentation has been performed in a Now made up of an interconnection network
of 100 Mbps Fast Ethernet and four PVM-Linux PCs with the same characteristics: 350Mhz
Pentium II processor, 128 MB of RAM and 512 KB of cache.

A distributed application,sintreewas implemented to measure performance of the im-
plemented environments. It attends for a communication pattern of one to vary, and vary to
one.sintreeaccepts two arguments: number of processes (M) and number of iterations (N).
By defaultM = 4 andN = 30.000. Also, two kernel benchmarks (class A) from the NAS
parallel benchmarks suite [13] were used:is andmg.

Firstly, the well behavior of the implemented monitoring tool is evaluated. Next, different
explicit and implicit coscheduling implementations are compared by means of experimental
results. Finally, the performance of the dynamic algorithm explained in the section 3 is
evaluated by means of simulation.

5.1 Monito Experimentation

In every experimentation, the PVM operation mode(RouteDirector DontRoute[8]) and
arguments of the sintree benchmarks (#processes/size_of_messages) were showed. For ex-
ample, 32p/8K means thatsintreearguments are N = 32 processes and M = 8KB. The default
Netmonarguments weresp= 100µsandmt = 200s. In the figure 2 and 3 are showed the
most representative results obtained from the parent node of the sintree benchmark .

5.1.1 Physical, Logical and Socket Layers

Fig. 2(a) shows the results obtained for the physical layer in the DontRoute 32/2MB case.
The CBL queue is fulfilled due to the great number of fragmented packets transfered from
higher levels. The maximum CBL and RFA capacity is 16 packets, but for security reasons,
the driver always reserves two CBL elements. For this reason, the maximum number that
appears in Fig. 2(a) is 14.

(a) (b)

Figure 2: DontRoute (a) buffered packets in transmission (CBL queue) for 32p/2MB and (b)
pvmdsocket buffer in reception (receive_queue) for 750p/8K.

Figure 3: RouteDirectpvmrxlistqueue 25p/2MB.

Fig. 2(b) shows the socket layer statistics for the DontRoute 750/8K case. Note that the
reception queue is saturated (the maximum capacity is 65535 bytes). This confirms the good
behavior ofMonito.

There is no buffer saturation or relevant facts in the other cases of these layers and thus
the results obtained are not shown.

5.1.2 PVM Layer

Fig. 3 shows the reception queue (pvmrxlist) in the parent task of thesintreebenchmark
(almost saturated). Observe the result of dividing the max.pvmrxlistcapacity reached (=
46137344 Bytes) by the number of packets (= 22, number of crosses in one maximum of

the figure) is 2097152 Bytes = 2MB (exactly the sending message size); this also proves the
good behavior ofMonito.

5.2 Explicit and Implicit Experimentation

In order to compare different coscheduling algorithms, the next distributed environments
were created:

• PVM: original PVM.

• SPIN: Implicit coscheduling (the spin-block is only performed in the reading of the
data fragment).

• MXI: head + body fragment are read in one time (original PVM does this in two
different steps).

• MXISPIN: SPIN and MXI.

• PRIO: always, the highest priority is assigned to distributed tasks.

• PRIOSPIN: PRIO and SPIN.

• EXPLICIT: periodically, after 90000µs thedtsdaemon in each node delivers a STOP
signal to all the local distributed processes and then, elapsed 10000µs, dts delivers
a CONTINUE signal to reawaken them. The measuredTim ' 10 µs, so in the spin
models ansp of 10 µs was chosen. In all the experimentations, the communications
between remote tasks was done throughRouteDirectPVM mode.

5.2.1 Distributed tasks performance

Fig. 4 shows thesintreeexecution times in the seven above cited modes while the local
workload in each node (simulated by compiling applications) is varied from 0 to 3.

As was expected, optimal execution of the PRIO case can be observed. EXPLICIT with-
out local tasks is the worst mode. By increasing the workload, its performance scarcely
decreases due to the time assigned to distributed tasks is independent of the local workload.
MXI and SPIN modes scale fine and their performance is always between the PVM and
PRIO. SPIN is faster than PVM because avoids a lot of times the blocking overhead in re-
ceiving messages. The PRIOSPIN case gives worse results than PRIO, as the unnecessary
spin-block phase added in the first mode, this only adds an unnecessary overhead in the
reading of the fragment. MXISPIN works worse than MXI, as in this case penalties when
time-slice expires are more than ones in context switching.

Fig. 5 shows the results obtained from executingis andmg in the different models. The
behavior ofmg is similar to thesintreeone. On the other hand,is does not work as fine as
mgandsintreein the SPIN cases.

(a) (b)

Figure 4:sintreeexecution. (a) N = 30000. (b) N = 70000.

(a) (b)

Figure 5: Execution of the NAS parallel benchmarks (a)mgand (b)is.

5.2.2 Local tasks performance

The influence of the models in the local tasks was based on measuring the slowdown calcu-
lated as follows:

sdMOD =
TMODEL−TPVM

TPVM
100,

where TMODEL (TPVM) is the execution time of a local task (a compiling application)
when it was executed in such model (original PVM). See Table 3.

Table 3: slowdown of a compiling local task.
slowdown PRIO PRIOSPIN EXPLICIT SPIN MXI MXISPIN

sintree 1.4 1.4 1.4 3.6 1.4 3.6
is 2.8 2.8 4.2 2.1 0 2.1
mg 90 92 42 8 1.6 8

As might have been expected, when intensive message-passing distributed applications
are executed (sintreeandis), the local task performance is scarcely decreased. On the other
hand, a high slowdown is introduced if intensive CPU distributed tasks are executed (mg).
As was to be expected, the explicit model has a great impact on the local task and even more
in the PRIO and PRIOSPIN cases.

5.3 DCNDC Experimentation

The experimentation has been performed by simulation. Three different simulating pro-
grams have been implemented. The first program simulates the SDCA algorithm (SDCA),
explained in the section 3. The second one simulates the dynamic technique (DYNAMIC)
defined in [5] and implemented in [6]: in the receipt of a message for a taskl , if execut-
ing_cpu_cycles(l) + share < executing_cpu_cycles(e), whereshareis a constant of the sys-
tem ande is the task actually in execution, then a context switch in favor of task l is per-
formed. Finally, the last one simulates the spin-block technique (IMPLICIT) explained in
the section 2.2.

The following parameters have been considered for implementing these simulating pro-
grams:

• mean inter-arrival time (mit): mean time for arriving tasks to the RQ (Ready Queue),
simulated by means of an exponential distribution with mean= mit.

• mean service time (mst): mean time for service tasks (by the CPU). Also, the chosen
density function is an exponential with mean= mst. A value ofmst= 0.9 has been
chosen.

• number of served tasks (nst= 10000): finishing simulation parameter.

• probability of distributed task (pdt). Each generated task is a distributed one with
probability pdt, and a local one with probability 1 -pdt. The density function is a
bernoulli with apdt Probability.

• maximum number of messages (mnm). For each distributed task, the number of receiv-
ing messages is generated. The density function is discrete uniformly in the interval [0
.. mnm]. The experimentation has been performed with a value ofmnm= 5.

Figure 6: NodeCoDe. Numbers in parenthesis arepdt probabilities.

Generally, better results are obtained for largemit values and lowspinandshareparameters.
For this reason, in the rest of the experimentation, values ofspin=0.01 andshare=0.1 have
been chosen.

Fig. 6 shows the results for the NodeCoDe metric, defined as: relation between scheduled
tasks with messages in MBQ and all the possible coscheduling ones (scheduled and not
scheduled) into a node.

The good performance obtained for the SDCA model demonstrates its effectiveness in to
profit the potential coscheduling. By extension, that result can be applied to each node of the
overall system (or cluster), and for this reason no simulation for obtaining the overall cluster
metrics has been performed.

6 Conclusions and Future Work

In a PVM environment made up of a NOW of Linux nodes, we have implemented and dis-
cussed different coscheduling techniques and compared their performance. Also, we have
discussed their main advantages and drawbacks. A model, some related performance met-
rics and a coscheduling algorithm for dynamic coscheduling in Cluster computing is also
proposed in this article.

Monito, a tool presented also in this article, serves for the analysis from the PVM queues,
through the kernel queues, to the physical network device ones. This tool will allow in-depth
study of the communication bottlenecks and correct these, for example the queue saturation
cases shown in the experimentation.

Future work is directed towards investigating new dynamic coscheduling algorithms and
implementing these jointly with the DCNDC in a real PVM and/or MPI Linux environment.
Despite the presence of multi-processor nodes in the cluster, no consequences are produced
in the model, as the model is only applied to the mono-processor ones. The future trend is to
provide multi-processor capabilities.

Another goal is to expandMonito for also evaluating MPI communication performance
and the design of new algorithms to decrease overhead in sampling data. Finally, we are
interested in improving the performance of the communication system.

References

[1] Ousterhout, J.K.: Scheduling Techniques for Concurrent Systems. In Third Interna-
tional Conference on Distributed Computing Systems, pp. 22-30. 1982.

[2] Arpaci, R.H., Dusseau, A.C., Vahdat, A.M., Liu, L.T., Anderson, T.E. and Patterson,
D.A.: The Interaction of Parallel and Sequential Workloads on a Network of Worksta-
tions. In Proceedings of the ACM SIGMETRICS’95/PERFORMANCE’95, pp. 267–
278. 1995.

[3] Arpaci-Dusseau, A.C., Culler, D.E. and Mainwaring, A.M.: Scheduling with Im-
plicit Information in Distributed Systems. In Proceedings of the ACM SIGMET-
RICS’98/PERFORMANCE’98. 1998.

[4] Dusseau, A.C., Arpaci, R. H. and Culler, D. E.: Effective Distributed Scheduling of
Parallel Workloads. In Proceedings of the ACM SIGMETRICS’96. 1996.

[5] Sobalvarro, P.G., Weihl, W.E..: Demand-based Coscheduling of Parallel Jobs on
Multiprogrammed Multiprocessors. In Proceedings of the IPPS’95 Workshop on Job
Scheduling Strategies for Parallel Processing, pp. 63–75. 1995.

[6] Sobalvarro, P.G., Pakin, S., Weihl, W. E., Chien, A. A.: Dynamic Coscheduling on
Workstation Clusters. In Proceedings of the IPPS’98 Workshop on Job Scheduling
Strategies for Parallel Processing. 1998.

[7] Wong, Frederick C., Arpaci-Dusseau, Andrea C., Culler, David E.: Building MPI for
multi-programming systems using implicit information. In 6th European PVM/MPI
User’s Group Meeting. LNCS, Springer, pp. 215–222. 1999.

[8] Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R. and Sunderam, V.: PVM:
Parallel Virtual Machine - A User’s Guide and Tutorial for Networked Parallel Com-
puting. MIT Press. 1994.

[9] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard. www-
unix.mcs.anl.gov/mpi. 1995.

[10] Message Passing Interface Forum: MPI-2: Extensions to the Message-Passing Inter-
face. www-unix.mcs.anl.gov/mpi. 1997.

[11] Buyya, R.: High Performance Cluster Computing: Architecture and Systems, Volume
1. Prentice Hall. 1999.

[12] Solsona, F., Giné, F., Hernández, P., Luque, E.: Synchronization methods in distributed
processing. IASTED AI’99, pp. 471–473. 1999.

[13] Bailey, D. et al.: The NAS parallel benchmarks. International Journal of Supercomputer
Applications. vol. 5 no. 3, pp. 63–73.1991.

[14] Kohl, J.A. and Geist, A.: XPVM 1.0 User’s Guide". Technical Report ORNL/TM-
12981, Computer Science and Mathematics Division, Oak Ridge National Laboratory.
1995.

[15] Yan, J.C., Schmidt, M. and Schulbach, C.: The Automated Instrumentation and Mon-
itoring Systems (AIMS) - Version 3.2 User’s Guide". NAS Technical Report NAS-97-
001. 1997.

[16] Heath, M.T., Etheridge, J.A.: Visualizing performance of parallel programs. IEEE Soft-
ware. vol 8 no. 5, pp. 29–39. 1991.

[17] Information Networks Division. HP Co.: Netperf: A Network Performance Bench-
mark. http://www.netperf.org/netperf/NetperfPage.html. 1996.

[18] Miller, B.P., Hollingsworth, J.K. and Callaghan, M.D.: Environments and Tools for
Parallel Scientific Computing. J.J. Dongarra and B. Tourencheau (eds.), SIAM Press.
1994.

