
A Comparison of Different Evolutive Niching

Strategies for Identifying a set of Selfsimilar

Contractions for the IFS Inverse Problem

Maŕıa L. Ivanissevich

Universidad Nacional de la Patagonia Austral,

Rı́o Gallegos, Argentina

A. S. Cofiño and J.M. Gutiérrez

Dept. of Applied Mathematics, University of Cantabria,

Santander, Spain

gutierjm@unican.es,

http://personales.unican.es/gutierjm

Abstract

The key problem in fractal image compression is that of obtaining the IFS code
(a set of linear transformations) which approximates a given image with a certain
prescribed accuracy (inverse IFS problem). In this paper, we analyze and compare
the performance of sharing and crowding niching techniques for identifying optimal
selfsimilar transformations likely to represent a selfsimilar area within the image.
The best results are found using the deterministic crowding method. We also
present an interactive Matlab program implementing the algorithms described in
the paper.

Keywords: Evolutive algorithms, fractals, iterated function systems, image compres-

sion.

1 Introduction

In the last two decades Iterated Function Systems (IFS) have been established as intuitive

and flexible fractal models in several areas of computer graphics (Turner et al. 1998).

The main features of IFS models are their simplicity and mathematical soundness: An

IFS consists of a set of contractive affine transformations, which express a unique image

(the attractor) in terms of selfsimilarities in a simple geometric way. These models have

been applied to many interesting problems, including fractal image compression (Fisher

1995). This possibility is provided by the Collage Theorem (Barnsley 1990), which shows



that any image can be closely approximated by the attractor of an appropriate IFS model

(encoded only with a few parameters, the coefficients of the affine transformations).

The key problem in fractal image compression is that of obtaining the IFS code which

approximates a given image with a certain prescribed accuracy (inverse IFS problem).

Some attempts to solve this problem include “moment matching”, which reduce the

problem to solving a system of equations (Abiko et al. 1999); wavelets transforms,

which use similarity preserving properties of continuous wavelets to find the appropriate

transformations (Berkner 1997), etc., but none of these techniques have prove to be

efficient in general.

Other recent attempts to solve the inverse problem use evolutive algorithms, a new

optimization paradigm that models a natural evolution mechanism (see Michalewicz

1994 for an introduction to this field). Evolutive algorithms work with a population of

individuals (in this case a population of IFS models) each one them representing a search

point in the space of potential solutions of the inverse problem. The population is able

to adapt towards the optimum by means of a random process of selection, and the appli-

cation of genetic operators, such as recombination and mutation. Several schemes based

on this idea have been recently proposed; they only differ in the manner information

is encoded and in the specific genetic operators applied in the evolutive process. Two

broadly accepted schemes are Genetic Algorithms (GAs) (Holland 1975, Goldberg 1989)

and Evolutionary Strategies (ESs) (Rechenberg 1973).

Attempts for solving the inverse problem using GAs (Lutton 1995, Shonkwiler et al.

1991, Foentzel 1994) and ESs (Nettleton et al. 1994, Evans et al. 1998) have achieved

relative success. These algorithms work with a population of IFS models and, therefore,

perform a global optimization of the whole set of selfsimilar contractions of the given

image. It has been recently proposed (Gutiérrez et al. 2000) a more efficient approach

to this problem using an hybrid evolutive-genetic algorithm in two steps:

Step 1: An evolutive strategy is used for identifying selfsimilar contractive transformations

of a given image (the problem at this stage is obtaining the selfsimilar structures

within the image); the algorithm works with a population of affine transformations.

Step 2: An initial population of IFS models is created by randomly combining the obtained

selfsimilar transformations according to their fitness (selfsimilarity degree), and a

genetic algorithm is conducted to search the optimal IFS model among the different

combinations.

The main idea of the hybrid algorithm is using an appropriate set of transformations

(representing selfsimilar areas of the image) to form the IFS models, instead of consider-

ing an initial random population. Gutiérrez et al. 2000 use a simple (µ+λ)-ES algorithm

for identifying the set of selfsimilar transformations. However, the evolution of standard

ESs is quickly attracted to one of the local maxima of the fitness space forcing to per-

form successive independent runs to find different selfsimilar transformations. Niching



methods (Goldberg 1989) help to allow the concurrent existence of different solutions in

the same evolutive population.

In this paper, we analyze and compare the performance of sharing and crowding

niching techniques applied to this problem. These techniques have been implemented

in Matlab program “Evolutive IFS”, which allows us comparing and understanding the

different niche algorithms in an easy and interactive form.

This paper is organized as follows. In Section 2 we introduce IFS and describe the

inverse problem. Some terminology and definitions on ESs are presented in Section 3.

Section

2 Iterated Function Systems

An IFS is a set of affine contractive functions ti, i = 1, . . . , n, which transform a subset

of the plane S ⊂ IR2 onto smaller subsets ti(S). Then, it is possible to define one

transformation, T , in the subsets of the plane by

T (S) =
n⋃

i=1

ti(S). (1)

For an input set S, we compute ti(S) for each i, take the union, and get a new set T (S).

It can be easily shown that if the ti are contractive then T is also contractive and has a

unique fixed point in the space of all images called the attractor of the IFS, A = T (A).

Equation (1) gives an intuitive framework for modeling fractal selfsimilar images, since

selfsimilarity means that any portion of the object, if enlarged in scale, appears identical

to the whole object. This fact is shown in the three examples of Fig. 1, where the boxes

indicate each of the selfsimilar portions of the images.

34

Figure 1: Attractors of three IFS models: The Sierpinsky gasket, a lightning, and a fern.
The fixed points of each contraction are also shown.

From this figure we can see that besides mathematical objects, such as the Sierpinsky

gasket, selfsimilarity is also present in many real-world patterns; for instance the IFS



model resembling the lightning shown Fig. 1 is given by the following transformations:

t1(x, y) = (0.424x − 0.651y + 3.964 , −0.485x − 0.345y + 4.222),

t2(x, y) = (−0.080x − 0.203y − 4.092 , −0.743x + 0.205y + 3.957).

Each function in an IFS has six degrees of freedom, which can be represented in a number

of equivalent forms, such as:

ti(x, y) =

(
ai1 ai2

ai3 ai4

) (
x
y

)
+

(
bi1

bi2

)
(2)

=

(
ri1 cosθi1 −ri2 sinθi2

ri1 sinθi1 ri2 cosθi2

) (
x
y

)
+

(
bi1

bi2

)
. (3)

Some of these representations are particularly suitable for the application of crossover

and mutation genetic operators. In particular, in this paper we chose the representation

given in (3), consisting of parameters (ri1, ri2, θi1, θi2, bi1, bi2) with an intuitive geometric

meaning (see Evans et al. 1998) for a detailed analysis of several representations).

Generating the attractor of an IFS model is an easy task (see Gutierrez et al. 1997);

however, the inverse problem is a hard one. The “Collage Theorem” establishes a condi-

tion for a given image I to be approximated by the attractor image A of an IFS model.

This theorem gives an upper bound for Haussdorff distance between both images d(A, I)

by using I and the transformations ti forming the IFS:

d(A, I) ≤ 1

1 − c
d(I,

⋃
ti(I)), (4)

where c is the contraction factor of the IFS formed by t1, . . . , tn. This theorem gives

a method for solving the IFS inverse problem by means of the following optimization

problem:

(OPT.1)

{
Minimize f(t) = d(I,∪n

i=1ti(I)),
Subject to t = (t1, . . . , tn), being contractions.

(5)

We can also consider the simpler problem of obtaining a single selfsimilar transfor-

mation t (as those shown in Fig. 1 for the Sierpinsky, lightning and fern IFS models).

In this case we have the following optimization problem:

(OPT.2)

{
Minimize f(t) = d(I, t(I)),
Subject to t, being a contraction.

(6)

Evolutive algorithms have been quite successful on solving these kind of optimization

problems, where standard mathematical algorithms are hard to apply.

3 Evolutive Algorithms and the Inverse IFS Prob-

lem

Evolutive algorithms work with a population of individuals which are iteratively adapted

towards the optimum by means of a random process of selection, recombination and mu-

tation. During this process, a fitness function measures the quality of the population, and



selection favors those individuals of higher quality. Most of the evolutionary algorithms

described in the literature for solving the IFS inverse problem follow the optimization

problem (OPT.1); in this case, each individual is an IFS model consisting of a number of

transformation and its fitness is given by some convenient measure of similarity between

the target image and the IFS attractor.

However, as shown by Gutiérrez et al. 2000, the inverse problem can be solved more

efficiently by first obtaining an appropriate set of transformations by solving (OPT.2)

and then using the obtained transformations to feed an initial population in (OPT.1).

This method is illustrated in Figure 2, which shows the results of theses two steps

when applied to the Sierpinsky carpet (see Gutiérrez et al. 2000 for details about the

implementation).

In this paper we shall analyze in detail (OPT.2), improving the simple ES used in

Gutiérrez et al. 2000 by considering different niching schemes. We first describe the

particular definition of the components of ESs used in this paper:

• A convenient coding of individuals. The population if now formed by linear contrac-

tive transformations. For each individual ti, we consider a vector of real numbers

of the form

(ri1, ri2, θi1, θi2, bi1, bi2, σi1, σi2, σi3, σi4, σi5, σi6).

where the first six components are the parameters of the transformation (individual

parameters) and the last six components correspond to standard deviations for

individual mutations (strategy parameters).

• A reproduction mechanism. Starting from an initial random population obtained

by constraining the scaling factors to be lower than one and the translations to be

in the range of the figure dimensions, the ES proceeds by iteratively reproducing

the population individuals, by the simple criterion of proportionality to their fit-

ness, P (tk) = f(tk)/
∑

i f(ti), together with a linear scaling according to the best

and worst individuals. The genetic operators act on the reproduced individuals

obtaining a new population.

In order to deal with the constraints given in (6), each of the transformations is

checked to be a contraction and in case it violates this condition, the individual is

assigned a negative fitness value, discarding it from the new population.

• Recombination and Mutation operators. We use discrete recombination for indi-

vidual parameters (an offspring individual is formed by selecting at random the

components from either the first or second parent) and intermediate recombina-

tion for strategy parameters (the standard deviations of an offspring random values

between the corresponding components of the parents).

Mutation is applied to the individual parameters of a transformation ti, by adding

an individual (0, σik) normally distributed random number to the k-th parameters.

No mutation is applied to the strategy parameters.



0 5 10 15 20 25 30
55

60

65

70

75

80

85

Cycle

F
it

ne
ss

(a)

(b)

(d)

(c)

90

(a)

(c)

(b)

(d)

35 40

Fa
m

ily
 4

Fa
m

ily
 3

Fa
m

ily
 2

Fa
m

ily
 1

Cycle 5 Cycle 10 Cycle 30

...

...

...

...

0 5 10 15 20 25 30

0.4

0.6

0.8

Cycle

F
it

ne
ss

0.2

(a)

(b)

Evolutive algorithm

Genetic algorithm

Figure 2: Two-steps hybrid algorithm.



• A fitness positive function to be maximized. For a given transformation ti, the fit-

ness function is computed by evaluating the similarity between the original image,

I, and the transformed image, ti(I). The performance of the evolutive algorithm

will depend on the definition of a computationally efficient metric for this prob-

lem; since the Haussdorff distance may be inefficient for computational purposes,

we have considered the simple Hamming distance instead, obtaining satisfactory

results.

In this paper we assume I to be a selfsimilar image, i.e., the attractor of some

IFS model. Then, using a normalized Hamming distance, the fitness function

f(t) = 1 − d(I, t(I)) is known to have a global maximum at 1, and may have

several local maxima. This fact is illustrated in Figure 3, which shows transfor-

mations associated with global and local maxima of the fitness function. Note

how the transformations shown in Fig. 3(b) correspond to local minima of the

Hamming distance, since no tiny modification of the transformation parameters

allow decreasing the Hamming distance between the resulting attractor and the

Sierpinsky carpet.

Figure 3: Some transformations of the Sierpinsky gasket corresponding to global (a) and
local (b) maximum of the fitness, regarding the Hamming distance used in this paper.

Evolutive strategies allow to find global or local maxima, by using a population with

µ parents, with λ offspring for each in every evolutive cycle. (µ, λ) indicates a strategy

where parents are discarded from the next generation, whereas strategies of the form

(µ + λ) introduces competition between parents and offspring to form a new population

(elitism).

Figure 4 shows the results of two independent experiments (families 1 and 2) perform-

ing 100 cycles of a (20+10) ES. In the first experiment we get one of the global optima



(a selfsimilar region of the image), whereas in the second experiment the algorithm gets

stuck into a local maximum.

Figure 4: View of the IFS Evolutive Matlab window after running two independent ESs.

We performed several experiments with these ESs and in all cases we found that

one of the parents quickly dominates the the population and this finally converges to a

single local or global maximum (see Fig. 4). This behavior stimulated the development

of algorithms able to form and maintain stable subpopulations (also known as niches

due to the evolutive metaphor). In the next section, we analyze the performance of the

standard niching algorithms when applied to this problem.

4 Niching for Multimodal Fitness Functions

The main goal of niching methods is creating and maintaining several subpopulations,

ideally one per local or global maximum of the fitness function, avoiding the convergence

of the whole population to a single maximum.

One of the niching methods which has proven effective is fitness sharing (Goldberg

1989). Sharing reduces the fitness of the population elements according to the number

of individuals concentrated around the given element (a niche), so that the population

is balanced among multiple niches. The modified fitness of an individual ti, called the

shared fitness sf is given by:

sf (ti) =
f(ti)

m(ti)
(7)

where f() is the original fitness function and m(ti) is a function which determines the

niche associated with transformation ti. In our case, we are interested in spreading the



transformations over the original image, so different selfsimilar regions can be found; to

this aim we have considered the following sharing function:

m(ti) =
m∑

j=1

sh(dij) (8)

where dij is the distance between the translation vectors of transformations ti and tj
and

sh(dij) =

{
1 − dij

σs
if dij < σs

0 otherwise
(9)

A difficulty of this method is choosing an adequate σs value, since this requires prior

knowledge of the number of maxima and their distribution in the solution space.

Other efficient niching technique is crowding (Mahfoud 1992), which attempts to

form and maintain niches by replacing population elements with similar individuals.

The probabilistic implementation of this method reproduces and kills a fixed proportion

of individuals each generation; each new individual must replace one of the existing ele-

ments, preferably the most similar one. However, stochastic replacement errors are not

desirable and a deterministic implementation is most convenient in this case. Determinis-

tic crowding works by forming m/2 pairs from m population elements every cycle. After

performing the genetic operations, each one of the resulting children compete against one

of the parents (using a similarity criteria for deciding which one) in order to be included

in the population.

In this case, by analogy with the criterion adopted for sharing methods, we have also

used the translation vectors of the transformations for calculating similarity.

Several experiments were performed with the aim of comparing the performance of

the above niching algorithms. Sharing allowed to maintain population diversity, but due

to the large number of different local maxima (see Fig. 3) the niches fluctuated on the

image and no improvement of the transformations were reached in the long run. The

best results were obtained with the deterministic crowding, which allowed obtaining in a

single run good approximations of the global maxima, as well as other local maxima of the

image. Figure 5 shows a view of the implemented Matlab program after performing 20

cycles of a deterministic crowding algorithm for the Sierpinsky models with a population

of 20 individuals. From this figure we can see that, at this stage, the transformations

cover almost the window area. Figure 6 shows the results after 500 cycles; it can be

seen how the algorithm maintained diversity within the population, allowing to obtain

selfsimilar transformations of the model. Therefore, using this algorithm we can obtain

in a single run a set of appropriate transformations to feed a genetic algorithm and solve

the inverse problem, as described in the introduction of this paper.



Figure 5: View of the IFS Evolutive Matlab window after 20 cycles of the evolutive
process.

Figure 6: View of the IFS Evolutive Matlab window after 500 cycles.



References

Abiko, T., Kawamata, M.: IFS coding of non-homogeneous fractal images using Gröbner

basis. Proc. of the IEEE International Conference on Image Processing (1999) 25–

29.

Barnsley, M.F.: Fractals everywhere, second edition. Academic Press, 1990.

Berkner, K.: A wavelet-based solution to the inverse problem for fractal interpolation

functions, in L. Véhel et al. editors. Fractals in Engineering’97. Springer Verlag,

1997.

Evans, A.K. and Turner, M.J.:Specialization of evolutionary algorithms and data struc-

tures for the IFS inverse problem, in M.J. Turner editor. Proceedings of the Second

IMA Conference on Image Processing: Mathematical Methods, Algorithms and

Applications, 1998.

Fisher, Y.: Fractal Image Compression: Theory and Application. Springer Verlag, 1995.

Goentzel, B.:Fractal image compression with the genetic algorithm. Complexity Inter-

national 1, 111-126, 1994.

Gutiérrez, J.M., Cofiño, A.S., and Ivanissevich, M.L.An Hybrid Evolutive–Genetic

Strategy for the Inverse Fractal Problem of IFS Models. in Lecture Notes in Arti-

ficial Intelligence, Springer-Verlag, in press.

Gutiérrez, J.M., lglesias, A. ,Rodŕıguez, M.A. and Rodŕıguez, V.J.: Generating and

Rendering Fractal Images. The Mathematica Journal 7(1), 6–14, 1997.

Holland, J.H.: Adaptation in natural and artificial systems. The University o Michigan

Press, 1975.

Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning,

Addison Wesley, 1989.

Lutton, E. et al.: Mixed IFS - resolution of the inverse problem using genetic program-

ming. INRIA Rapport 2631, 1995.

Mahfoud, S.W.: Crowding and preselection revisited, in Proc. PPSN-92, Elsevier, 1992.

Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, second

edition, Springer-Verlag, 1994.

Nettleton, D.J., Garigliano, R.: Evolutionary algorithms and a fractal inverse problem.

Biosystems 33, 221-231, 1994.



Rechenberg, I.:Evolution strategie: Optimierung technischer systeme nach prinzipien

der biologischen evolution. Frommann-Holzboog Verlag, 1973.

Shonkwiler, R., Mendivil, F., Deliu, A.: Genetic algorithms for the 1-D fractal inverse

problem. Proceedings of the Fourth International Conference on Genetic Algo-

rithms, Morgan Kaufmann, 495–501, 1991.

Turner, M.J. and Blackledge, J.M., Andrews, P.R.:Fractal Geometry in Digital Imaging.

Academic Press, 1998.

Yin, X. and Germay, N.: , A fast genetic algorithm with sharing scheme using cluster

analysis methods in multimodal function optimization, Proc. I.C. Artificial Neural

Nets and Genetic Algorithms, 450–457, 1993.


