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ABSTRACT

We present partial results of a research project in which we use boolean circuits
as a  parallel computation  model for the expression of queries to relational databases.

For that purpose, we use the well -known equivalence between First Order Logic
(FO) and a class of restricted families of boolean circuits.  First, we translate a given
query, expressed through a FO formula, into a uniform family of boolean circuits. Then
we analyse the depth of the boolean circuits, in order to optimize parallel time. For this
sake, we work on the expression tree of the formula, looking for its transformation into
an equivalent family of boolean circuits of minimum depth.

Key words: Computation Theory, Relational Databases, Boolean Circuits, Query
Computabili ty, and Parallel Computation.

1. Introduction
This work is part of a research project, in which we study different formalisms

as computation models for queries to relational databases (see [Barroso et al.,97a],
[Barroso et al.,97b], [Gagliardi et al.,99], [Pereyra et al.,98], [Grosso et al, 00a], [Grosso
et al, 00b] and [Maldocena et al.,99]), in the consideration that the classic Computabili ty
Theory is not appropriate for that purpose ([Chandra et al.,80]). As Computer Science
faces problems of growing complexity, the need for a solid theoretical foundation for it,
is getting more and more important. The different developments which came out of the
fields of Database Theory and Query Computabilit y, lead to the definition of guidelines
for the design of databases and queries that aim to avoid possible conflicts which result
from the use of database engines which turned out to be inappropriate, from the
theoretical perspective.

In the present article, and using theoretical results from complexity theory (see
[Balcázar et al.,88], [Balcázar et al.,90] and [Denenberg et al.,86]), we show how a
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query to a given relational database, expressed through a formula of First Order Logic
(FO), can be translated into a finite subfamily of boolean circuits in the complexity class
AC0. In this way, we get an expression for the query, which is quite suitable for its
parallel computation.  In a previous work ([Gagliardi et al.,99] and [Pereyra et al.,98])
we used such finite subfamilies of boolean circuits as a suitable formalism for the
expression of queries to relational databases. The main foundation for that work, is the
well -known equivalence between First Order Logic (FO) and a class of  restricted
families of boolean circuits.

Given an r-ary query and a database with domain of size n, a finite subfamily of
boolean circuits C={ C0, C1,… ,Cq} is constructed, with q = nr - 1, where each Ci decides
whether the i-th r-tuple, built with elements of the domain of the given database,
belongs to the answer of the query, considering the lexicographical order in the set of r-
tuples of the database.  Thus, for every n and a given fixed r-ary query, a finite
subfamily of boolean circuits is built .

The class of all those subfamilies, for every natural n, constitutes the infinite
family of circuits which computes a given query.  This problem considered in the
context of the Turing machine model, consists of a machine whose input is a formula
and a natural number n, and whose output is a subfamily of boolean circuits C, as we
described previously.

Here, we look for the optimization of the relation between the size and the depth
of the circuits, so that we can make full use of the parallelizabili ty of the query, thus
optimizing the parallel time of its evaluation. Clearly, given a circuit and a suff icient
number of processors working in parallel, such that they can cover the maximum width
of the circuit, the time needed for the parallel evaluation of the query is given by the
circuit depth.

We only consider in this work boolean circuits with gates with either one or two
inputs (bounded fan-in) and whose output is used as input in at most one other gate
(bounded fan-out). Hence, we only consider circuits, which are binary trees, so that  we
do not allow reusabili ty of the different subcircuits.

First, we give the theoretical background needed to present our results. Then we
give the rules for the translation of each FO connective and quantifier, into an
equivalent subcircuit. Finally, we build the finite subfamilies of the corresponding
boolean circuits for a given database, and we give a strategy for the minimization of the
depth of the circuits in the subfamily, which is applicable in some cases.

2. Boolean Circuits
There are several abstract models for parallel computation. Boolean circuit is

one of such models, and has been extensively used in the last years. The complexity of
boolean circuits is of interest under both practical and theoretical points of view.
            One important characteristic of boolean circuits, which makes them different
from classical computation models, li ke Turing machines, is the fact that their input has
a fixed length (i.e., boolean circuits constitute a non uniform model of computation, (see
[Balcázar et al.,88], [Balcázar et al.,90]). Then, for each input length we must build a
different boolean circuit. This fact leads to the generation of an infinite family of
boolean circuits, one for each possible input length. On the other hand, if we consider a
Turing machine or a program of some programming language, they both can describe an
algorithm that solves a problem for any given input, independently of the input length.
Such models are referred to as uniform computation models. Then, to turn the family of
boolean circuits into a uniform model of computation, we need an algorithm which



given a natural number n as input, builds an encoding of the circuit which computes the
given function for all the inputs of size n.

In our case, we build a finite subfamily of boolean circuits, which corresponds to
a given FO formula, which expresses a query, and to a given size of the domain of a
database. Thus, the property of uniformity is preserved. Our boolean circuits belong to
the complexity class NC, which makes formal the notion of well parallelizabili ty of a
function.

Next, we give the formal definitions.
• An m-ary boolean function is a function f:{0,1} m  → {0,1}, for some m∈Ν.
• A family of boolean functions is a sequence f = (f n)n∈N,  where fn is an n-ary boolean
function.

• A basis is a finite set of boolean functions.

           Note that a family of boolean functions can be infinite whereas a basis is always
finite.  We will use the basis B = { ¬, ∧2, ∨2 }.

In the context of our work, a boolean circuit is defined as a directed acyclic
graph (DAG), which is constructed by associating to each labelled node a variable, a
constant or a boolean gate (∧,∨,¬), and by connecting the node gi to the node gj with an
edge, whenever the output of the gate gi is an input to the gate gj . Furthermore, they
have a bounded input degree of one or two inputs (bounded fan-in), and they have also a
bounded output degree of one (bounded fan-out). Note that, with these restrictions, there
is no reusabili ty of subcircuits.

Formally a boolean circuit can be defined as follows:
Let B be the basis.  A boolean circuit over B with two inputs and one output,  is

a tuple C = (V, E, α, β, ω ), where (V, E) is a finite directed acyclic graph, α: E →Ν is
an injective function, β: V→ B ∪ {x1, x2}, and ω:V →{ y1} ∪ {∗} such that the
following conditions hold:
• If v∈V has in-degree 0, then β(v)∈{ x1, x2} or β(v) is a 0-ary boolean function from
B.

• If v∈V has in-degree k,  0 < k < 2, then β(v)  is a k-ary boolean function from B.
• For every i, 1 ≤  i  ≤ 2, there is at most one node v∈V, such that β(v) = xi.
• There is only one node v∈V so that ω(v)= y1.

Note that x1, x2, y1, * are special symbols attached to certain nodes.  With β  we
indicate the type of the gate v.  The function ω defines some nodes as the output nodes,
so ω(v) = ∗ means that v is not an output node. The function α establishes an order
between the edges, which induces an order between the nodes.

Thus, a boolean circuit C will compute a boolean function f:{0,1} 2→ {0,1}. If a
boolean circuit C=(V,E,α,β,ω) computes the  characteristic function fC of some
language A, then we also say  that C accepts A. If x ∈ A* such that fC(x) = 1 then we
also say  that C accepts x.

The circuits have a finite number of inputs, such that when they are used to
compute a function f:{0,1}*→ {0,1} of infinite domain, we must construct a different
circuit for each length of the elements in the domain of  f. This gives raise to an infinite
family of circuits C={ C0, C1,…,Cn,…},  where each Cn computes the function restricted
to the domain {0,1}n.

A standard encoding,C, of a circuit C, is a sequence of four-tuples q1..., qk of
the form qh = (g, b, gi, gd), 1 ≤ h ≤ k; where g represents the gate number;  b the gate
boolean operation;  gi the gate number or variable or constant, that supplies the left



input to g, and gd the gate number or variable or constant that supplies the right input to
g. There are no four-tuples in the encoding for the nodes labelled with input variables.
The output gate of a circuit C is defined to be the gate encoded in the last four-tuple
ofC.

The size of C, Size(C), is defined as the number of nodes or gates of C. And the
depth of C, Depth(C), is defined as the length of a longest directed path in C. For i ≥ 0,
we define  NCi = Size-Depth(nO(1), logi n) and NC =  ∪i≥0 NCi.

If we consider circuits of polynomial size and polylogarithmic depth, with
unbounded input degree (unbounded fan-in), we define the following classes:

ACi = Unbounded Size-Depth (nO(1), logi n), for i≥0
AC = ∪i≥0 ACi

And we define:
AC0 = Unbounded Size-Depth (nO(1), log0 n).

It was proved that AC0 is the class of those languages that can be defined by FO
formulas, thus FO ≡ AC0 ([Vollmer,99]) and NC0 ⊆ AC0 ⊆ NC1. Then any
FO formula can be expressed as a subfamily of boolean circuits in the class
Size-Depth(nO(1),log n).

Since we are considering only FO formulas and FO is equivalent to AC0, then it is
in uniform NC1. Hence, queries expressed through FO formulas are also expressible
with families of circuits of polinomial size.

In the general case, when transforming a DAG into an equivalent tree, we may
obtain a boolean circuit of exponential size in terms of its depth. In our case, the
expansion of a FO quantifier is represented in the corresponding boolean circuit by a
subtree of logarithmic depth. If k is the quantifier rank and n is the domain size, the
depth of the tree is given by k times the depth of the subtree generated by the expansion
of  a quantifier. Therefore, in the worst case, the maximum width of the tree will be
smaller or equal to 2k.log n, so that we get a tree of polynomial width and, hence, also of
polynomial size.

Our goal is to get an equivalent subfamily of boolean circuits with logarithmic
depth, i.e., in the class Size-Depth(nO(1), log n), so that we actually get an important
decrease in the time needed for the evaluation of the query, when changing from
sequential to parallel computation.

The whole hierarchy NC is the class of the functions for which there exists
“eff icient” parallel algorithms. The complexity class NC1 = Size-Depth(nO(1), log n) is
the appropriate class for our problem.

Bibliographical references: [Balcázar et al.,88], [Balcázar et al.,90], [Denenberg et al.,86] and
[Vollmer,99].

3. Relational Databases and Queries
In the relational model, Codd  ([Cood,70]) developed the Relational Algebra (AR)

and the Relational Calculus (CR) as formal query languages, and he proved  that the
two languages are equivalent in their expressive power, and, further, equivalent to FO.
Considering the relational model in the framework of  finite model theory, a database
schema is a finite relational signature σ,  where each relation symbol in σ has some
arity. A database instance is a finite σ-structure, where each relation has the
corresponding arity for every symbol of σ, and is defined in the domain of the structure.

In this framework, we consider a (typed) query as a partial recursive mapping
whose domain is the set of  finite relational structures of a given signature, and whose
range is the set of the relations defined in the domain of the corresponding finite



relational structure for some arity fixed, f fin R: ,ε εσ → < > , and such that it preserves

isomorphisms ([Chandra et al.,80]). This class was called CQ (Computable Queries).
Let σ  be a finite relational signature, let Lσ be the first order language with

signature σ, let  ϕ in Lσ with r free variables { x1,x2...,xr }, and let B be a σ-structure,
with d1,…,dn ∈ DB. We will denote as B WI ϕ (x1, …,xr)[ d ds sr1

,..., ] the fact that the

formula ϕ evaluates to true, when interpreted by the structure B, with the element dsj

assigned to the free variable xj, for 1≤ sj ≤ n, 1≤ j ≤ r.  The assignment of the element
dsj

 to the variable xj, being xj a free variable, is done through a valuation.

Note that, according to the semantics of the considered language, ϕ defines a r-ary
query fϕ  on structure B. That is,  fϕ(B), denoted by ϕB, it is a finite relation defined in
structure B by the formula ϕ, whose arity will be determined by the amount of free
variables of ϕ.  In symbols:
ϕB ={ (d ds sr1

,..., ): d ds sr1
,..., ∈ DB ∧ BWI ϕ (x1, …,xr)[ d ds sr1

,..., ], 1≤ sj ≤ n , 1≤ j ≤ r }

Bibliographical references:[Abiteboul et al.,95], [Chandra et al.,80], [Codd,70], [Ebbinghaus et al.,95],
[Ebbinghaus et al.,84], [Hamilton,81], [Turull ,96] and [Ullman,88].

4. Translation of FO to Boolean Circuits

When the atomic formula is interpreted for a given valuation, it is satisfied or no,
that is, true or false. We can see it as a proposition and we can associate it a
propositional variable that represents it.  Thus, the atomic formulas expressed and
valuated in FO can be translated to the Propositional Calculus (CP) as a propositional
variable.

Considering the signature  σ  = < R1, R2,…, Rk >, such that each Ri is an ai-ary
relation; let the σ-structure B= 〈 〉D R RB B

k
B, ,...,1 , with DB={d1,d2,...,dn } and |DB|=n;  and

let be Rh( x1 ,…,xah
) an atomic formula anyone of Lσ, with 1≤ h ≤ k. We can observe

when interpreting Rh( x1 ,…,xah
) under a given valuation in the σ-structure B, we obtain

one ah-tuple,  that can be considered as a propositional variable p. If p belongs to Rh
B,

the proposition p will have the value true, otherwise the truth value will be false. Let v
be a valuation, then BWI Rh(x1 ,…,xr)  if and only if B

h

R (v( x1),…, v( xr))  is hold.
Since |DB|r = nr, then associating to each valuation a propositional variable, we

obtain nr propositional variables, and each one can take a true or false truth-value,
depending on the satisfaction of the atomic formula. The number of propositional
variables depends on the relation arity and on the domain cardinali ty. The enumeration
of all the propositional variables is done following the consecutive order of the relations
of the signature. To each r-ary relation corresponds it nr propositional variables,
numbered from h= Σj <i n

aj to (h+n(ai) –1).
 Following [Denenberg et al.,86], [Vollmer,99] and [Gagliardi et al.,99], given a

FO sentence ϕ, we can inductively build the circuit C that represents the formula,
constructing a DAG equivalent a C. We construct an only node with output arc labelled
ϕ.  If ϕ≡ϕ1∧ϕ2, this DAG has one labelled node ∧  whose inputs are the labelled arcs ϕ1

and ϕ2 respectively. For the cases ϕ≡ϕ1∨ϕ2  and ϕ≡¬ϕ1  the representation in DAG is
similar. If ϕ≡∀x ϕ1(x), the corresponding DAG is a labelled node ∧, with n input arcs
labelled ϕ1(x)[d1],…, ϕ1(x)[dn] respectively, with d1,...,dn ∈ DB, being DB the domain of
the interpretation.  If ϕ≡∃xϕ1(x), the construction is similar, unless the node is labelled



with the boolean operator ∨. Continuing with the decomposition of ϕ in subformulae, it
is arrived at the point in which ϕ it is a composition of atomic formulas, which valued in
the interpretation, will be the propositional variables. Considering the resulting DAG
with standard encodingC it is obtained the sequence of four-tuples that represents it.

If  ϕ is ∀x ϕ1(x), it will imply the ϕ1(x)[d1] ,…, ϕ1(x)[dn] formulas evaluation
and connection by the connective ∧.  The expression tree would degenerate in a list.
For that reason, in this case, we will generate a tree balanced, (applying to the algorithm
and-tree [Balcázar et al.,88]), obtaining the suitable depth. Analogously, if ϕ is ∃x
ϕ1(x), the construction is similar, unless the connective is ∨  (in this case, we will use
the algorithm or-tree).

Bibliographical references: [Balcázar et al.,88], [Balcázar et al.,90],[Denenberg et al.,86], [Vollmer,99],
[Gagliardi et al.,99], [Pereyra et al.,98], [Hamilton,81] and [Turull ,96].

5. Query Expressed as finite Subfamily of Boolean Circuits

Given the database B = 〈 〉D R RB B
k
B, ,...,1 , with DB={d1, d2..., dn },  |D

B| = n, the
amount of possible combinations of the r free variables in DB is defined by nr. Thus the
following cases appear:

  a) r > 0 (r-ary query), expressed as ϕ(x1, …,xr), with r free variables in FO,
each valuation vi for the free variables { x1,…, xr} of ϕ, in the domain DB, it generates a
circuit Ci. We denote the assignation of the element k in the position p of the tuple
(x1, …,xr) as dkp, i.e.:

C0   ≡ ϕ (x1, …,xr )[d11 ,…,dr1] ≡ ϕ0 Valuation of the r free variables in the first
element of domain.

C1  ≡  ϕ (x1, …,xr )[d11 ,…,dr2] ≡ ϕ1 Valuation of the r-1 first free variables in the
first element of the domain and the r-th free
variable in the second element of the domain.

... ...

Cq  ≡ ϕ(x1, …,xr )[d1n ,…,dr n ] ≡ ϕq Valuation of the r free variables in the n-th
element of domain.

For a r-ary query, q = nr -1, then we obtain a finite subfamily of boolean circuits
C={ C0, C1,..., Cq}, equivalent to nr boolean queries, such that for every valuation
Vi:{ x1...,xr} → DB, the boolean query ϕi is ϕ(x1...,xr)[vi(x1)...,vi(xr) ], for 0 ≤ i ≤ q.

b) r = 0, 0-ary query, expressed  a sentence ϕ in FO, it generates only one circuit
C, since n0=1.

In this way, we construct the finite subfamily of boolean circuits that represents
ϕ(x1,…, xr).

With respect to the query evaluation, we denote BWI ϕ(x1,…,xr)[ d ds sr1
,..., ], the

fact that the formula ϕ evaluates to true, when interpreted by the structure B, with the
element dsj

 assigned to the free variable xj, for 1≤ sj ≤ n, 1≤ j ≤ r. We denote ϕB,

equally, to the formula and the relation that it express:
ϕB ={ (d ds sr1

,..., ): d ds sr1
,..., ∈DB ∧BWI ϕ(x1, …,xr)[ d ds sr1

,..., ], 1≤ sj ≤ n, 1≤ j ≤ r}



It is represented in the boolean circuits formalism by a circuit Ch, for some h,
equivalent to ϕh. We denote with Ch(B) to Ch interpreted in structure B, with the
element dsj

  assigned to the free variable xj with 1 ≤ sj ≤ n, 1 ≤ j ≤ r.

If BWIϕ(x1,…,xr)[ d ds sr1
,..., ] and Ch≡ϕ(x1,…,xr)[ d ds sr1

,..., ]≡ϕq, then

ϕB={ (d ds sr1
,..., ): d ds sr1

,..., ∈DB ∧ Ch(B)≡true, q = nr -1, 0≤ h ≤ q, 1 ≤ sj ≤ n, 1≤ j ≤ r}.

Note that h is associated to a specific r-tuple ( d ds sr1
,..., ).

The evaluator returns the set of r-tuples for which each Ch(B) ≡ true;  in the case
r = 0, that is,  ϕ is a sentence, the answer is true sentence or false sentence.

Bibliographical references: [Abbiteboul et al.,95], [Gagliardi et al.,99], [Pereyra et al.,98],
[Ebbinghaus et al.,84] and [Vollmer,99].

6. Generation of Suitable Equivalent Formulas for Parallelism
The idea is, we have a FO formula then we want to find another equivalent, such

that its expression tree has special characteristics that allow to obtain a finite subfamily
of boolean circuits whose width and depth are suitable for the class NC1, this is Size-
Depth(nO(1),logn). Previously we introduce the following concepts:

An expression tree that representing a formula ϕ in FO is a binary tree, building
as follows:
• If ϕ is an atomic formula R(y1, …,yr), then it is represented by a node with his

corresponding subtrees being empties and containing, as an node attribute, the free
variables set.

• In other case, being ϕ1 and ϕ2 formulas, if:
a) ϕ = ϕ1 ∧ ϕ2 or ϕ = ϕ1 ∨ ϕ2, then ϕ is represented with an expression tree whose

root is a node labelled with the respective connective and whose left and right
subtrees respectively correspond to the expression trees for ϕ1 and ϕ2.

b) ϕ = ¬ϕ1, then ϕ it is represented with an expression tree whose root is a node
labelled with the connective ¬ and whose left subtree corresponds to the
expression tree for ϕ1.

c)  ϕ =∀x ϕ1  or ϕ =∃x ϕ1, then ϕ is represented with an expression tree whose root
is a node labelled with the respective quantifier, whose left subtree corresponds
to the expression tree for ϕ1 and contains, as an node attribute, the variable x.

We define weight of a node as total mapping P:V→Ν (Naturals), where V is the
nodes set of the formula expression tree, and where P(v) indicates the depth of the
corresponding boolean subcircuit that will be generated from v.

Let v a node of the expression tree of a FO formula, we define recursively the
mapping P as follows:
• If v represents an atomic formula R(y1, …,yr), then P(v) = 1
• If v represents a formula ϕ1 ∧ ϕ2  or ϕ1 ∨ ϕ2, and being v1 and v2 its left child and

right child respectively, i.e. they are the subtrees roots that represent ϕ1 and ϕ2, then
P(v) = 1 + max (P(v1), P(v2)).

• If v represents a formula ¬ϕ1 and if v1 is its left child, then P(v) = 1+P(v1).
• If v represents a formula ∀x ϕ1 or ∃x ϕ1, where v1 is its left child, then

P(v)= 1+ log n + P(v1), where n is the cardinali ty of the structure domain.
We define width of a node to a total mapping A:V→Ν, where V is the nodes set

of the formula expression tree, and where A(v) indicates the amount of leaves of the
corresponding boolean subcircuit that will be generated from v.



Let v a node of the expression tree of a FO formula, we recursively define the
mapping A as follows:
• If v represents an atomic formula R (y1, …, yr), then A(v) = 1.
• If v represents a formula ϕ1 ∧ ϕ2  or ϕ1 ∨ ϕ2, and being v1 and v2 its left child and

right child respectively, i.e. they are the subtrees roots that represent ϕ1 and ϕ2 , then
A(v) = A (v1) + A(v2).

• If v represents a formula ¬ϕ1 and if v1 is its left child, then A(v) = A(v1).
• If v represents a formula ∀x ϕ1 o ∃x ϕ1, where v1 is its left child, then

A(v) = n ×  A(v1), where n is the cardinali ty of the structure domain.
In this way, when we want to do the syntactic analysis of the FO formula, by each

node corresponding to a logical connective or a quantifier, we will consider the boolean
circuit structure that will generate such node, and consequently it will receive the
appropriate weight and width.  For example, for the universal and existential quantifiers,
we can see the boolean circuits creation that they will be replaced by a binary tree
balanced (by means of the use of the algorithms and-tree and or-tree). For this matter,
we must consider that node with the relative weight and width that potentially it will
generate.  When we quantify an atomic formula is log n and n respectively, being n the
cardinali ty of the domain.

Let us consider the tree in which there is a node that is root of a “unbalanced”
subtree.  This is because the children weights differ in more than one. There is no form
to make changes for balancing it, since to do it would be obtained a non-equivalent
semantically formula to the original; that is the obtained expression would not represent
the same query.  For example, this happens when there is some immersed quantifier in
some of the subtrees, (R(x) ∨ ∀yϕ1)) (or analogous ((R(x) ∧ ∃yϕ1)) where the node
corresponding to the first subformula has weight 1 and  the other has weight greater
than log n.

Note that we have used informally the expression “balanced tree”, without
specifying its definition.  In fact, we will l eave this expression replacing it by “partially
balanced tree” , because it does not correspond with the term use  “balance” .

Next, we give a method that allows obtaining a partially balanced tree in weight
P of FO formula ϕ.

Let T an expression tree for FO formula ϕ, then we can distinguish different
subtrees types T’ .  Each T’ can be:
• The expression tree of an atomic formula is good.
• The expression tree having just one node for representing a quantifier  (∀,∃).
• The expression tree having just one node for representing the negation connective

(¬).
• The formula expression tree which is maximal in amount of nodes and which all the

nodes have the same connective and (∧) or or (∨).
Then, for every subtree T’ de T, if it leads the first case, it is trivially considered

partially balanced tree.
For the other cases, must verify all the subtrees of such tree have been treated and

they are partially balanced trees. If there is a subtree with modified weight then,
considering T’ , appear the following cases:
• T’ is a node with quantifier or negation connective: its weight is updated with the

new weight of its subtree, which already is partially balanced.
• In another case, that is node with connectives ∧ or ∨, the balance method is applied.



The balance method consists of taking all the subtrees weights depending of T’
and whose roots are not nodes of T’ . Let ϕ1,  ϕ2,…, ϕk the formulas that represent these
subtrees and let the weights p1, p2,…,pk associated to the roots of such subtrees. The
weights are increasing sorted, obtaining a sequence s = <pi1, pi2, ..,pik>, with 1 ≤ i ≤ k.
Now, we analysed:
• If all the pairs of weights differ by more than 1, we take the ordered sequence and we

begin from the minor to the greater, building a new expression tree. This tree is
estimably the best balance.
Suppose the connective ∧, this new expression tree will represent the formula (...(ϕi1

∧ ϕi2) ∧ ϕi3) ∧…)∧ϕik), which is equivalent to the original formula, because the
connective has the properties of associative and commutative. Analogously, do it for
the connective ∨.

• In other case, if there is a maximal subsequent ś  = < pi,..., pj> of s, such that all the
pairs of weights differ by more than 1, we build balance tree using the algorithm and-
tree (or-tree). The subsequent s’  is replaced by root weight of the new tree. Thus, the
balance method is applied again to the new sequence.

These modifications in the expression tree can be done since the connectives that
we are considering, and and or, satisfy the properties of commutative and associative.

In this way, we obtain an expression tree equivalent to the original expression,
and partially balanced in weight. This tree will be better suitable for using parallel
computation resources, since its depth is minor.

Let us observe that the width of a FO formula expression tree defines the
necessary processors amount for processing it in its maximum parallelism expression.
Consequently, with A(v) we indicate the processors amount required for the formula
represented by the expression tree with root v, under these conditions.

Given FO formula ϕ, with expression tree T partially balanced we have:
• If T is totally balanced (in its habitual conception), we can conclude that the formula

is well parallelizable and whether r is the root of T, only A(r) processors are
necessary.

• Another case, at least there is a node v of T that is root of a tree where the subtrees
weights differ by more than 1.  Let T1 and T2 the left and right subtrees of v, whose
roots are v1 and v2 respectively, so that P(v1) >> P(v2) (the symmetrical case is
analogous).  We denote with D the difference of levels between both subtrees,
according to the boolean circuit that represents v; this is D = P(v1) - P(v2). Let A(v1)
and A(v2) the respective widths of v1 and v2. Let T1’ the restriction of tree T1 at the
level (P(v1) –  D), or equivalent to the level P(v2), and let h the amount of leaves that
has T1. The variable h represents the authentic amount of processors that are still
necessary and used for the processing of the level (P(v1) –  D) of the tree T1. The
amount of processors released in such level can be calculated by means of the
expression (A(v1) –  h)), which we will denote with l. Then, having the amount of
processors in use, h, and the amount of free processors, l, we can analyse the relation
between the amount of released processors and the amount necessary to initiate the
processing of the right subtree of v: A(v2). In this way, happen two possible
situations:

a) l ≥ A(v2):  we can initiate parallel processing in the right subtree of v.
b) l < A(v2):  it is not possible to initiate the parallel processing in his maximum

parallelism expression.
Let us note that if we arrive to the tree root by the first situation, we obtain a

similar result to a totally balanced tree.  That is, all the levels of tree T were traversed



parallelly and never it happened a situation of parallelism cut that caused inevitably a
sequential processing.

Bibliographical references: [Balcázar et al.,88], [Balcázar et al.,90], [Gagliardi et al.,99] and
[Pereyra et al.,98].

7. Example
Let the FO formula ϕ as follows:

ϕ: (((U(x1, x2, x3) ∧ T(x1, x2, x3)) ∧ ∃ x2 (R(x1, x2, x3) ∨ E(x1, x2, x3)) ∧ S(x1, x2, x3)) ∧ ¬R(x1, x2, x3)

In the Figure 1.a) we graphically show the expression tree for ϕ.  The Figure 1.b)
ill ustrates the different types of expression subtrees that we distinguished for our
analysis.  The only subtree that is not partially balanced is T’ .  The Figure 1.c) indicates
the subtrees that depending of T’ , and that represent the formulas ϕ1, ϕ2,…, ϕ5,
indicating the corresponding weights to each one of them.  With the applied balance
method, it obtains the expression tree for ϕ’ , equivalent to ϕ, which is partially
balanced, where ϕ’ is:

ϕ´: ((((U(x1, x2, x3) ∧ T(x1, x2, x3)) ∧ S(x1, x2, x3)) ∧ ¬R(x1, x2, x3)) ∧ ∃ x2 (R(x1, x2, x3) ∨ E(x1, x2, x3)))

The Figure 1.d) ill ustrates the expression tree for ϕ’ and whose tree is partially
balanced.  Note that the tree depth for ϕ’ is smaller than the tree depth for ϕ.
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∧
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∨
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Figure 1.a) Expression tree for ϕ
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Figure 1.b) Different subtrees types present in the tree at Figure 1.a)
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Figure 1.c) T’  with the subtrees weights that are depending of  it
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 Figure 1.d) Partially balanced expression tree for ϕ’

8. Conclusions
         Boolean circuits are a suitable theoretical model for the study of the computabili ty
and parallel complexity of queries to relational databases.

         Given an  r-ary query and a natural number n that represents the size of the
domain of a given database, we showed how to build a finite subfamily of boolean
circuits which preserves the property of uniformity, and which has a much better
relation between size and depth, thus improving  the time needed for the parallel
evaluation of the query, as well as the appreciation of the parallelizabili ty of the query.

We intend to generalise our results to general circuits, i.e., without restricting the
output fan-in. A quite related topic, which we plan to consider, is the use of boolean
circuits for the computation of queries to distributed relational databases. Considering
the weakness of First Order Logic as to expressibili ty, we also plan to extend our results
to other logics with bigger expressive power, li ke the extension of FO with more
powerful quantifiers, and higher order logics.
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