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ABSTRACT

We present partial results of aresearch project in which we use bodean circuits
asa paralel computation model for the expresson d queriesto relational databases.

For that purpose, we use the well-known equivalence between First Order Logic
(FO) and a dassof restricted families of bodean circuits. First, we transate agiven
query, expressd through a FO formula, into a uniform family of bodean circuits. Then
we analyse the depth of the bodean circuits, in order to optimize paral el time. For this
sake, we work onthe expresson tree of the formula, looking for its transformation into
an equivalent family of bodean circuits of minimum depth.

Key words: Computation Theory, Relational Databases, Booean Circuits, Query
Computabili ty, and Parall el Computation.

1. Introduction

This work is part of a research projed, in which we study different formalisms
as computation models for queries to relational databases (see [Barroso et al.,974],
[Barroso et a.,97H, [Gagliardi et a.,99, [Pereyra d@ a.,99, [Gros et a, 00q], [Gros
et a, 00 and[Madocena @ a.,99), in the consideration that the dassc Computabili ty
Theory is not appropriate for that purpose ([Chandra ¢ al.,80). As Computer Science
faces problems of growing complexity, the need for a solid theoretica foundition for it,
is getting more and more important. The different developments which came out of the
fields of Database Theory and Query Computability, lead to the definition d guidelines
for the design of databases and queries that aim to avoid passble aonflicts which result
from the use of database engines which turned ou to be inappropriate, from the
theoreticd perspedive.

In the present article, and wsing theoretica results from complexity theory (see
[Balcézar et d.,88, [Bacé&ar et a.,90 and [Denenberg et a.,86), we show how a
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query to a given relational database, expressed through a formula of First Order Logic
(FO), can be trandated into afinite subfamily of bodean circuits in the complexity class
AC. In this way, we get an expresson for the query, which is quite suitable for its
parallel computation. In a previous work ([Gagliardi et a.,99 and [Pereyra et a.,98)
we used such finite subfamilies of bodean circuits as a suitable formalism for the
expresson d queries to relational databases. The main fourdation for that work, is the
well-known equivalence between First Order Logic (FO) and a dass of restricted
families of bodean circuits.

Given an r-ary query and a database with damain of size n, afinite subfamily of
bodean circuits C={ Co, C;.... ,Cq} isconstructed, with g= n' - 1, where each C; deddes
whether the i-th r-tuple, bult with elements of the domain of the given database,
belongs to the answer of the query, considering the lexicographicd order in the set of r-
tuples of the database. Thus, for every n and a given fixed r-ary query, a finite
subfamily of bodean circuitsisbuilt.

The dassof al thase subfamilies, for every natural n, constitutes the infinite
family of circuits which computes a given query. This problem considered in the
context of the Turing machine model, consists of a machine whaose inpu is a formula
and a natural number n, and whaose output is a subfamily of bodean circuits C, as we
described previously.

Here, we look for the optimization d the relation between the size and the depth
of the drcuits, so that we can make full use of the parallelizability of the query, thus
optimizing the parallel time of its evaluation. Clealy, given a drcuit and a sufficient
number of processors working in parallel, such that they can cover the maximum width
of the drcuit, the time needed for the parale evaluation d the query is given by the
circuit depth.

We only consider in this work bodean circuits with gates with either one or two
inpus (bounced fan-in) and whose output is used as inpu in a most one other gate
(bounced fan-out). Hence, we only consider circuits, which are binary trees, so that we
do nd all ow reusabili ty of the different subcircuits.

First, we give the theoretica badkground reeded to present our results. Then we
give the rules for the trandation d each FO connedive and quentifier, into an
equivaent subcircuit. Finaly, we build the finite subfamilies of the @rrespondng
bodean circuits for a given database, and we give astrategy for the minimization d the
depth of the arcuitsin the subfamily, which is applicable in some cases.

2. Boolean Cir cuits

There ae several abstract models for paralel computation. Bodean circuit is
one of such models, and has been extensively used in the last years. The mmplexity of
bodean circuitsis of interest under both pradicd and theoretical points of view.

One important charaderistic of bodean circuits, which makes them diff erent
from classcd computation models, like Turing machines, is the fact that their inpu has
afixed length (i.e., bodean circuits constitute anon unform model of computation, (see
[Balcézar et a.,89, [Balcézar et a.,90)). Then, for each inpu length we must build a
different bodean circuit. This fad leads to the generation d an infinite family of
bodean circuits, ore for each possble input length. On the other hand, if we @nsider a
Turing machine or a program of some programming language, they both can describe an
algorithm that solves a problem for any given inpu, independently of the inpu length.
Such models are referred to as uniform computation models. Then, to turn the family of
bodean circuits into a uniform model of computation, we need an algorithm which



given anatural number n as inpu, bulds an encoding of the drcuit which computes the
given functionfor al the inpus of size n.

In our case, we build afinite subfamily of bodean circuits, which corresponds to
a given FO formula, which expresses a query, and to a given size of the domain o a
database. Thus, the property of uniformity is preserved. Our bodean circuits belong to
the complexity class NC, which makes formal the nation d well parall elizability of a
function.

Next, we give the formal definitions.
« Anmary boolean function isafunctionf:{0,1}™ - {0,1}, for some mCON.
« A family of boolean functionsis a sequencef = (f "),on, Wheref" isan nary bodean

function.

* A basisisafinite set of bodean functions.

Note that afamily of bodean functions can be infinite whereas abasisis always
finite. Wewill usethebasisB ={~, [, [F}.

In the context of our work, a boolean circuit is defined as a directed acyclic
graph (DAG), which is constructed by assciating to ead labelled node avariable, a
constant or abodean gate ([J,1,-), and by conneding the noce g; to the node g; with an
edge, whenever the output of the gate g; is an inpu to the gate g; . Furthermore, they
have abourded input degree of one or two inpus (bounded fan-in), and they have dso a
bouncded ouput degreeof one (bounded fan-out). Note that, with these restrictions, there
is no reusabili ty of subcircuits.

Formally abodean circuit can be defined as foll ows:

Let B be the basis. A boolean circuit over B with two inpus and ore output, is
atupeC=(V, E, q, 3, w), where (V, E) isafinite direded acyclic graph,a: E =N is
an injedive function, B: V- B 0O {xi, X2}, and wV -{ yi} O {[} such that the
foll owing condtions hold:

e If vV hasin-degree0, then B(v)K X1, X2} or B(v) isa 0-ary bodean function from
B.

* If vOOV hasin-degreek, 0<k < 2,then 3(v) isak-ary bodean functionfrom B.

* Foreveryi, 1< i <2,thereisat most one noce vV, such that B(v) = x;.

* Thereisonly onenode vV so that w(Vv)=yi.

Note that X1, Xo, Y1, * are speda symbals attached to certain nodes. With 3 we
indicae the type of the gate v. The function w defines some nodes as the output nodes,
so w(v) = Omeans that v is not an ouput node. The function a establishes an order
between the alges, which induces an order between the nodes.

Thus, abodean circuit C will compute abodean functionf:{0,1}?- {0,1}. If a
bodean circuit C=(V,E,a,B,w0) computes the daracteristic function fc of some
language A, then we dso say that C aaepts A. If x [0 A* such that fc(x) = 1 then we
also say that C aaepts x.

The drcuits have afinite number of inpus, such that when they are used to
compute afunction f:{0,1}" - {0,1} of infinite domain, we must construct a different
circuit for each length of the dementsin the domain of f. This givesraise to an infinite
family of circuits C={Cy, Cy,...,Cy,...}, Where eat C,, computes the function restricted
to thedomain {0,1}".

A standard encoding, C, of a drcuit C, is a sequence of four-tuples q;..., ¢ of
the form g, = (g, b, gi, 94), 1 < h < k; where g represents the gate number; b the gate
bodean operation; g the gate number or variable or constant, that supgies the left



inpu to g, and g4 the gate number or variable or constant that supgies the right inpu to
g. There ae no four-tuples in the encoding for the nodes labelled with input variables.
The output gate of a drcuit C is defined to be the gate encoded in the last four-tuple
of C.
The size of C, Size(C), is defined as the number of nodes or gates of C. And the
depth of C, Depth(C), is defined as the length of alongest direded path in C. Fori = 0,
we define NC' = Size-Depth(n®?, log' n) and NC = Oiso NC'.
If we mnsider circuits of poynomia size and pdylogarithmic depth, with
unbounad inpu degree(unbouned fan-in), we define the foll owing classes:
AC' = Unboundd Size-Depth ("°®, log' n), for i=0
AC =[x AC
Andwe define:
AC® = Unbounad Size-Depth (n°®, log® n).

It was proved that AC° is the dassof thase languages that can be defined by FO
formulas, thus FO = AC® ([Vollmer,99) and NC° O AC® O NC. Then any
FO formula can be epressed as a subfamily of bodean circuits in the dass
Size-Depth(nO(1),log n).

Sincewe ae mnsidering only FO formulas and FO is equivaent to AC®, then it is
in uriform NC!. Hence queries expressed through FO formulas are dso expressble
with families of circuits of polinomial size.

In the genera case, when transforming a DAG into an equivalent tree we may
obtain a bodean circuit of exporential size in terms of its depth. In ou case, the
expansion d a FO quantifier is represented in the rrespondng bodean circuit by a
subtree of logarithmic depth. If k is the quantifier rank and nis the domain size, the
depth of the treeis given by k times the depth o the subtree generated by the expansion
of a quantifier. Therefore, in the worst case, the maximum width of the tree will be
smaller or equal to 29", so that we get atreeof polynomial width and, hence also of
polynomia size.

Our goa isto get an equivalent subfamily of bodean circuits with logarithmic
depth, i.e., in the dass Size-Depth(n®®, log n), so that we acdually get an important
deaease in the time needed for the evaluation d the query, when changing from
sequential to perallel computation.

The whale hierarchy NC is the dass of the functions for which there eists
“efficient” parallel algorithms. The mmplexity class NC* = Size-Depth(n®?, log n) is
the gpropriate dassfor our problem.

Bibliographicd references. [Balcdza et a..88], [Bacéza et a.90], [Denenberg et a.86] and
[Vollmer,99.

3. Relational Databases and Queries

In the relational model, Codd ([Cood,7Q) developed the Relational Algebra (AR)
and the Relational Calculus (CR) as formal query languages, and he proved that the
two languages are equivalent in their expressve power, and, further, equivalent to FO.
Considering the relational model in the framework of finite model theory, a database
schema is a finite relational signature a, where each relation symbad in o has sme
arity. A database instance is a finite o-structure, where each relation has the
correspondng arity for every symbal of o, andis defined in the domain of the structure.

In this framework, we cnsider a (typed) query as a partial reaursive mapping
whose domain is the set of finite relational structures of a given signature, and whaose
range is the set of the relations defined in the domain of the crrespondng finite



relational structure for some arity fixed, f:€, ;, - €_z., and such that it preserves

isomorphisms ([Chandra € a.,8Q). This classwas cdled CQ (Computable Queries).
Let o be afinite relational signature, let L, be the first order language with
signature o, let ¢ in Ly with r freevariables { x1,X2....X; }, and let B be ao-structure,

with dy,...,d, 0 D®. We will denote &B = (X1, ...,x/)[ dg,...,ds ] the faa that the
formula ¢ evaluates to true, when interpreted by the structure B, with the dement dsj

asdgned to the free variable x;, for 1< 5< n, I<j <r. The adgnment of the dement
d tothevariablex;, being x; afreevariable, is dore through avaluation.

Note that, according to the semantics of the considered language, ¢ definesar-ary
query fo onstructure B. That is, fy(B), denoted by ®°, it is afinite relation cefined in
structure B by the formula ¢, whose aity will be determined by the anount of free
variables of ¢. Insymbadls:

0° ={(d,,....d; ):dg ,....d, D® OBE=¢ (X1, ... X)[dg ,....d ], Is§<n, Kj<r}

Bibliographicd references:[Abiteboul et a.,95], [Chandra € a.,80], [Codd70], [Ebbingheus et al.,95],
[Ebbinghaus et al.,84], [Hamilton,81], [Turull ,96] and [UlIman,88].

4. Trandation of FO to Boolean Circuits

When the aomic formulaisinterpreted for agiven valuation, it is stisfied or no,
that is, true or fase. We can see it as a propasition and we can asociate it a
propacsitional variable that represents it. Thus, the @omic formulas expressed and
valuated in FO can be trandated to the Propasitional Calculus (CP) as a propasitional
variable.

Considering the signature 0 = <Ry, Ry,..., Rk >, such that ead R; is an g-ary
relation; let the o-structure B=D®,R?, ..., REL, with DP={d,d,,...,ch } and |D®[=n; and
let be Rh(xl,...,xah) an atomic formula anyone of L, with 1< h < k. We can observe
when interpreting Rh(xl,...,xah) under agiven vauationin the o-structure B, we obtain

ore a-tuple, that can be mnsidered as a propasitional variable p. If p belongs to Ry.2,
the propasition pwill have the value true, otherwise the truth value will be false. Let v
be avauation, then B = Ru(X1 ...,x,) if and ory if R®(V(Xy),..., V(X)) ishad.

Since |D®[ = N, then asociating to each valuation a propasitional variable, we
obtain n propasitional variables, and ead ore can take atrue or false truth-value,
depending on the satisfaction d the aomic formula. The number of propasitional
variables depends on the relation arity and onthe domain cardinality. The enumeration
of al the propasitional variablesis dore foll owing the conseautive order of the relations
of the signature. To ead r-ary relation corresponds it n' propasitiona variables,
numbered from h= %, 4 n? to (h+n@ 1),

Following [Denenberg et d.,86], [Vollmer,99] and [Gagliardi et a.,99, given a
FO sentence ¢, we can induwtively build the drcuit C that represents the formula,
constructing a DAG equivalent aC. We onstruct an oy node with ouput arc labell ed
¢. If $=d100¢,, this DAG has one labelled nade [0 whaose inputs are the labelled arcs ¢4
and ¢, respedively. For the caes ¢=¢1[1p, and ¢=-¢, the representation in DAG is
smilar. If ¢=0x ¢1(X), the correspondng DAG is alabelled noce [, with ninpu arcs
labelled ¢1(x)[d1],..., d1(x)[d,] respedively, with d,...,d, O D®, being D® the domain of
the interpretation. If $=[x¢1(x), the wnstructionis smilar, unessthe nock is labelled



with the bodean operator [1. Continuing with the decomposition d ¢ in subformulag it
isarrived at the point in which ¢ it isa cmpaosition d atomic formulas, which valued in
the interpretation, will be the propasitional variables. Considering the resulting DAG
with standard encoding C it is obtained the sequence of four-tuples that representsiit.

If ¢ isOx ¢1(x), it will imply the ¢1(X)[d4] ,..., d1(X)[d,] formulas evaluation
and conrection by the @nrective [l The epresson tree would degenerate in a list.
For that reason, in this case, we will generate atreebalanced, (applying to the dgorithm
and-tree [Balcazar et a.,8§), oltaining the suitable depth. Analogoudly, if ¢ is [X
¢1(x), the wnstruction is smilar, unlessthe mnrediveis O (in this case, we will use
the dgorithm or-tree).

Bibliographicd references. [Balcaza et al.,88], [Bacéza et al.,90],[Denenberg et al.,86], [Vollmer,99],
[Gagliardi et a.,99], [Pereyra ¢ al.,98], [Hamilton,81] and [Turull,96].

5. Query Expressed asfinite Subfamily of Boolean Cir cuits

Given the database B =[D°®,R?,...,R®[, with D®={d1, 0,..., d }, |D®| = n, the
amourt of possble mmbinations of the r freevariablesin D® is defined by n'. Thus the
foll owing cases appea:

a) r > 0 (r-ary query), expresed as ¢(x1, ....X;), with r free variables in FO,
ead valuation Vv for the freevariables {xu, ..., x;} of ¢, in the domain D?, it generates a

circuit Ci. We dencte the assgnation d the dement k in the pasition p d the tuple
(X1, ..., Xr) 8Syp, I.€.

Co =¢ (X1, ....X )01z ,...,d1] =do | Vauation o the r free variables in the first
element of domain.

Ci= o (Xg, .o X )[d11,...,02] =1 Valuation d the r-1 first free variables in the
first element of the domain and the r-th free
variable in the second element of the domain.

Cq = (X1, - X )[Din,-..,Gkn] = bq Valuation d the r free variables in the n-th
element of domain.

For ar-ary query, g=n' -1, then we obtain a finite subfamily of bodean circuits
C={Co, Ci,..., Cg}, equivalent to i bodean queries, such that for every valuation
vi{X1...x;} - DB, thebodean query ¢; is ¢ (X1...x,)[Vi(X1)...,vi(x,) ], for 0<i < q.

b) r =0, Oary query, expressed a sentence ¢ in FO, it generates only one drcuit
C, sincen®=1.
In this way, we @nstruct the finite subfamily of bodean circuits that represents
O(X1,..., Xp).
With resped to the query evauation, we dencte B |= d(Xg,... x)[dg,....d; ], the
fad that the formula ¢ evaluates to true, when interpreted by the structure B, with the
element dsj asdgned to the free variable x;, for 1< 5 < n, I< j < r. We denote b,

equally, to the formula and the relation that it express
0° ={(d,,....d; ):dg ,....d, OD® OB}=(xy, ... x)[d, ,....d ], Is§<n, Kj<r}



It is represented in the bodean circuits formalism by a drcuit C;, for some h,
equivalent to ¢,. We denate with Cy(B) to C;, interpreted in structure B, with the
element d; asdgnedtothefreevariablex; with 1sg<n, 1<j<r.

It BEo(...x)[dg,....d.] and  Ch=¢(xy,...%)[dg,....d, 1=bq,  then
$°={(d,,....d, ):d, ,....d, LD® OCy(B)=true, g=n"-1, ;s h<q, 1ss<n, kj<r}.
Note that h is associated to aspedfic r-tuple (d , ..., d; ).

The evaluator returns the set of r-tuples for which each Cy(B) = true; in the case
r=0,that is, ¢ isasentence the aaswer istrue sentenceor false sentence

Bibliographicd references: [Abbiteboul et a.95], [Gagliardi et a.99], [Pereyra & a.98],
[Ebbinghaus et a.,84] and [V ollmer,99].

6. Generation of Suitable Equivalent Formulasfor Parallelism

Theideais, we have aFO formulathen we want to find ancther equivaent, such
that its expresson treehas geda characteristics that allow to oltain a finite subfamily
of bodean circuits whaose width and depth are suitable for the dassNC?, this is Size-
Depth(n®®,logn). Previously we introduce the foll owing concepts:

An expresson treethat representing aformula ¢ in FO is abinary treg bulding
asfollows:

* If ¢ is an atomic formula R(yi, ...,yr), then it is represented by a node with his
correspondng subtrees being empties and containing, as an nade atribute, the free
variables «t.

* In ather case, being ¢, and ¢, formulas, if:

a ¢=0¢100¢20rd =0y 0o, then ¢ is represented with an expresson treewhose
root is a noce labelled with the respedive @mnrective and whose left and right
subtrees respedively correspondto the expressontreesfor ¢, and §o.

b) ¢ =-¢,, then ¢ it is represented with an expresson tree whaose roat is a node
labelled with the @nrective = and whose left subtree o©rresponds to the
expressontreefor ¢;.

c) ¢ =0Ox¢; or ¢ =[X ¢1, then ¢ is represented with an expresson treewhose root
is anock labelled with the respedive quantifier, whose left subtree crresponds
to the expressontreefor ¢, and contains, as an nade dtribute, the variable x.

We define weight of a node & total mapping P:V - N (Naturals), where V is the

nodes <t of the formula expresson treg and where P(v) indicates the depth of the

correspondng bodean subcircuit that will be generated from v.

Let v a nock of the expresson tree of a FO formula, we define reaursively the

mapping P asfollows:

* |If vrepresents an atomic formulaR(ys, ...,y:), then P(v) =1

o |If vrepresents aformula ¢, 0 ¢, or ¢1 O, and being v; and v, its left child and
right child respedively, i.e. they are the subtrees roats that represent ¢, and ¢, then
P(v) = 1 + max (P(v1), P(v2)).

* |If vrepresentsaformula-¢, andif vy isitsleft child, then P(v) = 1+P(vy).

e If v represents a formula Ox ¢; or [X ¢;, where v; is its left child, then
P(v)= 1+ og n(+ P(v1), where nisthe cardinality of the structure domain.

We define width of a node to atotal mapping A:V - N, where V is the nodes st
of the formula expresson tree, and where A(v) indicates the anournt of leaves of the

correspondng bodean subcircuit that will be generated from v.



Let v a nock of the expresson tree of a FO formula, we recursively define the
mapping A asfollows:

* |f vrepresents an atomic formulaR (ys, ..., ), then A(v) = 1.

» If v represents aformula ¢, 00 ¢, or ¢1 [ ¢,, and being v; and v; its left child and
right child respedively, i.e. they are the subtrees roaots that represent ¢, and ¢ , then
A(V) = A (v1) + A(W).

» If vrepresentsaformula-¢; andif vy isitsleft child, then A(v) = A(v1).

e If v represents a formula Ox ¢; o [X ¢i1, where v; is its left child, then
A(V) =nx A(vy), wherenisthe cadinality of the structure domain.

In this way, when we want to dothe syntactic analysis of the FO formula, by each
node crrespondng to alogicd connedive or a quantifier, we will consider the bodean
circuit structure that will generate such node, and consequently it will receve the
appropriate weight and width. For example, for the universal and existential quantifiers,
we can see the bodean circuits creation that they will be replaced by a binary tree
balanced (by means of the use of the dgorithms and-tree and a-tree). For this matter,
we must consider that node with the relative weight and width that potentialy it will
generate. When we quantify an atomic formulaislog n and n respectively, being n the
cadinality of the domain.

Let us consider the treein which there is a node that is roat of a “unbalanced’
subtree Thisis because the dhildren weights differ in more than one. There is no form
to make dhanges for balancing it, since to do it would be obtained a non-equivalent
semanticdly formulato the original; that is the obtained expresson would nd represent
the same query. For example, this happens when there is sme immersed quantifier in
some of the subtrees, (R(x) O Oyd,)) (or analogous ((R(x) O Cy¢1)) where the node
correspondng to the first subformula has weight 1 and the other has weight greater
than log n.

Note that we have used informaly the expresson “balanced tree”, withou
speafying its definition. In fad, we will | eave this expresson replacing it by “partialy
balanced tree”, because it does not correspondwith theterm use “balance’”.

Next, we give amethod that allows obtaining a partially balanced tree in weight
P of FO formula ¢.

Let T an expresgon tree for FO formula ¢, then we can distinguish dfferent
subtreestypes T'. Each T’ can be:

* The epressontreeof an atomic formulais good.

» The epressontreehaving just one node for representing a quantifier (OJ,0).

* The epresdon tree having just one node for representing the negation connective
().

* Theformula expresson tree which is maximal in amourt of nodes and which al the
nodes have the same mnnedive and (L)) or or (0).

Then, for every subtreeT’ de T, if it leads the first case, it is trivially considered
partially balanced tree

For the other cases, must verify all the subtrees of such treehave been treated and
they are partialy balanced trees. If there is a subtree with modified weight then,
considering T’, appea the foll owing cases:

* T isanode with quantifier or negation conredive: its weight is updated with the
new weight of its subtree which alrealy is partially balanced.

* Inancther case, that is node with conredives [ or [, the balance methodis applied.



The balance method consists of taking all the subtrees weights depending d T’
andwhose roots are not nodesof T'. Let 1, ¢2,..., ¢k the formulas that represent these
subtrees and let the weights p1, p,...,[x asociated to the roots of such subtrees. The
weights are increasing sorted, oldaining a sequence s = <pi1, P2, ..,A>, With 1<i < k.
Now, we analysed:
 |f al the pairs of weights differ by more than 1, we take the ordered sequence and we

begin from the minor to the greater, bulding a new expresson tree This tree is
estimably the best balance

Suppase the mnredive [, this new expresson treewill represent the formula (...(¢i1
O ¢i2) O ¢iz) O...)0bik), which is equivalent to the origina formula, becaise the
conredive has the properties of assciative and commutative. Analogously, doit for
the conredive [l

* In aher casg, if there is a maximal subsequent s" = <p;,..., > of s, such that all the
pairs of weights differ by more than 1,we build balancetreeusing the dgorithm and-
tree(or-tree). The subsequent s’ isreplacead by root weight of the new tree. Thus, the
balance methodis applied again to the new sequence.

These modificaions in the expressontree ca be done sincethe amnrectives that
we ae onsidering, andand or, satisfy the properties of commutative and associative.

In this way, we obtain an expresson tree guivalent to the origina expresson,
and partialy balanced in weight. This tree will be better suitable for using parallél
computation resources, sinceits depth is minor.

Let us observe that the width of a FO formula expresson tree defines the
necessary procesors amourt for processng it in its maximum parall elism expresson.
Consequently, with A(v) we indicate the processors amourt required for the formula
represented by the expresson tree with root v, under these cndtions.

Given FO formula ¢, with expressontree T partially balanced we have:

» If Tistotaly balanced (in its habitual conception), we can conclude that the formula
is well parallelizable and whether r is the root of T, ony A(r) processors are
necessary.

* Ancther case, at least thereisanode v of T that isroot of atreewhere the subtrees
weights differ by more than 1. Let T; and T, the left and right subtrees of v, whaose
roots are v; and w respectively, so that P(v;) >> P(v2) (the symmetricd case is
analogous). We denote with D the difference of levels between bah subtrees,
acwrding to the bodean circuit that represents v; thisis D = P(v1) - P(v,). Let A(vy)
and A(v2) the respedive widths of v; and w. Let T;' the restriction d treeT; at the
level (P(v1) — D), or equivalent to the level P(v2), andlet h the anourt of leaves that
has T;. The variable h represents the authentic amournt of processrs that are still
necessary and wsed for the processng of the level (P(v1) — D) of the tree T;. The
amourt of procesors released in such level can be cdculated by means of the
expresson (A(vl) — h), which we will dencte with |. Then, having the anourt of
procesorsin use, h, and the anourt of free processors, |, we can analyse the relation
between the amount of released processors and the anournt necessary to initiate the
processng of the right subtree of v: A(vy). In this way, happen two pcssble
Situations:

a) | =A(v): we caninitiate parale processngin theright subtreeof v.

b) | <A(vy): itisnot possbleto initiate the parallel processng in his maximum

parall elism expresson.

Let us note that if we arrive to the treeroat by the first situation, we obtain a
similar result to a totally balanced tree. That is, al the levels of tree T were traversed



paralely and rever it happened a situation d parallelism cut that caused inevitably a
sequential processng.

Bibliographicd references. [Balcaza et al.,88], [Balcaza et al.,90], [Gagliardi et a.,99] and
[Pereyra d@ a.,98].

7. Example
Let the FO formula ¢ asfollows:

O (((U(Xes Xo, X3) T T(Xe, X, Xa)) L 0% (R(Xa, X2, X3) LTE(Xa, Xa, X3)) LTS(Xa, X2, X3)) LT R(Xq, Xa, X3)

In the Figure 1.a) we graphicdly show the expressontree for ¢. The Figure 1.b)
illustrates the different types of expresson subtrees that we distinguished for our
anaysis. Theonly subtree that is not partially balanced is T'. The Figure 1.c) indicates
the subtrees that depending of T’, and that represent the formulas ¢1, ¢2,..., ¢s,
indicaing the @mrrespondng weights to ead one of them. With the gplied balance
method, it obtains the expresson tree for ¢’, equivalent to ¢, which is partialy
balanced, where ¢’ is:

O ((((U(xe, X2, Xa) LIT(Xq, Xo, X3)) LTS(X1, X2y X3)) LT R(X1, Xa, X)) [ 0X5 (R(Xq, X2, X3) [TE(X1, Xo, X3)))

The Figure 1.d) ill ustrates the expresson tree for ¢’ and whose tree is partialy
balanced. Note that thetree depth for ¢’ is gnaller than the treedepth for ¢.

X4, X2, X3)

U(Xq, X2, XSO O

T(X1, Xa, X3)

E(X1, X2, X3)
R(X1, X2, %)

Figure 1.a) Expressontreefor ¢
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Figure 1.b) Different subtrees types present in the tree & Figure 1.a)
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Figure1l.c) T with the subtrees weights that are depending of it



@ E(X1, %o, %)

X1, Xo, Xa) R0, %o, %) R4, %2, Xa)

U(xy, %, X3O OT(XL Xo, Xg)

Figure 1.d) Partially balanced expressontreefor ¢’

8. Conclusions

Bodean circuits are a suitable theoreticd model for the study of the computabili ty
and parall el complexity of queriesto relational databases.

Given an r-ary query and a natural number n that represents the size of the
domain of a given database, we showed how to buld a finite subfamily of bodean
circuits which preserves the property of uniformity, and which has a much better
relation between size and depth, thus improving the time needed for the parale
evauation d the query, aswell asthe gopredation d the parall €li zabili ty of the query.

We intend to generalise our results to general circuits, i.e., withou restricting the
output fan-in. A quite related topic, which we plan to consider, is the use of bodean
circuits for the computation d queries to dstributed relational databases. Considering
the weaknessof First Order Logic asto expresshility, we dso plan to extend ou results
to aher logics with higger expressve power, like the extension d FO with more
powerful quantifiers, and higher order logics.
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