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Abstract

In thisarticle we consider the problem of computing approximations to the second derivatives of functions
of n variables using finite differences. We show how to derive different formulas and how to comput the
errors of those approximations as functions of the increment h, both for first and second derivatives. Based
upon those results we describe the methods of Gill and Murray and the one of gradient difference. On the
other hand we introduce a new algorithm which use conjugate directions methods for minimizing functions
without derivatives and the corresponding numerical comparisons with the other two methods. Finally,
numerical experiences are given and the corresponding conclusions are discussed.
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1 Introduction

The aim of this article is to develop a new method to find the second derivatives from a given function f(x),
x ∈ Rn using finite difference approximations. When derivatives of f are very difficult to compute or too
hard to evaluate, the methods to calculate the minimun of f(x), such as quasi Newton or Newton, use finite
difference approximations of gradient vector and hessian matrix of the function, and the success of the method
depends directly on these approximations for the derivatives. The finite difference equations are obteined from
the Taylor series expansion of f , as will see below, is give by

∂2f(x0)

∂xi∂xj
∼= f(x0 + hiei + hjej)− f(x0 + hiei)− f(x0 + hjej) + f(x0)

hihj
,

where the most important factor to consider is the proper selection of hi and hj . When hi and hj are too small,
arithmetic errors are produced and consequently non satisfactory approximations of derivatives are obtained.
The idea behind our method is to find the best size step possible to minimize an error function. In order to
do that, we suppose that h depends on several parameters, h = h(α1, ...,αk). We take a set of different test
functions f1, f2, ...fm whose hessian matrices in several points,Hv1,Hv2, ...,Hvm are known. Hc1,Hc2, ...,Hcm
are the hessian matrices calculated with the increment h. Then we define the following objective function:

F (α1, ..,αk) =
mX
i=1

kHvi −Hci(α1, ..,αk)kF
kHvikF

,

and solve the problem to finding

argmin
α
F (α)

using minimization methods without derivatives to obtain the best size step.

2 Classic Methods to approximate derivatives

2.1 First derivatives

Let f : Rn → R , x0 ∈ Rn , h ∈ R, we can approximate ∇f(x0 ) using only values of the function f in the
following way. We will call g(x0) = ∇f(x0), or g(x0) = (g1(x0), ..., gn(x0)) where gi (x0) = ∂f

∂xi
(x0)

Forward-Difference The forward-difference equation for first derivatives is

gi(x0) ∼= f(x0 + hei)− f(x0)
h

.

There are two sources of error in this equation, truncation error and roundoff error. In order to find the
truncation error, we use the Taylor series expansion,

f(x0 + hei) = f(x0) + hg
t(x0).ei +

1

2
h2etiH(x0)ei +O(h

3).

This can be written as

gt(x0).ei =
f(x0 + hei)− f(x0)

h
− 1
2
hetiH(x0)ei +O(h

2).

So the truncation error is

Et =
1

2
hetiH(x0)ei =

1

2
hHii(x0),

where H(x0)is the hessian matrix evaluated in x0.
The roundoff error has various sources. If h is too small, then we will obtain a poor accuracy. To show

that, we consider the characteristic error of the machine’s floating-point format, which is the least non negative
number tol such as: 1 + tol 6= 1 and consequently multiplying by |x0| we get

|x0|+ |x0| tol 6= |x0| .



From the above equation we deduce that the condition h ≥ |x0| tol is required to hold. If we took h < |x0| tol
it would result f(x0 + h) = f(x0) and the approximation would be always zero.
Suppose now that h satisfies the above condition and Ef is the fractional accuracy with which f(x0) is

computed. Ψ(x0) is the value in floating point format of f(x0)

|f(x0)−Ψ(x0)|
|f(x0)| < Ef

then, ¯̄̄̄
f(x0 + hei)− f(x0)

h
− Ψ(x0 + hei)−Ψ(x0)

h

¯̄̄̄
<
2Ef |f(x0)|

h
.

We see that if h is too small, the total error may be large. Varying h to minimize Υ(h) gives the optimal choice
of h.

Υ(h) =
Ef |f(x0)|

h
+ h |Hii(x0)|

the best solve of h is given by

h ∼
s
Ef |f(x0)|
|Hii(x0)| .

At best

ert ∼
p
Ef
p|f(x0)| |Hii(x0)|
|gi(x0)| ∼pEf

where we assume that f, Hii, gi all share the same characteristic length scale.
By observing Υ(h), we see that a large size step h will induce a large truncation error and a small size step

h will induce a large roundoff error. So a good choice of h will be that both errors have the same order of
magnitude. This idea was developed in [8].

Symmetrized form If you can afford two function evaluations for each derivative calculation it is better to
use de symmetrized form:

gi(x0) ∼= f(x0 + hei)− f(x0 − hei)
2h

.

In order to deduce that, we use the Taylor series expansion

f(x0 + hei) = f(x0) + hg
t(x0).ei +

1

2
h2etiH(x0)ei +

h3

6

∂3f(x0)

∂3xi
+O(h4) (1)

f(x0 − hei) = f(x0)− hgt(x0).ei + 1
2
h2etiH(x0)ei −

h3

6

∂3f(x0)

∂3xi
+O(h4) (2)

substracting equations (1) and (2), we have

f(x0 + hei)− f(x0 − hei) ∼= 2hgt(x0).ei + 2h
3

6

∂3f(x0)

∂3xi
,

then

Et ∼ h2
¯̄̄̄
∂3f(x0)

∂3xi

¯̄̄̄
.

The roundoff error is the same that the other case, so the resultant error for gi(x0) is

Υ(h) =
Ef |f(x0)|

h
+ h2

¯̄̄̄
∂3f(x0)

∂3xi

¯̄̄̄
,



the best value of h is

h ∼ 3
p
Ef 3

s
f(x0)
∂3f(x0)
∂3xi

,

and

ert ∼ (Ef )
2
3 (f(x0))

2
3 (∂

3f(x0)
∂3xi

)
1
3

|gi(x0)| ∼ (Ef ) 23 .

We assume again that f(x0) ,
∂3f(x0)
∂3xi

y gi(x0) all share the same characteristic length scale.

2.2 Second Derivatives

Given f : Rn → R , x0 ∈ Rn , h ∈ R , we can compute the second derivatives of f using only values of the
function in the following way.

2.2.1 Forward Difference

For i 6= j
∂2f(x0)

∂xi∂xj
=

∂

∂xi
(fxj ),

like we see in the previous section

∂

∂xi
(fxj (x0)) =

fxj (x0 + hei)− fxj (x0)
h

=
1

h

·
f(x0 + hei + hej)− f(x0 + hei)

h
− f(x0 + hej)− f(x0)

h

¸
,

then

∂2f(x0)

∂xi∂xj
∼= f(x0 + hei + hej)− f(x0 + hei)− f(x0 + hej) + f(x0)

h2
, (3)

and for i = j

∂2f(x0)

∂2xj
∼= f(x0 + 2hej)− 2f(x0 + hej) + f(x0)

h2
.

We will call Hij the approximation for
∂2f(x0)
∂xi∂xj

. In order to compute the truncation error we use the Taylor
series expansion with a different notation: for t ∈ Rn

f(x0 + ht) = f(x0) + h
nX
i=1

∂f(x0)

∂xi
ti +

h2

2

nX
i=1

nX
j=1

∂2f(x0)

∂xi∂xj
titj +

+
h3

6

nX
i=1

nX
j=1

nX
k=1

∂3f(x0)

∂xi∂xj∂xk
titjtk +O(h

4).

So we obtain:

f(x0 + hei) = f(x0) + hgi(x0) +
h2

2

∂2f(x0)

∂2xi
+
h3

6

∂3f(x0)

∂3xi
+O(h4) (4)

f(x0 + hej) = f(x0) + hgj(x0) +
h2

2

∂2f(x0)

∂2xj
+
h3

6

∂3f(x0)

∂3xj
+O(h4) (5)



f(x0 + hei + hej) = f(x0) + hgi(x0) + hgj(x0) +
h2

2

∂2f(x0)

∂2xi
+
h2

2

∂2f(x0)

∂2xj
+

h2
∂2f(x0)

∂xi∂xj
+
h3

6
(
∂3f(x0)

∂3xi
+

∂3f(x0)

∂3xj
+ 3

∂3f(x0)

∂2xi∂xj
+ 3

∂3f(x0)

∂xi∂2xj
) +O(h4). (6)

Making the replacement (4), (5) y (6) in (3) we obtain

Hij ∼= ∂2f(x0)

∂xi∂xj
+
h

2
(
∂3f(x0)

∂2xi∂xj
+

∂3f(x0)

∂xi∂2xj
)

from

Et =
h

2
(
∂3f(x0)

∂2xi∂xj
+

∂3f(x0)

∂xi∂2xj
)| {z }

K

.

The roundoff error is

Er ∼ Ef |f(x0)|
h2

,

And varying h to minimize the sum of errors yields

h ∼ 3

r
Ef |f(x0)|

K

Symmetrized form For i 6= j , using the equations in the previous section
∂

∂xi
(fxj (x0)) =

fxj (x0 + hei)− fxj (x0 − hei)
2h

=

=
1

2h

"
f(x0+hei+hej)−f(x0+hei−hej)

2h −
f(x0−hei+hej)−f(x0−hei−hej)

2h

#
,

then

∂2f(x0)

∂xi∂xj
∼= f(x0 + hei + hej)− f(x0 + hei − hej)

4h2
+

+f(x0 − hei − hej)− f(x0 − hei + hej)
4h2

,

and for i = j

∂2f(x0)

∂2xj
∼= f(x0 + hej)− 2f(x0) + f(x0 − hej)

h2
.

Truncation errror: Using (4),(5) y (6),we obtain

Hij ∼= ∂2f(x0)

∂xi∂xj
+
O(h4)

4h2
.

3 Other Methods

The algorithm developed in this work has been compared with the following methods:



3.1 Gill-Murray

Given f : Rn → R this method uses the following equation:

∂2f(x0)

∂xi∂xj
∼= f(x0 + hiei + hjej)− f(x0 + hiei)− f(x0 + hjej) + f(x0)

hihj
,

where

hi =
3
√
tolmax{0.1, |x0i|}

hj =
3
√
tolmax{0.1, |x0j |} .

As we show in Section 2 , a good selection for the increment h is

h ∼ 3

r
Ef |f(x0)|

K
,

where K = ∂3f(x0)
∂2xi∂xj

+ ∂3f(x0)
∂xi∂2xj

and Ef ' Em where Em ( or tol ) is the error characteristic of the machine’s
floting point format.
As

xc =
3

r
f(x0)

K

is the curvature scale of the function f which is not available, then in the absence of any other information
it is often assumed xc = x0i where i is the coordinate which increases, except near x0i = 0 . Then it takes
h = max{0.1, |x0i|}.

3.2 Gradient difference method

The subrutine NUGRAD computes the gradient of the function f : Rn → R evaluated in x0, then we obtain
g = (g1(x0), ..., gn(x0)) and we use the finite difference equation to compute the matrix M , where

Mij =
gi(x0 + hjej)− gi(x0)

hj
,

and the increment hj is the same that we used to compute gj . Nevertheless this is not an accuracy approximation
for the hessian matrix of the f ∈ C2 function, since M is probably not a symmetric matrix, then we use,
H = M+Mt

2 as stated in the following lemma:
Lemma:
If A ∈ Rnxnis non-singular, and

B =
A+At

2
,

then

kA−BkF = minX kX −AkF ,∀X symmetric.

Proof:
B is a symmetric matrix:

Bt =

µ
A+At

2

¶t
=
At +A

2
= B.

Let

F (x11, ..., x1n, x21, ...., xnn) = kX −AkF
or F (x11, ..., x1n, x21, ...., xnn) =

Pn
i=1

Pn
j=1(xij − aij)2 then, since xij = xji

∂F
∂xij

= 2(xij − aij) + 2(xij − aji)so ∂F
∂xij

= 0⇔ 2xij − aij − aji = 0 and we have xij = aij+aji
2

The stationary point is X = B which is a minimun, since the norm is a convex function.



4 Proposed Method

This algorithm compute second derivatives of a function f : Rn → R , f ∈ C2 using only values function.
As we show in section 2, the algorithm uses the finite differences equation:

∂2f(x0)

∂xi∂xj
∼= f(x0 + hiei + hjej)− f(x0 + hiei)− f(x0 + hjej) + f(x0)

hihj
.

The most important issue in this new technique is the choice of hi, hj . The proposed algorithm provides a new
way to do this selection as explain the following procedure:
We choose an arbitrary amount of test functions, in this case we take thirteen {f1, f2, ...f13} whose hes-

sian matrices are known {Hv1,Hv2, ...,Hv13}. These functions have to be representative of all used functions
(polinomials, trigonometrics, exponencials, etc.) and we build an error function in the following way:
We suppose that hi dependes on several parameters {α1,α2,α3,α4}

hi = h(α1,α2,α3,α4,xi, f(x)),

in order to choose the function h(α1,α2,α3,α4,xi, f(x)) we have tried several function combinations looking
for one combination that is invariant the change of scale variables. We show here some of them

xi = a10b

f(x) = c10d

1)hi = αb1.α
d
2.α3 + α4. |xi|

2)hi = (α
b
1 + αd2)

α3 + α4. |xi|
3)hi = (α

b
1 − αd2).α3 + α4.max(|xi| , 0.1)

4)hi = (α1.b± α2.d)αd3 + α4.max(|xi| , 0.1)
5)hi = (α1 |xi|)b.+ (α2 |f(x)|)d.α3 + α4. |xi|
6)hi = sen(αb1.α

d
2.α3) + α4.max(|xi| , 0.1)

The best results were obtained using the following equation:

hi = (α
b
1 + αd2).α3 + α4.max(|xi| , 0.1).

We compute the hessian matrices using finite differences with this equation for hi, then we obtain the hessian
matrices, which depend on the same parameters

Hc1(α1,α2,α3,α4)
Hc2(α1,α2,α3,α4)

...
Hc13(α1,α2,α3,α4)

.

Then we build the objective function in the following way:
We take ten matrices{X1, ...,X10}. Each of them contains, at column m, the point where we evaluate the

hessian matrix of the function m. It should be emphazised that each hessian matrix is evaluated in ten different
points, which gives a wide spectrum of initial values and also a wide spectrum for the values of the derivatives.
In the columns of the matrices Xi there are values near zero, near one thousand, etc.
We take

Fk(α1,α2,α3,α4) =
13X
m=1

X
i

X
j

¯̄̄̄
¯Hvmij (xk)−Hcmij (α1,α2,α3,α4, xk)Hvmij (xk)

¯̄̄̄
¯ .

Here Hvmij (xk) means that the hessian matrices are evaluated at the points which are contained in the matrix
Xk. The objective function is

F (α1,α2,α3,α4) =
10X
k=1

Fk(α1,α2,α3,α4) =

10X
k=1

13X
m=1

X
i

X
j

¯̄̄̄
¯Hvmij (xk)−Hcmij (α1,α2,α3,α4, xk)Hvmij (xk)

¯̄̄̄
¯ ,



then we minimize this function using the Powell method. It results an optimal α∗, which is used to compute
the size step for the finite difference equation.

hi = ((α
∗
1)
b + (α∗2)

d).α∗3 + α∗4.max(|xi| , 0.1).
This method has been checked with a lot of different functions and the results are exposed in the Numerical
Results section.

5 Conclusion

In this work, a new method to compute second derivatives (M3) has been depeloped. It has been checked and
compared to other two methods, Gill-Murray(M1) and Gradient difference(M2).
This algorithms have been checked in two ways:
1-forward finite difference form
2-symmetrized finite difference form
The results are the following:
With the first form, M3 gives the best accuracy approximation in 80,6% of all experiments. The number of

functions evaluations is the same for M1 and M3, while M2 is more expensive.
With the second form, M3 gives the best accuracy approximation in all experiments, except for cuadratic

functions, in which M1 gives best results.
We have observed that whenM3 was the best method , M2 is better than M1, but uses a lot of function

evaluations.
Using the symmetrized form, errors are smaller, since this formula has a higher order of accuracy, as we

have seen in Section 2, but a large amount of function evaluations are neccesary.
If the matrix dimension is large, the roundoff error is larger since there are more arithmetic errors.
The contribution of the new method proposed in this work, is that in the most of cases, it yields an accuracy

approximation with a smaller number of function evaluation. This work shows that finding the minimun of an
error function can be an efficient way for modifications to numerical recipes and it was used to construct an
algorithm which combines accuracy aproximation and low computacional cost.

6 Numerical Results

Here we show same experimental results.
Cuadratic Function
Forward Difference

M1 M2 M3
error 0.2294d− 14 0.5163d− 01 0.1874d− 07

num. de eval 7 9 7
Symmetrized Form

M1 M2 M3
error 0.2294d− 14 0.8695d− 05 0.1264d− 08

num. de eval 9 15 9
Gaussian Function(n=3)
Forward Difference

M1 M2 M3
error 0.4367d− 01 0.15105d+ 01 0.3288d− 03

num. de eval 13 16 13
Symmetrized Form

M1 M2 M3
error 0.9412d− 02 0.1224d− 03 0.9118d− 06

num. de eval 19 15 19
Biggs function (n=6)
Forward Difference

M1 M2 M3
error 0.8514d− 02 0.3362d− 00 0.2580d− 02

num. de eval 43 49 43
Rosenbrock extended function (n=12)
Symmetrized Form



M1 M2 M3
error 0.1313d+ 03 0.22003d+ 01 0.3959d− 01

num. de eval 289 325 289
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