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Abstract.This paper addresses the comparison between two techniques for the 
optimization under parametric uncertainty of multiproduct batch plants integrat-
ing design and production planning decisions. This problem has been conceived 
as a two-stage stochastic mixed integer linear programming (MILP) in which 
the first-stage decisions consist of design variables that allow determining the 
batch plant structure, and the second-stage decisions consist of production plan-
ning continuous variables in a multiperiod context. The objective function max-
imizes the expected net present value. In the first solving approach, the problem 
has been tackled through mathematical programming considering a discrete set 
of scenarios. In the second solving approach, the multi-scenario MILP problem 
has been reformulated by adopting a simulation-based optimization scheme to 
accommodate the variables belonging to different management levels. Advan-
tages and disadvantages of both approaches are demonstrated through a case 
study. Results allow concluding that a simulation-based optimization strategy 
may be a suitable technique to afford two-stage stochastic programming prob-
lems. 

Keywords:uncertainty, two-stage stochastic programming, simulation-based 
optimization 

1 Introduction 

The concepts involved in decision-making under uncertainty are closely linked to 
those of optimization under uncertainty. Literature on optimization under uncertainty 
very often divides the approaches into two categories: “wait and see” and “here and 
now”. In the “wait and see” approaches, one has to wait until an observation on the 
random elements is made, and then solve the deterministic problem. Conversely, a 
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“here and now” problem involves optimization over some probabilistic measure of the 
system performance –usually the expected value. It should be noted that many realis-
tic problems have both “here and now”, and “wait and see” approaches embedded in 
them. The trick to overcome this situation is to divide the decisions into these two 
categories and use a coupled approach [1]. 

In this regard, many advances have been observed in the supporting theory, includ-
ing algorithmic developments and computational capabilities for solving this class of 
problems, most of which fall into one of these two areas: multistage stochastic pro-
gramming and stochastic optimal control. 

In multistage stochastic programming, decisions are based on past observations 
and decisions before the future events occur [2]. A finite set of scenarios is often gen-
erated to represent the space, therefore, the stochastic program becomes a determinis-
tic equivalent program, whose size can easily grow out of hand for a large number of 
scenarios, making the direct solution approaches numerically intractable, thus requir-
ing methods of decomposition or aggregation [3]. 

Stochastic optimal control describes a sequential decision problem in which the 
decision-maker chooses an action in the state involved at any decision stage according 
to a decision rule or policy. Dynamic programming provides the framework for de-
signing algorithms to compute an optimal control policy. However, for large prob-
lems, dynamic programming also suffers numerically from dimensionality. Both ap-
proaches -stochastic programming and optimal control- are essentially equivalent, but 
they exhibit differences in formulation and solution, with the consequent advantages 
and disadvantages for specific problems (see [4], [5], [6], and [7]). 

Efficient numerical solution proposals can be achieved by combining several tech-
niques that belong to each approach. The resulting strategy needs to be adapted to 
solve the specific problem, defining some approximations or heuristic-based methods. 
The works [8] and [9] are relevant examples in this regard. 

In the literature, it is not easy to find comparisons regarding the two-stage stochas-
tic scheme solved by mathematical programming and by the heuristic simulation-
based optimization approach. Therefore, this work presents such comparison so as to 
demonstrate advantages and disadvantages of both approaches. 

2 Description of the techniques used in the comparison 

2.1 Two-stage stochastic programming 

The two-stage stochastic linear programming (2SSLP) problem can be stated as in 
[2]: 
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Here Eω is the expectation, and ω denotes a scenario or possible outcome with re-
spect to the probability space (Ω; P). The variables x are the first-stage variables, as 
they have to be decided upon before the stochastic variable ω realizes. The variables 
yare second-stage variables: they can be assessed after the outcome of ω is known. 

In this work discrete distributions P are only considered, specifically through a 
Monte Carlo sampling technique, so it can be written: 
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Therefore, a large LP can be formulated. This LP is the deterministic equivalent of 
the problem: 
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The sequence of events in (3) is as follows: first the decision maker implements the 
first stage decisions x. Then the system will be subjected to the random process de-
scribed by (Ω; P), which results in an outcome ω∈Ω. Finally, the decision maker will 
execute the second stage decisions yω accordingly. 

2.2 Simulation-based optimization strategy 

The simulation-based optimization (SbO) algorithm proposed for the comparison is 
a variation of the one presented in [10] and [11] and can be followed from Fig. 1. It 
involves an outer loop which corresponds to a genetic algorithm (GA) strategy and an 
inner loop which is a Monte Carlo sampling of the uncertain parameters over an LP 
deterministic planning model. As in the stochastic programming technique, variables 
must be divided into first-and second-stage variables. 

At the beginning of the algorithm initial estimations for the first stage variables are 
provided to the GA outer loop, which in turn runs the inner loop taking samples of the 
uncertain parameters. For each sampling, an LP deterministic planning model obtains 
the values of the second-stage decisions variables and gives a value for the objective 
function. Enough samplings of the LP model are done to obtain a representative value 
of the population of objective function values. Usually, the expected value is utilized 
and then is returned to the GA outer loop, which uses it to search for the optimum 
combination of first-stage variables’ values. A filter is utilized to avoid the use of the 
inner loop when an already-tried combination of first-stage variables is chosen again 
(the filter returns the same expected value of the objective function). 
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Fig. 1. Simulation-based optimization strategy. 

 
The variation introduced in this work with respect to the SbO strategy described in 

[10] and [11] is that the simulation step in the inner loop is replaced with an LP opti-
mization for each sample of the uncertain parameters. The reason for this variation is 
to make this technique and the stochastic programming more comparable. 

3 Design and planning of a multiproduct plant in a mutiperiod 
environment. Overall description 

In a multiperiod environment, consider a multiproduct plant that processes a set I 
of products i over a time horizon H, which is divided into t = 1, 2,…,NT specified 
time periods Ht, not necessarily of the same length. Every product i follows the same 
production sequence throughout a set J of batch processing stages and a set K of semi-
continuous stages that form NLsemi-continuous subtrains. The production of product i 
at every time period t requires a given processing time ptijt in batch stage j and the 
size/duty factors SFijt/Dikt for each batch/semi-continuous stage. 

In order to reduce idle times in the plant, out of phase duplication of batch units 
and the introduction of intermediate storage tanks between batch stages are allowed. 
Additionally, in-phase duplication is admitted at semi-continuous stages, so each 
stage k can consists of one or more units of the same size. Let Mj denote the set {1, 
2,…, U

jM } of possible number of equal units that can be allocated in parallel in each 

batch stage j. And let Gk be the set {1, 2,…, U
kG } of units that can be duplicated in 
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parallel in semi-continuous stage k. Thus, m∈ Mj identical parallel units can operate 
out of phase in stage j and g∈Gk parallel units operate in phase in stage k. When an 
intermediate tank is allocated, the original process is decoupled in subprocesses, up-
stream and downstream of the tank, each one having different batch size and limiting 
cycle time. 

Also, the design problem involves the selection of equipment sizes for both batch 
and semi-continuous units, and intermediate storage tanks from a number of available 
discrete sizes. Thus, the batch unit size of stage j, Vj, and the size of semi-continuous 
unit at stage k, Rk, are restricted to values from the sets SVj ={νj1, νj2,...,νj,nj} and 
SRk={ωk1, ωk2,..., ωk,mk}, respectively. In the same way, the size of storage tanks VTj is 
restricted to values from the set STj={νtj1, νtj2,...,νtj,gj} 

The plant operates in a single product campaign (SPC) mode in every time period, 
and when storage tank are not allocated, a Zero Wait (ZW) policy is employed. 

Product demands are not known to the decision maker with certainty, but it is as-
sumed that the uncertainty can be represented by a set of scenarios S. Each scenario 
s∈S has a known probability ps that reflects the likelihood of each scenario to take 
place with 1=∑ ∈Ss sp . Moreover, these scenarios are described through lower and 

upper bounds on product demand levels in each time period t, L
itsDE and U

itsDE . The 
amounts of raw materials consumed are determined by mass balances with a given 
parameter Fit that accounts for the process conversion of raw material to product i 
during period t. Costs and availability of raw materials vary from period to period and 
are assumed to be known. Also, prices of final products in each time period and max-
imum available storage capacities are problem data. 

In every scenario s, production planning decisions allow to determine at each pe-
riod t and for each product i, the amount to be produced qits, the number of batches 
nits, and the total time Tits to produce product i. Furthermore, at the end of every period 
t, the levels of both final product IPits and raw material inventories IMits are obtained. 
The total sales QSits, the amount of raw material purchased Cits, and the raw material 
to be used for the production RMits of product i in each time period t are determined 
with this formulation. In this model, it is assumed that each product requires a unique 
raw material that it is not shared by other products. However, more sophisticated 
transformation processes can be easily incorporated. 

In summary, a two-stage stochastic MILP model was developed. First-stage deci-
sions consist of design variables that allow determining the batch plant structure. 
Second-stage decisions consist of planning variables (continuous variables) to deter-
mine the production, purchases, and inventories of raw materials and products for 
each period throughout the time horizon under each scenario, given the plant structure 
decided at the first-stage. 

The objective function maximizes the expected net present value (ENPV) over a set 
of scenarios S. 
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(4) 

The economic criterion in Eq. (4) is calculated by the probabilistic average of the 
difference between the revenue due to product sales and the overall costs in each sce-
nario s, with the latter consisting of the cost of raw materials, inventory costs, and the 
capital investment cost corresponding to batch units, semi-continuous units, and sto-
rage tanks. Parameters npit, κit, εit, and σit are the corresponding cost coefficients for 
each term associated with production planning decisions. Note that all the above cost 
coefficients take into account the time value of money, in other words, they are dis-
counted prices for each time period with a specified interest rate. 

Due to space reasons, the detailed formulation is not provided in this manuscript, 
but readers can see [12] for more details. 

4 Implementation and results 

In order to create a manageable problem, the example from [12] has been modified 
to account for only 4 periods, but still with an operation horizon of one year. There-
fore some parameters have been changed as shown in Tables 1 and 2. All other para-
meters have been kept unmodified. 

Table 1.Data for the model 

t 
Costs of raw materials, κit ($/kg) Prices of products, npit ($/kg) 

A B C D E A B C D E 
1 2.200 0.500 1.200 0.600 1.300 55.00 47.00 40.00 42.00 48.00 
2 1.733 1.500 2.067 1.400 1.600 53.00 48.00 42.67 44.00 50.67 
3 1.733 1.500 2.500 1.400 1.600 53.00 48.00 44.00 44.00 50.67 
4 2.200 1.500 1.633 0.600 1.000 55.00 46.00 41.33 42.00 48.00 
 εit = 0.0002 $/kg/hr σit = 0.0015 $/kg/hr 

 
As explained before, the demands are the uncertain parameters in the formulation, 

which are specified by a range of lower-upper bounds (DEL
it-DEU

it). For each scena-
rio, the nominal upper bound on product demands in every time period is affected 
with a factor generated following a normal probability distribution N(1, 0.20). The 
lower bounds on demands for each product are set to 50% of the upper demands. 
Therefore, the number of uncertain parameters for this work is 20. 
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Table 2. Nominal upper bounds on demands 

t 
DEU

it (x 103 kg) † 
A B C D E 

1 6.40 6.90 8.50 7.50 7.30 
2 5.00 6.40 7.90 7.30 10.00 
3 6.00 7.20 6.90 7.30 8.90 
4 4.50 8.00 8.40 7.50 6.90 

† Lower bounds on demands, DEL
it, are calculated as 0.5•DEU

it. 
 

The problem was solved with the techniques described in Section 2 in a AMD A6-
3620 APU system (4 cores)at 2.20GHz with 8Gb of RAM memory, 64bit operating 
OS, using in both cases the GAMS 24.0.2/CPLEX 12.5.0 solver for MILP/LP resolu-
tions (2SSLPtechnique and inner loop of the SbO method) and the MATLAB R2008a 
package for the outer loop, with the GA toolbox used with default options. For the 
SbO technique it was determined that 50 samplings in the inner loop per solution 
were sufficient to obtain a representative ENPV value (i.e., in consecutive tests at or 
near the optimal solution, the ENPV did not vary enough as to change the combina-
tion of outer loop variables at the optimal solution). 

4.1 Determination of the optimal solution 

The characteristics of the problem described in the previous section allow deter-
mining its optimal solution before applying the techniques proposed in this work. 

In Eq. (4) the expected net present value is equal to the incomes from sales (1st 
term) minus the cost of raw materials (2nd term), minus the cost of inventories (3rd 
term) minus the capital cost for all the equipment installed in the plant (4th term is the 
cost for batch units, 5th term is the cost for semi-continuous units, and 6th term is the 
cost for storage tanks). 

In both techniques, the planning decisions (handled by the second-stage variables 
in the 2SSLP method and the inner loop LP in the SbO approach), give flexibility to 
the plant in order to fulfill at least minimum demands. However, this flexibility is 
limited by the decisions taken in the first-stage or outer loop, i.e., the plant structure. 
In some scenarios, for a given plant structure, it can happen that no combination of 
planning variables allow fulfilling demands, leading to infeasibilities. If a given plant 
structure does not fall in infeasibilities for all the generated scenarios, the ENPV be-
comes the cost of the installed plant plus the aggregated effect of all the scenarios. 
This aggregated effect is the mean of the applied perturbation, which (for the normal 
distribution perturbations utilized in this work) is the nominal value for the demand. 
Therefore, the ENPV, for a given plant structure for which no infeasibilities are found, 
is equal to the case where no parametric uncertainty is considered. On the other hand, 
if the installed plant cannot comply with minimum demands in one or more of the 
generated scenarios, the 1st term of Eq. (4) becomes infeasible or null (depending on 
the utilized solving technique) for that scenario and the aggregated effect decreases 
with respect to the nominal value. 
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For the present problem, values of non-uncertain parameters and perturbations ap-
plied to demands have been chosen to produce the situation described in the previous 
paragraph for first-stage variables combinations at the optimum solution and near it. 
Therefore, solving the problem without considering parametric uncertainty gives a 
solution whose corresponding first-stage variables are the same as those obtained in 
the optimal solution for the problem considering uncertainties. 

The optimal plant structure for the non-uncertainty case is (V2, V3, V6) = (2000 L, 
1500 L, 100 L) with 2 units for the first batch stage and 1 and 2 units for the next two 
batch stages, and (R1, R4, R5, R7) = (30 HP, 2.5 m2, 3 m2, 30 HP) for semi-continuous 
stages, with 2, 2, 3 and 1 units operating in parallel respectively, and a storage tank 
after the second batch stage with size (VT2) = (4000). The objective function value for 
this solution is $2,766,549.07. 

4.2 Results 

Table 3 shows the solution performance of both techniques and the size of the 
problem that each solved. 

Table 3. Solution performance of the 2SSLP and SbO techniques 

 2SSLP SbO 
Objective function value $2740130.32 $2784888.82 

CPU time 23306.908 secs 25206.702 secs† 

Problem size 

50 scenarios 
131924 eqs. 

137109 continuous vars. 
70 binary vars. 

Population: 200 
Generations: 81 

Unique solutions: 3100 
Best solution found at gen-

eration 16 
Valid solutions†† 23*34*63*64*52 = 4534963200 

Found optimal solution? Yes Yes 
† Algorithm stopped by time limit (25000 seconds) violation at generation 81. 
†† Total quantity of valid combinations of the integer variables. 
 

Fig. 2 shows the convergence of the objective function value with the number of 
scenarios utilized. The dotted line represents the average ENPV value. As expected, 
the computing time to solve the example in each instance increases with the number 
of scenarios. When the ENPV value starts to stabilize the computing time is in the 
range of 20000-25000 seconds. Therefore, the instance of 50 scenarios has been cho-
sen as the optimal number and its statistics presented in Table 3. 
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Fig. 2.Objective function convergence for the 2SSLP technique. 
 
Fig. 3 presents the solving performance of the SbO technique. For a better compar-

ison with the 2SSLP method, the algorithm was forced to run until a computing time 
limit of 25000 seconds. But, it can be seen that the optimal solution is found very 
early in the process, in generation 16. In the following generations this solution is 
held as the optimal, but the algorithm continues looking for other solutions that could 
improve the result, therefore maintaining a great gap between the best and the worst 
individual in each generation. The objective function value in the worst individual of 
each generation varies greatly due to the presence or not of unfeasible scenarios, but 
the average number per individual stabilizes around generation 10. 

 

0 10 20 30 40 50 60 70 80
-0.5

0

0.5

1

1.5

2

2.5

3
x 106

Generation

E
N

P
V

Best and worst individual, and average of each generation

 

 

Best
Average
Worst

0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Generation

Average Infeasible Scenarios per Individual

Fig. 3. Objective function convergence for the 2SSLP technique. 
 
As can be seen from Table 3 and Figs. 2 and 3, while both techniques find the op-

timal solution, the SbO algorithm takes less than half of the computing time. The 
ENPV of both techniques differ from the non-uncertainty considered case. The reason 
for this difference is that the discretization of the uncertain parameters does not allow 
for a totally smooth representation, but in both cases the difference is less than 1%. 
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We can conclude that the SbO technique is better in terms of computing time, but, 
since it utilizes a metaheuristic algorithm, it cannot determine if it has reached the 
optimal solution. 

5 Conclusions 

This paper compares the performance of two techniques for optimization under pa-
rametric uncertainty in solving the simultaneous design and planning of a multipro-
duct plant. The problem presented in this work is very interesting and difficult to 
solve, even more if uncertainty is considered. However, its characteristics can be 
modified to allow for its use as a benchmark for different solving approaches, since an 
optimal solution for the problem can be found before these techniques are applied. 

The techniques compared in this work are a rigorous two-stage stochastic pro-
gramming and a hybrid simulation-based optimization algorithm. The characteristics 
of both methods where manipulated for a more fitted comparison. The SbO approach 
had a better performance in terms of computing time, while both of them reached the 
optimal solution. However, since SbO utilizes a metaheuristic algorithm it cannot 
ensure having found the best solution, thus leading to a potentially waste of computa-
tion power and time. 

As a future work, the two-stage stochastic programming with relaxation techniques 
should be included in the comparison, since their characteristics can lead to a better 
performance. 
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