JCS&T Vol.2No. 7

October 2002

Algebraic Specifications and Refinement for

Component-Based Development using RAISE

Elsa ESTEVEZ and Pablo FILLOTTRANI
Departamento de Ciencias e Ingenieria de la Computacién
Universidad Nacional del Sur
8000 Bahia Blanca, Argentina

Abstract

There are two main activities in Component-Based De-
velopment: component development, where we build li-
braries for general use, and component integration, where
we assemble an application from existing components. In
this work, we analyze how to apply algebraic specifications
with refinement to component development. So we restrict
our research to the use of modules that are described as
class expressions in a formal specification language, and
we present several refinement steps for component devel-
opment, introducing in each one design decisions and im-
plementation details. This evolution starts from the initial
specification of a component as an abstract module, and
finishes with the final deployment as fully implemented
code.

The usage of formal tools helps to assure the correct-
ness of each step, and provides the ground to introduce
complementary techniques, such as bisimulations, for the
process of component integration.

Keywords: algebraic specifications, refinement,
component-based development, formal methods, software
engineering

1 Introduction

Components and Components-Based Development (CBD)
[1, 15] are the approaches that provide solutions to the
new arising needs, such as Internet and its associated
technologies. A component is an independently deliver-
able piece of functionality providing access to its service
through interfaces [1, 9]. Components are the way to en-
capsulate existing functionality, acquire third-party solu-
tions, and build new services to support emerging business
processes. Within this approach, the specification of com-
ponents plays a crucial role, requiring a renewed emphasis
on specification and verification techniques. On one hand,
if we are working on the development of components in or-
der to construct a library for general use, we need a com-
plete specification of what we are going to construct. On
the other hand, if we are assembling our application from
pre-existing components, we also need a precise specifica-
tion of the behavior of the component in order to decide
whether it is suitable for our design.

Many relevant techniques for writing specifications have
been proposed, including formal methods. By formal

-28-

methods we mean a specification language plus formal rea-
soning, including the use of formalisms such as logic, dis-
crete mathematics, finite state machines, and others. For-
mal specifications provides a more precise definition of the
functionality supplied by the software, and its well-defined
syntax and semantics enable the automatization of their
processing.

A structural decomposition of the behavior of the sys-
tem is possible by describing the behavior of each com-
ponent by formal specifications. Formal methods enables
the verification of software by proving that an implementa-
tion satisfies its specification, and likewise it makes easier
the validation, facilitating testing and debugging. There
is also the possibility of applying the notion of refine-
ment, demonstrating that lower levels of abstraction sat-
isfy higher levels. In this context, we use RAISFE, Rigorous
Approach to Industrial Software Engineering, [6, 7] as the
formal method to develop and to specify software. The
RAISE Method provides a methodology to develop soft-
ware, a formal specification language RSL, and automated
tools for proofs and code generation.

Using formal methods we can write descriptive specifi-
cations of a system. Descriptive specifications delineate
the desired properties of a system rather than its desired
behavior. A natural way for precisely specify system prop-
erties is through the use of mathematical formulas. One
popular descriptive specification style is based on the use
of algebra, as the underlying mathematical formalism. Es-
sentially, algebraic specifications define a system as a het-
erogeneous algebra, i.e., a collection of different sets on
which several operations are defined. Algebraic specifica-
tions are used to construct software in a stepwise fashion,
adding more details in each step of refinement. As new
paradigms appeared, different formalisms are used to pro-
vide the theoretical foundations. For example, in the ob-
ject oriented paradigm the mathematical concept of coal-
gebras can be used to model the behavior of classes. The
concept of coalgebra as a black box, in which we can only
apply functions in order to get a result or to change the
state, is more suitable with the concept of encapsulation
and information hiding, basis of object oriented approach.

In this work we present a classification of the refine-
ment steps in the context of algebraic specifications for
component-based development using RAISE, and we de-
scribe the properties these steps must exhibit in order to
preserve semantics. In the next section we present the
main concepts of algebraic specifications and refinement.



JCS&T Vol.2No. 7

After that, we describe how to applied them in CBD to de-
velop components for general use. In section 4 we present
the refinement steps, and describe the application of this
process in RAISE. Finally, we present our conclusions
and related work.

2 Algebraic Specifications and
Refinement

Within the formal methods area, the approach of algebraic
specifications is one of the most extensively developed. In
general, working with algebraic specifications implies the
assumption that the correctness of the input/output be-
havior of a program takes precedence over all other prop-
erties. Thus, we can leave aside from concrete details of
code and algorithms, and model program functionality as
mathematical functions. The fundamental assumption un-
derlying algebraic specifications is that programs are mod-
eled as many-sorted algebras, which consist of a collection
of sets of values together with functions over those sets.
The overall aim is to provide semantic foundations for the
development of software that is correct with respect to its
requirements specifications. Algebraic specifications are
widely used to construct traditional software systems in a
stepwise fashion, adding more details in each step of re-
finement [11, 8, 10].

An algebra consists of a set of values plus operations
defined over those values [12]. Thus, a program repre-
sented as a many-sorted algebra consists of a collection
of sets of data values together with functions over those
sets. Each algebra is associated with a signature that
names its components, providing the basic vocabulary for
making assertions about its properties. A signature X is
the set of sorts together with some operations defined on
them. The set S of sorts is called the sort of the signa-
ture, and the set of operations, over the set S, is usually
denoted by €2. Therefore, a many sorted signature is a
pair X =< 5,9 >, where S is a set of sorts names and
Q is an S* x S-sorted set of operation names. In this
case, S™ is the set of finite, including empty, sequences of
elements of S. For example, let Numbers be the signa-
ture with sorts S = {Nat, Bool} , and with operations
Q = {add, mult, succ, greater than, equal} defined over S.
At this point, this signature is only a syntactic structure,
regardless the meaning that we can suppose based on our
previous knowledge.

Let ¥ be the signature of the algebra, then the class
of all algebras over ¥ will be denoted by Alg(X). For
any program P, the algebra it generates is written as
[P] € Alg(Sig(P)), where Sig(P) is the underlying sig-
nature of P. For example, we may have a component for
implementing a buffer written in Java. In the program,
we define variables b to represent the bound of the buffer,
length to denote the actual length of the buffer, start to
point to the first message allocated in the buffer, and s to
model the buffer itself. There are also two functions: send
and message. The first one takes as argument a message
and inserts it in s, and the second one has no arguments
and returns the last inserted message. Thus, Sig(P) is
defined by the sorts of b, length, start, and s, plus the set

-29-

October 2002

containing the two functions. We can observe that pro-
gram P is a particular algebra in the set of Alg(Sig(P)),
and that there are many programs with different imple-
mentations for this signature.

In a formal approach to software development, specifica-
tions must be objects as formal as programs, thus we also
need a formal language to write specifications and to de-
rive properties from it. Whenever we write a specification
SP, we determine a signature Sig(SP) and a class [SP] of
Sig(SP)-algebras. Note the overloading of the semantic
bracket, in the case of a program P, [P] is an algebra,
while for a specification SP, [SP] is a class of algebras. As
specifications should describe only what is required, with-
out constraining how it will be implemented, the specifi-
cation SP models the class of programs which we want to
view as its correct realizations. For example, the module
in Java previously introduced is an algebra because it is a
particular implementation for that signature. In the case
of a specification, [SP] determines the class of algebras,
because there are many different algebras that can imple-
ment the behavior described by that specification. So far,
the semantics of a specification is in any case a class of
algebras that may consist of a single algebra.

For any signature, we need a logical system for describ-
ing properties of algebras over that signature. Properties
of Y-algebras, or rather of their operations, may be de-
scribed by universally-quantified equations over %, via the
definition of what it means for a Y-algebra A to satisfy
Y-equation ¢, written A = ¢. This also determines a
notion of logical consequence: a set of equations ® en-
tails an equation ¢, written ® = ¢, if every algebra that
satisfies all the equations in ¢ also satisfies ¢. Based on
these concepts, algebraic specifications is often referred to
as a “property-oriented” approach. In the scope of formal
specifications, we can distinguish, at least, two classes of
techniques, called respectively model oriented and property
oriented. In the model oriented approach, the software en-
gineer builds a unique model, from a choice of built-in data
structures and construction primitives offered by the spec-
ification language. In the property oriented approach, the
software engineer declares first a list of function names,
and by default there may be infinite models that provide,
in different ways, a function for each name. Then, the
software engineer states several properties that are usu-
ally called azioms, because they are required properties
yet not proved. Algebraic specifications are said to be
property oriented because they define the signature, and
also contain axioms to describe the properties that models
are required to satisfy. Usually these axioms are expressed
as predicates of first-order logic with equality.

Refinement provides the way to transform abstract spec-
ifications into more concrete ones [11, 3]. Given a specifica-
tion SP, we need to construct a program P that is a correct
realization of SP. Sannella and Tarlecki proposed [12] to
proceed in a stepwise fashion, gradually enriching the orig-
inal specification with more and more detail, incorporat-
ing more and more design and implementation decisions.
Such decisions include choosing between the different al-
ternative behaviors left open by the specification, such as
data representation, function implementations, etc. Each
decision is recorded separately, as a different step consist-



JCS&T Vol.2No. 7

ing of a local modification to the specification. With this
approach, developing a program from its specification pro-
ceeds via a sequence of such small, easily understandable
and verifiable steps:

SPy ~ SPy ~ -+~ SP,

In this chain, SP, is the original requirement specifica-
tion and SP;,_1 ~» SP; for any i = 1,---,n is an individual
refinement step. The aim is to reach a specification, in this
case SP,, that is an exact description of the program in
full detail, one that incorporates all design decisions and
that is a correct realization of SP.

In a formal definition of these refinement steps SP ~-
SP’, we must assume that any correct realization of SP’
must be a correct realization of SP. Whenever the signa-
ture of SP is equal to the signature of SP’, we can define
that SP’ is a refinement of SP if and only if the class
of all models of SP’ are included or equal to the class of
all models of SP. The definition provided by Sannella and
Tarlecki states:

SP ~ SP' iff [SP'] C [SP]

presupposing that Sig(SP) = Sig(SP’), and where
[SP] represents the class of all models of the specification
SP.

The definition of refinement ensures that the correct-
ness of the final outcome of stepwise development may be
inferred from the correctness of the individual steps:

SPy~ SP; ~ -+~ SP,
Ae [[SP()]

A€ [SP,]

If the final specification SP, represents an individual
program P, then we can note this as [SP,] = {[P]}, so the
conclusion that A € [SP] for all A € [SP,] is the original
statement of the program development task [P] € [SFo].

In the context of CBD, we may use the idea of stepwise
refinement for developing components that will be later
integrated into different systems, starting the process with
an algebraic specification of the component. In this way
we can assure the correctness of each development step.
The development of the component proceeds in a stepwise
fashion introducing various additional layers of specifica-
tion between the requirement definition and the final code.
Each pair of successive layers reflects certain design deci-
sions, but are still close together so that correctness proof
become easier. We call each of these steps a refinement
step between algebraic specifications and implementation
[3]. Also, within algebraic specifications elementary refine-
ment steps are called abstract implementations [5].

3 Algebraic Specifications in

CBD

Component-based development provides a new design
paradigm where the traditional design and build approach
has been replaced by select and integrate. All aspects of
software design, implementation, deployment, and evolu-
tion are affected when a CBD approach is followed. As
a result, a software project can be transformed from a

-30-

October 2002

development-intensive grind of code writing and bug fix-
ing, to a more controlled assembly process in which new
code development is minimized, and system upgrade be-
comes the task of replacement of well-bounded functional
units of the system. In this way, components promotes
software reuse, i.e. the process of creating software sys-
tems from predefined software components. Software reuse
has two sides: on one hand the systematic development of
reusable components, and on the other hand the system-
atic reuse of these components as building blocks to create
new systems.

For CBD, a component is much more than a subroutine
in a modular programming approach, an object or class
in an object-oriented system, or a package in a system
model. In CBD the notion of a component both subsumes
and expands on those ideas, and also extends the notion of
abstract data type. A component is used as the basis for
design, implementation, and maintenance of component-
based systems. A general notion of a component is given
in the following definition:

a component is an independently deliverable
piece of functionality providing access to its ser-
vice through interfaces [1, 9]

This definition, while informal, stresses a number of im-
portant aspects of a component. First, it defines a com-
ponent as a deliverable unit. Hence, it has characteristics
of an executable package of software with the correspond-
ing separation between the component specification from
its implementation. Second, it says a component provides
some useful functionality that has been collected together
to satisfy some needs. So, it has been designed to offer
that functionality based on some design criteria. Third,
a component offers services through interfaces. Using the
component requires making requests through those inter-
faces, not accessing its internal implementation details.

Analyzing the success of component-based technology
in hardware, we can notice that it has only been possible
thanks to precise techniques for specifying components,
and most importantly, for quality assurance and quality
control. Consequently, there are two main issues to con-
sider: the provision of concrete and precise specification of
the component interfaces and behavior, and the assurance
of the component quality. Therefore, by applying formal
methods and algebraic specification with refinement in the
component development process we can simultaneously ad-
dress both topics. Using formal specifications to represent
software components presents several advantages, such as
producing higher quality software, providing implementa-
tion verifiability, allowing automatic translation into code,
and facilitating the retrieval in component libraries.

In the development of reusable components, formal
methods can help to promote software reuse. Components
that have been formally specified and sufficiently well doc-
umented can be identified, reused, and combined in a new
system. Also, it is important to focus on the reuse of for-
mally developed specifications as well as formally devel-
oped code, as such reuse can improve the generality versus
specialization trade-off. Formal specifications are written
at a high level of abstraction with ideally, no bias toward
particular implementations. During the refinement pro-
cess abstract specifications are translated into more con-



JCS&T Vol.2No. 7

crete specifications, resulting in a representation that can
be executed in a programming language. Reusing specifi-
cations rather than source code makes it possible to use d-
ifferent implementations in different environments, apply-
ing the most appropriate implementation for a particular
environment.

4 Applying RAISE

In order to apply the previously mentioned ideas, we need
to take into account how the formal language supports
the notion of refinement. Different formal specification
languages consider it in different ways. For example, San-
nella [13] presented an implementation of the notion of
refinement in CASL and Extended ML, and Derrick et al
studied refinement in Object-Z [2, 14]. In our work, we
have selected RAISE because it supports the entire life
cycle, providing not only the formal specification language
RSL, but also techniques and strategies for doing formal
development and proofs. Also, RSL provides a wide vari-
ety of specification styles and notations, allowing to write
model-oriented and property-oriented specifications, and
in applicative (functional) and concurrent (process alge-
bra) styles.

In CBD, we must be able to decompose the descrip-
tion of a system into components, and compose the system
from previously developed components. In these cases, the
specification of a module acts as the contract between the
developer and the user. The role of the contract plays a
crucial role in separate development. For example, sup-
pose that during the development of module B we want
to use module A. The initial versions of B and A are By
and Ap respectively, and these are developed in n and m
steps to B, and A,,. The module Ag acts as the contract
between the two developments, and when the development
of B is complete, we integrate by using A, instead of Ag
as the final development step. Our issue is that the final
system composed by A, + B, meet the original require-
ments. The sufficient conditions are that the initial mod-
ules Ao and By together meet the requirements, and that
each development step of A and B is an implementation
step.

Let module Ag be developed to module A1, the key point
is how we can argue that A; is a correct development. We
say that Aj is correct if it implements Ao, or equivalently
if A1 and A are in the implementation relation. In the
previously explained context, this means that developing
A; from Ap constitutes a refinement step. The notion of
implementation applied in RAISE states that A; imple-
ments Ao if and only if both of the following properties
hold:

e Property preservation: all properties that can be
proved about A can also be proved for A;.

e Substitutivity: an instance of Ag can be replaced by
an instance of A1, and the resulting new specification
should implement the earlier specification.

Property preservation means that if we prove some prop-
erties of a module, and also we prove that the result of a
development step implements it, then we know that the
resulting module also has the same properties. In fact, it

-31-

October 2002

ensures that the implementation is transitive: if Az im-
plements A; and A; implements Ag, then A implements
Ap. So, we can proceed from the initial specification to the
final one in a number of steps. In RAISE the implementa-
tion relation is formally defined as: a class expression Aj
implements a class expression Ag if all the properties of
A are true in the context of A;. That is, the properties
of A; must imply the properties of Ag. In this case, the
properties of a class expression are the collection of logical
expressions that can be deduced from its definitions and
axioms. The collection of logical properties of a specifica-
tion is the theory of a specification. Thus, the essential
idea of implementation in RAISE is that the theory of
the implementation needs to imply the theory of the class
being implemented.

A development in RAISE begins with an abstract spec-
ification and gradually evolves to a concrete implementa-
tion. All steps of the development are documented as class
expressions in RSL. The development is based on the re-
finement relation which, as it was previously explained,
it stipulates preservation of signatures and preservation
of properties. Therefore, one class expression implements
or refines another one if every provable consequence of the
theory of the latter is a provable consequence of the theory
of the former.

We propose to apply algebraic specifications for describ-
ing software components as classes in RAISE, in order to
develop individual components by incremental refinement,
starting from their abstract descriptions. Initially, we pro-
vide an abstract specification, specifying the signature and
properties that must be observed. In RSL this means that
we need to specify the types used, and the names and
signatures of operations. We define the behavior in an ax-
iomatic way, expressing properties as axioms. To assure
that the specification is complete, we divide functions in
two classes: generators and observers. Assuming we in-
tend to define a module, that probably has an internal
state, generators are functions that modify that state, the
type of interest appears in the result of the operation. Ob-
servers are functions where this type, representing the in-
ternal state, appears as an argument and produces some
result. We need to specify axioms to describe the result of
each observer after applying the generators.

Once the abstract specification is provided, we incre-
mentally introduce the different steps of refinement. We
will use the specification shown in figure 1 in order to illus-
trate each step. We can show correctness of these refine-
ment steps by proving the axioms of the algebraic specifi-
cation, in each of the generated classes.

The refinement steps are the following:

1. Replace abstract types with concrete ones: the op-
erations and axioms defined in abstract types give
them the structure. In contrast, concrete types are
built from sets, lists, functions, maps, etc, and their
structures are given explicitly. Normally, refinement
from abstract to concrete types involves redefining
functions to take into account this explicit structure.
Verification involves proving that such new definitions
satisfy the axioms. In figure 2 we apply this kind of
step to abstract type State.

2. Replace implicit definitions of functions with explicit



JCS&T Vol.2No. 7

PARAMETERS
scheme RINGAB (P:PARAMETERS) =
class
type State
value
/* generators */
send : P.Message x State — State,
/* observers */
current : State — P.Node,
message : State = P.Message,
empty : State — Bool
axiom
/#* current, empty, message — send */
(Vs : State, m : P.Message
empty(s) =
current(send(m, s)) = current(s) A
~empty(send(m, s)) A
message(send(m, s)) = m),

Figure 1: Algebraic specification in RSL.

type
State = P.Node x P.Transit
value
send : P.Message X State = State
send(m, s) as sl
post current(sl) = current(s) A
message(sl) = m
pre empty(s),

Figure 2: Step 1: Concrete types.

definitions: implicit definitions express the result of
a function by a logical property which holds between
the values of the arguments and the value of the re-
sult. They are useful for hiding details of implemen-
tation. However, we must eventually make such defi-
nitions explicit, in order to allow for their execution.
Once we have defined concrete types, we can use the
specific constructors of these types to make explicit
function definitions. Figure 3 shows the explicit def-
inition of function send generated by the postcondi-
tions in the specification.

3. Transform partial functions into total: we can only
know about the value returned by a partial function
provided its pre-condition is satisfied, otherwise the
value may be arbitrary. Pre-conditions allow us to
postpone decisions of how the function should behave
for its enlarged domain; such decisions can be done
during this refinement step. Figure 4 applies this step
also to function send.

4. Change from the applicative style to imperative: the
functional style of specifying classes makes explicit
all dependencies between the results of a function
and the values of its arguments. In this sense, the
absence of side-effects helps in the development and
proofs. However, implementation often requires to

send(m, s) = let (n, t) = s in (n, P.ins(m)) end
pre empty(s),
Figure 3: Step 2: Implicit to Explicit.

October 2002

send : P.Message X State — State
send(m, s) =
if empty(s) then
let (n, t) = s in (n, P.ins(m)) end
else s end,

Figure 4: Step 3: Partial to Total.

send : P.Message — read s write s Unit
send(m) =
if empty() then
let (n, t) = sin
s := (n, P.ins(m)) end end,

Figure 5: Step 4: Applicative to Imperative.

introduce variables, and to allow functions to refer to
and change their values. In this step we introduce
variables, assignments, and loops, as it is shown in
figure 5.

5. Change from the imperative style to concurrent: this
step can be done following the procedure described in
[7]. The modifications include the introduction of an
instance of the imperative module, changing function
definitions using channels for communications (as it
is shown in figure 6), and the definition of additional
functions to manage concurrency.

6. Translate into code: the final step is the generation
of the source code. RAISE includes automatic tools
to generate C++ or ADA code, but the component
can be written in any programming language.

5 Conclusions

In CBD, when we develop a system of any size we must
be able to decompose their description into components
and assemble the system from the developed components.
These developed components may be implemented by the
same development team, extracted from a library, or devel-
oped by other groups. In any case, it is needed a contract
between the developers and the users. This contract rep-
resents an agreement between these two parts. For the
developer, a contract says what he must provide, and so
he can proceed freely as long as he preserves the prop-
erties that are stated in the contract. For the user, the
contract states what he may assume. A specification of a
module may act as this contract, precisely stating what are
the essential properties of the artifact being specified. In
some way, specifications are better than something writ-
ten in a programming language because they can express
the essentials ignoring irrelevances. We proposed to use
formal methods, particularly algebraic specifications with
refinement, to develop components for general use in CBD.
This approach is useful not only in the process of compo-
nent development, but also in evaluating the semantics of
the integrated system.

Our approach is based on algebraic specifications, which
emphasize procedural abstraction since it declares the
properties the software should satisfy in terms of opera-



JCS&T Vol.2No. 7

send : P.Message — in any out any Unit
send (m) = CH.send!(m),

Figure 6: Step 5: Imperative to Concurrent.

tions that can observe the state, or can generate new s-
tates. We presented how to specify software components
as classes in RSL, beginning with a very abstract speci-
fication based on algebraic specification. We introduced
the notion of refinement, and applied it in RAISE. Dur-
ing the development of a component, we use abstraction
to enable a stepwise development, so that we can formally
prove that the refinement conditions are valid. In doing so,
RAISE provides tools to verify that a concrete class sat-
isfies a refinement relation with an abstract one, i.e. the
former accomplishes all the properties of the latter. The
final result is that we can produce correct source code for
the component.

This approach can be complemented with another one,
based on coalgebraic specification, which evaluates the be-
havior of integrated components [4]. In this case, coal-
gebras are used as the underlying formalism of specifica-
tions. Coalgebras are introduced as dual to algebras in
category theory. Using coalgebras, the system is modeled
as a black-box to which one only has limited access via
specified operations. Jacobs et al [8], have proposed a coal-
gebraic formalism to describe some of the basic concepts of
object-oriented programming. Coalgebras, are also used to
represent dynamical systems with a hidden state to which
the user has limited access via specified operations. Es-
sentially, the difference between algebras and coalgebras,
is the difference between construction and observation. In
this sense, as coalgebras are based on observations, we can
study the observable outcomes of two processes that might
give rise to the same sequence of observations, without ac-
tually having the same implementations. In such case, the
processes are indistinguishable. Since we modeled the sys-
tems as coalgebras, we assume that we do not have access
to the internal details, thus we cannot relate the states by
the equality relation.

We argue that algebraic specification with refinement,
and coalgebraic specifications with bisimulation are com-
plementary approaches that can be used during require-
ments specification. Algebraic specifications and refine-
ment can be applied when developing components from
scratch as it was shown in this work. Coalgebraic spec-
ifications and bisimulations can be used to reason about
the behavior of the system when we assemble components
from a library, and we do not have access to the inter-
nal details of them. Particularly, we apply it in CBD
to compare the behavior of the abstract specification of
the system, with the specification resulting after assem-
bling pre-existing components. Thus, we provide a formal
mechanism to prove that a system build up from differ-
ent components presents the same behavior as the initial
abstract specification.

-33-

October 2002

References

[1] Alan W. Brown. Large-Scale Component-Based De-
velopment. Prentice Hall International, 2000.

[2] John Derrick and Eerke Boiten. Refinement in Z
and Object-Z: Foundations and Advanced Applica-
tions. Formal Approaches to Computing and Infor-
mation Technology. Springer, May 2001.

[3] Hartmut Ehrig and Hans-Jorg Kreowski. Refine-
ment and Implementation. In E. Astesiano, H.-J.
Kreowski, and B. Krieg-Bruckner, editors, Algebraic
Foundations of System Specification, pages 201-242.
Springer, 1999.

[4] Elsa Estévez and Pablo Fillottrani. Bisimulation for
component-based development. Journal of Computer
Science and Technology, 2(6):67-80, 2002.

[6] Marie-Claude Gaudel and Gilles Bernot. The Role
of Formal Specifications. In E. Astesiano, H.-J.
Kreowski, and B. Krieg-Bruckner, editors, Alge-

braic Foundations of System Specification, pages 1—
12. Springer, 1999.

[6] The RAISE Method Group. The RAISE Specification
Language. Prentice Hall, 1992.

[7] The RAISE Method Group. The RAISE Development
Method. Prentice Hall, 1995.

[8] B. Jacobs and J. Rutten. A tutorial on (co)algebras
and (co)induction. EATCS Bulletin, 62:222-259,
1997.

[9] Bertrand Meyer. On to components. Computer, Inno-
vative Technology for Computer Professionals, IEEE
Computer, January(4):139-140, 1999.

[10] Kokichi Futatsugi Razvan Diaconescu. CafeOBJ Re-
port: The Language, Proof Techniques, and Method-

ologies for Object-Oriented Algebraic Specification.
World Scientific, 6, 1998.

[11] D. Sannella and A. Tarlecki. Essential concepts of al-
gebraic specification and program development. For-
mal Aspects of Computing, 9(3):229-269, 1997.

[12] D. Sannella and A. Tarlecki. Algebraic Preliminar-
ies. In Algebraic Foundations of System Specification,
pages 13—-30. Springer, 1999.

[13] Donald Sannella. Algebraic specification and pro-
gram development by stepwise refinement. In Annal-
isa Bossi, editor, Logic Programming Synthesis and
Transformation, 9th International Workshop, LOP-
STR’99, Venezia, Italy, September 22-24, 1999, Se-
lected Papers, volume 1817 of Lecture Notes in Com-
puter Science, pages 1-9. Springer, 2000.

[14] G. Smith and J. Derrick. Specification, refinement
and verification of concurrent systems - an integration
of Object-Z and CSP. Formal Methods in Systems
Design, 18:249-284, May 2001.

[15] Clemens Szyperski. Component Software Beyond
Object-Oriented Programming. Addison Wesley, 1998.



