
Component-Based Tool for Verifying Applications
using Object-Oriented Patterns

Luis A. REYNOSO, Gabriela N. ARANDA, Agustina BUCCELLA and Andrés P. FLORES
Departamento de Informática, Universidad Nacional del Comahue,

Buenos Aires 1400, 8300, Neuquén, Argentina
phone: (54) 299 - 4490312, fax: (54) 299 4490313

Email: lreynoso,garanda,abuccel,aflores@uncoma.edu.ar

ABSTRACT
Applying design patterns is considered a helpful
technique for designing software systems. Patterns
description, however, results not sufficiently precise
providing a weak understanding and making it
difficult to be certain when a pattern is being used
correctly. We have formally specified a metamodel
where properties of patterns and object-oriented
design can be rigorously described. In the present
work, our formal basis is used to build a
component-based tool for verifying proper
applications of object-oriented patterns. The usage
of this tool is also focused on the learning process
about patterns applications. Through a better
understanding of patterns, the designer may certify
when and how a pattern is being appropriately
applied to solve a specific design problem.
Furthermore, the whole design process could be
improved by using a precise technique supported by
an automatic tool for verification.

Keywords : Design Patterns, Formal Methods,
Software Engineering, Object-Oriented Design,
CASE Tools.

1. INTRODUCTION

Designing software systems can be assisted by
different design techniques such as applying design
patterns, which is one of the most useful techniques
because their widely recognised advantages in
reinforcing several quality attributes such as high
modifiability and reusability. Patterns are
abstractions of concrete design problems that recur
in a range of different contexts [1], and they
describe a generic solution to these problems, which
can be used to obtain a solution to a specific
problem [2,3]. GoF catalogue [4] presents a well-
known group of design patterns which uses object-
oriented notation to capture the experience of
several experts in software design.

Patterns are described by means of natural language
narrative and graphical notation, which gives a sort
of abstraction allowing a wide range of usage.
However, this kind of notation results not
sufficiently precise providing ambiguities and
inconsistencies which leads a weak understanding

and makes it difficult to be certain when a pattern
is being used correctly. Following the goal of
Pattern-Based Design, there should be applied the
design principle of rigour and formality, in order
to state a solution and to enhance such quality
attributes as well. With this in mind, we have
developed in the RAISE Specification Language
RSL [5], a formal basis for object-oriented design
where patterns may be applied [6], which fits the
definition of a metamodel acoording to [18]. In
addition properties of each pattern in the GoF
catalogue have been formally specified in [7,8,9].
Thus, providing a more precise notation can
improve understanding about patterns and
designers can grow in the knowledge of when and
how a pattern is being applied appropriately.

An enhancement concerning flexibility might be
added to the process of pattern-based design. For
this, we intent to build an automatic tool for
modelling object-oriented design with patterns.
The formal basis gives the precise format in which
a design model can be represented with the aim of
providing facilities for verifying a proper
application of a pattern. The designer can
graphically model a design specifying a particular
pattern that suits with the problem. Thereafter,
verification activities are performed on the
representation of the graphical model.

Since our formal model was specified at an
abstract level, it should be translated into a more
concrete one in order to get closer to the stage of
implementation. Thus, we have decided to
translate the RSL Specification to an object-
oriented model maintaining the structures and
semantic of the building blocks. From the
representation of the graphical model is generated
an object structure according to the building
blocks of the formal model in order to run the
verification tasks.

The usage of this tool is also focused on the
learning process about pattern application. By
means of modelling and verification through this
tool a designer may gain a useful insight into
design principles and heuristics and also learn
about diverse pattern properties. Through a better
understanding of patterns, the designer may certify

JCS&T Vol. 2 No. 7 October 2002

-42-

when and how a pattern is being appropriately
applied to solve a specific design problem.
Furthermore, the design process can be improved
with a precise technique supported by this tool: any
error obtained during verification can help
designers as an indicator for making corrections in
the design. Also it may help them to think about
missing information that can be vital to a specific
pattern.

We briefly present the formal basis in section 2 and
its translation into an object-oriented model in
section 3. Then, in section 4, the structure for the
automatic tool is presented. We discuss future work
and conclusions afterwards.

2. RAISE MODEL OF PATTERN-BASED
DESIGN

Pattern-based design involves the binding of pattern
elements to elements of the design [10]. A subset of
the classes and relations in a design conforms to a
specific pattern if their properties are the same as
those of the counterparts in the pattern. Our formal
model was specified according to a Bottom-Up
approach such that, given a (subset of a) design,
find a pattern that matches it or check if a given
pattern matches it [7]. For its definition the
properties of a general object-oriented design
(OOD) were abstracted out. It includes the
components of OMT-extended notation: classes,
methods, variables, and relations. In addition, we
have specified the meaning behind the notation:
hierarchical properties, meaningful relationships
between both variables and relation names, and
description of method’s functionality.

Building blocks of the formal model were specified
by using the RAISE specification language RSL[5].
See [6] for details and [11] for full specification.
For its main constituents were used RSL build-in
types as maps, lists, sets and variant records.
According to [18] our formal model is a metamodel
as long as it is a model of models.

The RSL specification of the Formal Model of
OOD was divided in five RSL schemes:

• TYPES-scheme consists of general definitions
of the model.

• METHODS-scheme defines a set of methods
for a class. Methods are modelled with the
main part of the signature (every method has a
name and a list of parameters), and whether the
method is implemented it also includes generic
actions. Those actions are represented by a list
of requests and a map of variables changes
produced by the method. Each request may be
an Invocation, an Instantiation or a Conditional
structure. See [11] for a detailed specification.

• DESIGN_CLASS-scheme uses the Methods-
scheme in order to define a set of classes.

Each class has a name, which is unique in the
design, a set of methods, a state which is
represented as a set of variables, and a type
which may be concrete or abstract.

Wf_Design_Class =
G.Class_Name Design_Class,

Design_Class ::
class_state : G.State
class_methods : M.Class_Method
class_type : G.Class_Type

• DESIGN_RELATION-scheme defines a set
of possible relations which can be depicted in
a design where classes connected by a relation
are identify by means of their class names. In
addition a relation is also described by its
type, which may be Inheritance, Association ,
Aggregation, or Instantiation. All relations
are represented in the model as binary
relations. We have modelled source and sink
classes as well as their cardinality.

Design_Relation ::
relation_type : Relation_Type
source_class : G.Class_Name
sink_class : G.Class_Name,

Ref ::
relation_name : G.Wf_Vble_Name
sink_card : G.Card
source_card : G.Card,

Relation_Type ==
 inheritance | association(as_ref: Ref) |
aggregation(ag_ref : Ref) | instantiation,

• DESIGN_STRUCTURE-scheme defines the
correspondence between the last three
schemes. A design consists of a collection of
classes and a collection of relations.

Design_Structure =
C.Classes x R.Wf_Relations

In order to provide a linkage between a subset of a
design model and a specific pattern, two extra
RSL schemes have been defined:

• RENAMING-scheme defines a renaming
map, which associates design entities (classes,
state variables and methods) with
corresponding entities in the pattern. This
mapping indicates the role each entity in the
design plays in the pattern. Then a design
matches a particular pattern if all the entities

→

JCS&T Vol. 2 No. 7 October 2002

-43-

in the design playing a pattern role satisfy its
properties. Pattern properties were specified as
Boolean-valued functions (see [9,11 ,12,13 ,14]
for examples).

Renaming =
G.Class_Name ClassRenaming-set,

ClassRenaming ::
classname : G.Class_Name
methodRenaming :

Method_and_Parameter_Renaming
varRenaming : VariableRenaming,

The formal model as a whole then includes the
Design Structure and the Renaming mapping;
in such a way that given a design and a
renaming to a specific pattern it is possible to
verify if there is a matching.

Design_Renaming =
DS.Wf_Design_Structure x Wf_Renaming,

• DESIGN_PATTERN-scheme defines a
collection of generic functions which can be
reused in order to compose the specification of
every pattern in the GoF catalogue.
For each pattern there is a scheme that contains
its specification.

3. MOVING FROM RAISE SPECIFICATION
TO AN OBJECT-ORIENTED MODEL

Every building block in our formal model will have
a counterpart in the object-oriented model. To carry
out this translation we have selected the Java
language for being considered suitable for object-
oriented programming.

Different RSL types were chosen during the
specification according to the concepts being
represented. The object-oriented model should
represent the same characteristics by using
appropriate Java types or building new ones. Those
types not only must represent the same concept but
also the semantic properties implicitly modelled by
RSL types.

Our goal is do not loose the precision of constraints

defined in each scheme. For this a detailed
justification of the transformation is required to
achieve the closest translation to the RSL
specification. A clasification of pattern translation
will be produced during the documentation of the
translation process.

Figure 1 presents an example that is focused on
type translation: the Wf_Design_Structure type
will be represented by a class called by a similar
name. Since the Design_Structure type comprises
a collection of Classes and a collection of
Relations (Wf_Relations), there will be two state
variables in that class, which will be used to relate
this class to others, with appropriate names,
representing the collection of Classes and the
collection of Relations.

In the case of the collection of Classes it will be
used the Hash-Map Java type. This structure
adequately fits to an RSL Map which has been
used in its definition as the Design_Class-scheme
shows in section 2.

Since the principal goal of this work is to verify
correctness in a design model there is a function in
every building block of the formal model whose
purpose is checking well-formedness. For example
for the Design_Structure to be checked if it is
well-formed there is a function called
is_wf_design_structure. This function is
represented as a method in the class
Wf_Design_Structure of the object-oriented
model. Functions called by the previous one are
represented as private methods in the same class.
For every building block there are “auxiliary
functions” allowing verification but mainly
supplying a shortcut through the whole structure.
Those functions are methods included in the
interface of the class representing that building
block. The same process is applied for the
specification of every GoF pattern.

4. VERIFICATION TOOL FOR OOD USING
GOF PATTERNS

Basically the tool is divided into two layers: the
modelling layer, whose result is a specification of
an object-oriented design model provided by a

m
→

 Design_Structure = C.Classes x R.Wf_Relations,
 Wf_Design_Structure = {| ds : Design_Structure • is_wf_design_structure(ds) |}

Figure 1: Translation of a RAISE type to OOModel

Wf_Design_Structure

is_wf_design_structure()
....

(auxiliary functions)

Wf_Design_Class

Wf_Relations

classes

relations

JCS&T Vol. 2 No. 7 October 2002

-44-

graphical component; and the verification layer,
which carries out the process of checking the
correctness of the design model and also if the
design subset related to a specific pattern satisfies
the pattern properties.

Specification Layer

Since many tools providing a graphical component
for modelling object-oriented design have already
been developed with a proved success, we have
decided to choose one of them, and thus concentrate
the major effort in the field where less work has
been delivered. After studying some tools available
in the market we have selected a non-commercial
tool called FUJABA [15,16,17]. This tool was
developed in Java and it may produce a Java
specification of the object-oriented design that is
modelled by using it.

The functionality of FUJABA is quite similar to our
expectations. However, according to our formal
basis, a new behaviour needs to be developed in
order to be able to represent an entire object-
oriented model in which a pattern has been applied.

The extended functionality is related, for example,
to the annotations attached to methods of classes.
Annotations are used to express how collaborations
between classes are carried out. Since our formal
model expresses collaborations in a static way,
annotations come to fulfil this subject. Other
important new behaviour concerns the possibility of
selecting a particular pattern from a pattern
repository and setting which pattern roles are played
by different entities at design level.

Some changes are also necessary, mainly in the
notation of the object-oriented model given by a
Java specification. An example is the simplification
needed when an aggregation relation is

represented, thus complexity of the grammar for a
Parser is not increased. Pattern roles and other
design or pattern elements will be expressed
adding “comments” in the Java specification.

Verification Layer

The component diagram showing the components
and their dependencies is presented in figure 2.
Each of the components, their interfaces and
dependency relationships are described below.
Some of them are described in terms of their
interfaces and sub-components, and others are
informally mentioned for brevity reasons.

• The Coordinator Component

The intent of this component is to coordinate the
verification process accordingly using each
component at a time.

Once the Java specification from the graphical
component is produced, the Coordinator calls
the Java Parser and Instantiation Component to
obtain an object structure (representing an
instantiation of the OOD and Pattern Metamodel
Component) as a result. Then the coordinator
invokes different behaviours of the object
structure in order to verify design constraints.

If the result is successful, the Coordinator will
invoke the Pattern Metamodel Component to
check the pattern constraints with the aim to
assure the correct use of a specific pattern.

• The Java Parser and Instantiation
Component

The component should parse the Java code
generated by the graphical component in order
to create an object structure which represents a
valid instantiation of the OOD Metamodel and

Design _Elements
_Constructors

OOD
Metamodel

Component
 Well-formedness_

 Design_Properties

Public_Design _
Properties_
Dependecy_

Relationship

Execution_

Management

Java Parser and
Instantiation

Component

Coordinator

Component

Pattern_Element_

Constructors

 Well-formedness_

 Pattern_Properties

Patterns
Metamodel

Component

Figure 2: Component Diagram of the Tool Support

JCS&T Vol. 2 No. 7 October 2002

-45-

Pattern Metamodel. The way the component uses
services of the last two mentioned components
are described later in this section.

Besides, error codes generated during the parse
process or the creation of an instance of any
metamodel, are returned to the Coordinator
Component.

• The OOD metamodel Component

This component corresponds to the Java
translation of the OOD formal model presented in
section 2. It will be referred in this article using
its acronym OOD-M.
The scheme's division presented in section 2
provides us with a useful manner to make an “a
priori” partition during the translation process.

Using the scheme division is possible to
decompose the OOD-M Component in four
subcomponents where Meta_Methods includes
the Method scheme functionality, Meta_Class
includes the Design_Class scheme functionality,
and so on. Figure 3 shows a detailed diagram of
this component.

Two different kinds of interfaces and a
dependency relationship were identified in the
OOD-M Component, as is shown in Figure 2.
Following we present a short description of them:

Design_Elements_Constructor Interface
Used by: Java Parser Component,

Intent: Provides an interface for constructing
elements of the OOD metamodel in order to
generate a possible metamodel instantiation.
The Parser and Instantiation Component could
access directly to the class constructor of the
metamodel. If it does so, it might also access to
the behaviour of the created object, which
should not be allowed. That is why the
Instantiation Component should only see a
narrow interface, which provides a service of
creating an object structure to represent an
instantiation of the metamodel.

Data returned: According to the method being
invoked, an instance of an element or

composed element of the metamodel is
returned.

Well-formedness_Design_Properties
Interface
Used by: Coordinator Component,

Intent: Provides an interface for verifying
correctness of design properties.

Data returned: Whenever a constraint is
violated an appropriate error code is
generated. Other facilities of error
management are provided as well.

Public Design Properties Dependency
Relationship
Used by: Pattern Metamodel Component.
The Pattern Metamodel Component is
dependent on the OOD-M Component, since
it calls specific methods on the component.
Although the communication is two-way
(since the OOD-M component returns data),
the OOD-M Component is not aware of who
is calling it and it does not depend on the
Pattern Metamodel Component.

Intent: Provides a set of design properties
which must be of public access for defining
pattern properties.

Data returned: A boolean condition of the
invoked property and error codes.

Meta_
Methods

Meta_
Class

Meta_

Relation

Figure 3: Component Diagram of OOD-M Component

Meta_
Design_

Structure

Figure 4: Component Diagram of Pattern Metamodel Component

Renaming

General Pattern
Properties

Properties
of a
Specific
Pattern

OOD
Metamodel

Component

Public_Design _
Properties_
Dependecy_

Relationship

JCS&T Vol. 2 No. 7 October 2002

-46-

• The Pattern Metamodel Component

This component represents the Java translation of
the Renaming scheme and Design_Pattern
scheme presented in section 2 and the formal
specification of GoF patterns described in [7,8,9].
Thus it is comformed by three subcomponents:
Renaming, General Pattern Properties and
Properties of a Specific Pattern.

It calls specific methods of the OOD-M
component in order to accomplish verification
activities of pattern properties. This is shown
through a dependency relationship in figure 2.

This component has two interfaces: Patterns
Element Constructor Interface and Well-
formedness Pattern Properties, their intent and
data results are analogous to those described in
the OOD-M component.

5. CONCLUSIONS

The main goal of our work is to achieve a more
precise but flexible Pattern-Based Design process.
For this, we have developed, by means of RAISE
[5], a formal basis of an object-oriented design and
GoF design patterns [4], which was presented in
section 2. In order to provide flexibility we are
developing an automatic tool for verifying a correct
application of patterns. With this in mind, the
abstract formal model, giving the structure for
representing a verifiable design model, needs to be
concretised. Thus, a translation from the RAISE
specification to an Object-Oriented Model is being
carried out (see section 3). The main aspects
concerning the automatic tool including its structure
and its main components have been introduced in
Section 4. Very often more than one pattern is
needed to solve a design problem. If indeed our tool
verifies a single pattern at a time, a piece of work
has been already done concerning composition
among patterns in [14]. Our current work is
intended to be applied, in future, to improve a
component development process.

6. REFERENCES

1. Brad Appleton. Patterns and Software:
Essential Concepts and Terminology.
http://www.enteract.com/~bradapp/docs,
Object Magazine Online (vol.3, nro.5), May
1997.

2. Doug Lea. Patterns-Discussion FAQ.
http://g.oswego.edu/dl/pd-FAQ/pd-FAQ.html,
December 1999.

3. Robert Zubeck. Much Ado about Patterns.
http://www.acm.org/crossroads/xrds5-1. ACM
Crossroads Student Magazine, Fall 1998

4. Gamma E., Helm R., Johnson R. and Vlissides
J. Design Patterns - Elements of Reusable

Object-Oriented Software. Addison-Wesley,
1995.

5. The RAISE Language Group . The RAISE
Specification Language. BCS Practitioner
Series, Prentice Hall, 1992.

6. Andrés Flores, Luis Reynoso and Richard
Moore. A Formal Model of Object Oriented
Design and GoF Design Patterns. In
proceedings of the FME 2001, Formal
Methods Europe, Berlin, Germany, LNCS
2021, Springer Verlag 2001, 12-16 March
2001, pp. 223-241.

7. Andrés Flores and Richard Moore. Analisis
and Specification of GoF Structural Patterns.
In proceedings of 19th IASTED, International
Conference on Applied Informatics (AI
2001), Innsbruck, Austria, 19-22 February
2001, pp. 625-630.

8. Luis Reynoso and Richard Moore. A Precise
Specification of GoF Behavioural Patterns. In
proceedings of SNPD'01, 2nd International
Conference on Software Engineering,
Artificial Intelligence, Networking &
Parallel/Distributed Computing, Nagoya,
Japan, 20-22 August 2001, pp. 262-270.

9. Gabriela Aranda and Richard Moore. GoF
Creational Patterns: A Formal Specification.
Technical Report 224, UNU/IIST, P.O. Box
3058, Macau, 2000♦ .

10. Marco Meijers, Tool Support for Object-
Oriented Design Patterns. Master Thesis.
Department of Computer Science, Utrecht
University, The Netherlands, August 1996,
http://www.serc.nl/people/florijn/work/pattern
s.html.

11. Andrés Flores, Luis Reynoso and Richard
Moore. A Formal Model of Object Oriented
Design and GoF Design Patterns. Technical
Report 200, UNU/IIST, P.O. Box 3058,
Macau, July 2000.

12. Andrés Flores and Richard Moore. GoF
Structural Patterns: A Formal Specification.
Technical Report 207. UNU/IIST, P.O. Box
3058, Macau, August 2000.

13. Luis Reynoso and Richard Moore. GoF
Behavioural Patterns: A Formal Specification.
Technical Report 201, UNU/IIST, P.O. Box
3058, Macau, May 2000.

14. Gabriela Aranda and Richard Moore.
Formally Modelling Compound Design
Patterns. Technical Report 225, UNU/IIST,
P.O. Box 3058, Macau. Available at
http://www.iist.unu.edu December 2000.

15. Software Engineering Group. FUJABA (From
UML to Java And Back Again). University of

♦ UNU/IIST technical reports are available at
http://www.iist.unu.edu/newrh/III/1/page.html

JCS&T Vol. 2 No. 7 October 2002

-47-

Paderborn, Germany, http://www.uni-
paderborn.de/cs/fujaba.

16. Nickel U.A., Niere J., Wadsack J. P., and
Zündorf A., Roundtrip Engineering with
FUJABA. In Proceedings of 2nd Workshop on
Software Re-engineering (WSR), Bad Honnef,
Germany, August 2000.

17. Klein T., Nickel U., Niere J., and Zündorf A.
From UML to Java and Back Again. Technical
Report TR-RI-00-216, University of Paderborn,
Germany, September 2000.

18. Martin J. And Odell J.J., Object-Oriented
Methods: A Foundation. Prentice-Hall, 1995.

JCS&T Vol. 2 No. 7 October 2002

-48-

