
The Use of Agent to Incorporate Network Awareness into
Dynamic Proxy Framework: An Overview

KhongNeng Choong, Borhanuddin M. Ali, Veeraraghavan Prakash, Elok R. Tee*

Department of Computer and Communication, Faculty of Engineering
*Department of Communication Technology and Networking, Faculty of Computer Science

Universiti Putra Malaysia
43400 Serdang, Selangor, Malaysia

and
YokeChek Yee

Global Software Group, Motorola Multimedia Sdn Bhd
16th Floor Menara Luxor, 6B Jalan Persiaran Tropicana

47410 Petaling Jaya, Selangor, Malaysia

ABSTRACT

It has been observed that research in mobile agent
focused on the development of platforms and on the
application of the concept. Network awareness is one
of the applications of mobile agent, concerning of how
agent determine and make the most efficient use of
network resources. This paper describes the role and
functionality of mobile agent in the context of a
dynamic proxy framework named the Chek Proxy
Framework (CPF). Attention is paid on setting out a
multi-agent-based framework to enrich CPF with a
Network Awareness Module (NAM), which is
implemented in an agent named ObjectBasket (OB).
NAM is a single framework that integrates resource
discovery, load monitoring and migration, and fault
management, to operate in a network with dynamic
proxy servers. The main objective of NAM is to
deliver robustness and best-effort QoS guarantees into
the existing CPF system adaptively, based on the
availability of resources in the network. In this paper,
we present the architecture of NAM, status generation
algorithm, implementation rules, and the management
of faults and overloading.
Keywords: dynamic proxy, agent, network awareness,
application level active network

1. INTRODUCTION
CPF is an application level approach that deals with
the growing Internet, by deploying intermediate object
called the Dynamic Application Proxy Server (DAPS)
into the network. DAPSs are placed dynamically at
runtime on nominated voluntary client hosts by the
central server, to execute tasks on behalf of the central
server. DAPS scales the central server and mitigate the
bandwidth consumption by reducing the number of
direct client-to-server connections over the WAN.
The uniqueness of CPF lies on the use of client
machines to host DAPS services. This is done by
appointing selected clients (as proxy) that have already
downloaded, or are downloading contents, to turn
around and serve the contents to other local clients at
runtime, thereby relieving the server and network from
redundant loads while accelerating the speed of
delivery. Contents can be of both static and dynamic
nature such as web pages and video streams. Tapping
into the large availability of client resources in a
secure manner offers several advantages, including the
reduction of server loads (with distributed DAPS),
masking of DAPS failures (given large number of
client machines) and possibly exploiting the use of
local IP multicasting.

Recent works on accelerating content delivery include
the End-to-End Media Paths [1], TPS [2] and
Conductor [3]. In such systems, all intermediate nodes
work in concert to deliver contents. Their main studies
include resource discovery, service coordination and
service interference for optimizing end-to-end
resource consumptions. Less emphasis is made on the
robustness, failure recovery, load balancing and
migration aspects of the systems. In [1], attention is
paid only on route and code selection, leaving issues
of robustness, usability and programmability behind.
The work on TPS focuses on confining proxy service
regions and solving service coupling and interference
matters. Unlike CPF, there is no notion of agent in
these works on enriching the programmability,
flexibility and functionality of the framework to
accommodate various application requirements.
The rationale of CPF is to migrate workloads from the
central server to the DAPS running in client networks.
Extending to such idea, the challenges tackled in this
paper are to provide load migrations and fault
managements within the client networks (among the
DAPS and other voluntary clients), given that the
clients' availability is changing over time, i.e. they
arrive and leave the session at arbitrary time. Attention
is also paid on when load migrations should be
initiated since frequent migrations could cause service
interruptions to client applications due to the DAPS
handover and client redirection processes. It is
believed that the proper setup is to minimize load
migration unless the current DAPS is overloaded or
failed. The next challenge is to derive a flexible and
scalable model that delivers the above features with
proper interfaces to the existing CPF architecture.
Throughout this paper, we highlight the architecture
and protocol of NAM in fulfilling these requirements.
For reasons of adaptability and programmability, we
incorporate NAM into OB, as a way to bridge NAM to
CPF by leaving the underlying CPF architecture
untouched. Our focus is on designing NAM as a single
framework for performing resource discovery, and
both load and fault management. We set out to equip
OB with the ability of delivering and setting up
application objects, and fortifying CPF with load
migration and fault tolerance capabilities. However,
we do not yet have sufficient experience with NAM
implementation to comment on its usability,
programmability, cost, and performance.
The paper is organized as follows. In Section 2, we
look at various reasons for deploying agent in CPF,
particularly on the functionality and benefits of agent

on meeting the requirements of the CPF distributed
model such as object delivery and creation, interface
design and security. Section 3 presents the Network
Awareness Model (NAM), describing how network
awareness capability is embedded in our agent, i.e. the
OB. Section 4 concludes the paper with a glimpse on
our future works.

2. THE USE OF AGENT IN CPF
The idea of OB is motivated by [4], where a small
boot-strap applet that includes the necessary logic to
direct the installation process and manage the local
resources such as disk access permission, for caching
and executing the carried objects. With the
incorporation of network awareness capability, OB
reveals the characteristics of agent, i.e. by being able
to sense its environmental changes and act on them to
meet some objectives without human intervention.
However, we do not address our OB as mobile agent
because the degree of mobility (range limit) is
restricted to only one single hop due to its unjustified
mobile functionality and partly due to the security
reason [5].
Instead of adopting simple object invocation
techniques as in Application Level Active Network
(ALAN) [6] and Java Applet, CPF utilizes agent as the
application setup coordinator for several reasons. First,
because the grouping of clients to a particular proxy in
CPF follows the dynamic network clustering policy
defined by the CPFserver, the delivery and creation of
application objects have to be managed and
undertaken judiciously by an agent with reactive
behavior. Second, the invocation of DAPS depends on
various factors, including the client machine load,
client voluntary preference, client network locations
and client size. Hence, instant and periodic decisions
have to be made on activating and demising DAPS
appropriately. The third reason to adopt agent is its
ability to sense the networks autonomously for
potential proxy voluntaries and take proactive
operations to foster load balancing, load migration,
and fault management in the event of DAPS failure.
This includes monitoring the network path from the
clients to the access Internet Service Provider (ISP)
network, to discover prospective voluntaries.
As an installation coordinator, agent is responsible for
managing the version and upgrading of object to
ensure application objects can always communicate
with one another without conflicts. The use of agent is
regarded efficient because the execution environment
of CPF (CPFnode) needs only to verify the digital
signature of the agent to infer the validity of the
application objects it carries. Based on the principle of
trusts, this approach shortens the application setup
process as the signed agent is only verified once
regardless of the number of objects it holds. In our
design, OB is delivered only once from the central
server to the CPFnode and this incurs only one-time
cost for an exchange of performance improvement for
the CPF-enabled applications.
Although alternatives exist such as embedding the
features discussed above as plug-in modules in the
CPFnode, we believed that agent offers a better
software engineering model, as it helps to
conceptualize solutions better, improve code
modularity and reusability. Agent paradigm also keeps
designers shielded from the intricacies of network,

system and protocol heterogeneity. The CPFnode is
thus designed to manage only the resource access and
communication routines with the underlying OS. On
the security aspect, choosing agent allows us to
reference existing security measurements as in [5].

3. INCORPORATION OF NETWORK
AWARENESS INTO CPF

Network sensing capability is crucial to CPF for
acknowledging any relevant changes in the availability
of network resources (i.e. the coming-in and dropping-
off of voluntary clients), and reacting accordingly
based on the CPF clustering policy to guarantee
performance of any CPF-enabled applications. CPF-
enabled applications are to be driven by the
framework to deliver their services in an efficient and
dynamic manner. With effective network awareness,
we plan to further study in the future, the deployment
issues of adopting CPF to run on both wired and
wireless networks.
In general, network-aware systems are designed
according to three main criteria. Firstly is a
comparative study on both active and passive
monitoring approaches over the amount of control
traffic generated. Next is an investigation on the pros
and cons of both centralized and distributed status
information collection techniques. Lastly is on the
monitoring frequency, which generally could be
performed in either an on-demand or continuous basis.
In this section, we describe the NAM based on the
above three criteria. The major parts of the discussion
are:
• Brief overview of CPF: Describe the general

framework of CPF.
• Architecture of NAM: Explain the functionality

and interactions of NAM components.
• NAM hand-shaking protocol: Provide step-by-

step explanations on how NAM initiates and
operates.

• Heartbeat message: Describe the format,
algorithm, and cost of adopting the heartbeat
messaging system in NAM.

• Implementation rules: Highlight the rules that
govern when and how NAM should be applied.

• Management of fault and overloading: Discuss
how NAM fortifies CPF in event of proxy failure
and proxy overloading.

Brief overview of CPF
Figure 1 gives an overview of how agent is adopted in
CPF. It shows the client machine hosting the DAPS as
the local server for all local subnetwork clients,
including the DAPS-hosting client itself. The
subnetwork is defined as an enterprise network that
sits behind a local gateway router. DAPS conserves
backbone bandwidth by utilizing only a single in- and
out-bound connection to/from the subnetwork.
There are basically two types of OBs that are different
in terms of object size and responsibility. The first
type is called the Heavy OB (HOB) because it carries
both the DAPS and client application objects. HOB is
configured to the requirement of delivering and
creating application of both DAPS and client tiers.
HOB sits on the machine that hosts the DAPS
services. The size of HOB is larger than the Light OB
(LOB), the second agent type. LOB holds no
application objects and it is delivered when there is an

active proxy service (the presence of HOB) in the
local subnetwork of the client. The LOB works
economically by contacting the local HOB for a copy
of the client application object.

A
O
C
(t
th
m
at
ca
al
of
re
in
ne
F
N
th
M
M
ex
aw

In
ne
(N
th
m
gu
by
ex
T
D
gi

to performance dissatisfaction provided more capable
DAPS candidates participate into the session. With a
handful of status information, NS is ready to provide a
directory service, listing the type and location of
DAPS services.
NC, the corresponding node to NS, relies on NS to

Figure 1: Agent-based dynamic proxy framework

rchitecture of NAM
ur first attempt is to incorporate modules into the
PF for discovering potential hosts in the networks
he path from the LAN to the ISP accessed network)
at allows agents to move, clone and coordinate as a
eans to conduct load migration. The subsequent
tempt is to strengthen CPF with fault tolerance
pability, where the agent is able to immediately
locate new DAPS session upon detecting the failure
 the present one. To fulfill the above two
quirements, CPF has to be equipped with
telligence that perceives resource variations in the
twork and react autonomously and proactively.

igure 2 depicts an architectural overview of the
AM, which consists of three basic modules namely
e Metric Management Module (MMM), Decision
aking Module (DMM) and Application Management
odule (AMM). This model is incorporated into the
isting OBs (both HOB and LOB) to instill network-
areness capability.

Figure 2: The Network-Awareness Model (NAM)

 general, the OB that is responsible for collecting
twork status information acts as the NAM-Server
S), and the OB that is being monitored is known as

e NAM-Client (NC). NS serves two roles: network
onitor and directory service. As a monitor, NS
ards the active DAPS from overloading and failure
 ensuring that the DAPS is always on, free from
cessive loads and has backup DAPS candidates.

his is only possible by monitoring the status of the
APS host and potential DAPS candidates. NS is also
ven the ability to stop a particular DAPS session due

obtain services and perform request redirections. In
return, NC must periodically update the NS of its
status because each host where the NC runs has a
chance to be selected as backup DAPS candidate.
Together, both NS and NC form a multi-agent
scenario that works in a cooperative manner.
The MMM is further made up of three sub-modules,
i.e. the Server Module (SM), Client Module (CM) and
Agent Communication Module (ACM). Both the SM
and CM are the corresponding engines that drive the
services offered by both NS and NC.
The role of the SM is to sense the presence of other
OBs in the network. SM adopts an active monitoring
approach to collect information on node failure, node
properties and node distance. Passive monitoring is
not used here because it measures only the Internet
regions where application traffic traversed, and thus
unable to discover the distance to some unknown but
potential networks/hosts. Other limitations of passive
monitoring can be found in [7]
For reasons of flexibility, SM is designed to work
along with various metric collection engines, so as to
widen the choice of different collection methods. The
choice of selecting a method depends on the network
location where NS is deployed. As example, NS at
network edge (i.e. the ISP), which is known as the
parent NS could learn the distance from other OBs
over the Internet in a much simpler and efficient
manner, with the help of third party Internet “weather”
services such as IDMaps [7].
Besides collecting metric information from external
services, NS is also responsible for notifying its
corresponding NCs about its own status, status of the
DAPS-hosting machine, and information of DAPS
candidates as backups. Such information are
encapsulated into a message called heartbeat. NS must
relay its heartbeat to its child NS across the ISP
network to enterprise network, or multicast to its local
NCs if both were within the same local network
segment as shown in Figure 3. Communications
between the headquarters and remote office adopt the
same methodology.

Figure 3: Heartbeat distribution in NAM

We adopt a distributed approach in collecting and
storing status information to avoid single point of
failure as in the centralized approach. Explanation of
how NAM helps to tackle faults is discussed later. In
summary, NS at each network level is responsible for
sending heartbeat messages to local NCs, collecting
status message of local NCs, and for ensuring the
parent NS is always active. For reason of efficiency,
NS is further required to shortlist NCs (those capable
of hosting) and releases those that are not from
submitting their profiles (which include the machine
capacity, workload, network latency etc.) to the NS in
future. However, all NCs must always consult the
latest heartbeat from the NS.
CM performs the opposite functionality to SM as
depicted by the In and Out arrows in Figure 2. Its main
job is to update the NS with its current profile and
collect from NS the periodic heartbeats. CM consults
the specific metric collection engine as in SM in order
to work synchronously with the SM at the other
network end.
The role of the ACM is to establish network
connections to other corresponding NS, or NCs, or to
other network service portals based on the metric
engine adopted by either the CM or SM. It is
responsible for sending and receiving messages (either
profile or heartbeat) in a format that is compatible to
both the sender and the corresponding receiver. Once a
profile is received by the SM, it is logged and passed
to the DMM for further processing. ACM utilizes the
underlying system channel that was established by the
CPFnode to perform active monitoring.
DMM is designed to infer and make decisions based
on the collected messages and rules defined by the
CPF. These rules are adhered to determine the
subsequent actions that the MMM should take. As an
example, if it were discovered that the current DAPS
is overloaded or failed, DMM of this host would
instruct the MMM to activate the backup (DAPS
candidate). This backup is chosen among all voluntary
clients and has the highest CPU capacity with the
lowest utilization within the local network segment.
The third module, AMM, performs its job based on the
decision made by the DMM. As an example, upon
detecting the failure of the current HOB, DMM would
inform AMM to launch a backup DAPS to continue
the proxy services (assuming the current host (itself)
holds the highest DAPS candidacy). For audio
application where packet missing is intolerable,
multiple DAPSs could be allocated at different hosts
to deliver simultaneous streams to safeguard against
packet loss. It is also important for AMM to relay the
performance status of the DAPS to the DMM as a way
to ensure DAPS is never overloaded.

NAM hand-shaking protocol
NC and NS interact with each other along the time line
diagram as depicted in Figure 4. Each voluntary client
must go through such interactions. The interactions
start according to the following procedures:
1. Each NC is initially registered with its local NS

by submitting a static profile. This static profile
contains several properties of NC such as its
URL, machine capacity of its host machine, and
past DAPS hosting records (if any).

2. Upon receiving a NC registration request, NS
replies by sending a brief heartbeat message with

only the information of the current DAPS and
NS.

3. Subsequently, NC would response by sending a
dynamic profile that consists of its current
workload, network latency (from the NS) etc. to
the NS.

4. Upon receiving the dynamic profile, NS first logs
the information to the disk and further determines
which few nodes should be periodically sensed in
the future. As part of this process, a list of nodes
is identified and accumulated as more NCs
participate in the session. These selected nodes
are those that will be appointed as backup DAPS
if the current DAPS failed or overloaded.

5. In the subsequent distribution of heartbeat
messages, URLs of those selected nodes are
appended.

6. NC is required to always consult the latest
heartbeat message from the NS. Selected NCs
(backups) as stated in the heartbeat message is
required to update the NS periodically with their
dynamic profiles. For NCs that were not short-
listed, they are fed with heartbeats and are
excluded from updating the NS.

Figure 4: The hand-shaking protocol of NAM

Heartbeat message: format, generation and cost

Heartbeat format: The heartbeat message
consists of a list of URLs that is divided into two
parts: the URL of DAPS and URL of NS. Let U = { all
CPF clients in a particular network segment }, A ⊂ U
∧ B ⊂ U, A = { a | a is a list of backup candidates for
DAPS } and B = { b | b is a list of backup candidates
for NS }, ∀ a (a ∈ A ∧ a ∉ B), ∀ b (b ∉ A ∧ b ∈ B).
The entry size of each part is such that |A| ≥ |B|,
meaning that the DAPS availability (contents
delivery) has more weight than the presence of NS
(performance/faults monitoring). As shown in Figure
5, the first entry of each part in the heartbeat refers to
the respective service that is currently active. This is
followed by a series of |A| -1 or |B| -1 entries, which
states the URL of backup services.

We suggest the threshold value of |A| and |B|,
denoted by thresholda and thresholdb to be either 3 or
4. The value is kept small to avoid both processing and
transmission overheads during heartbeat generations
and transmissions. Keeping a list beyond 4 entries is

regarded infeasible for two reasons. Firstly, there is no
guarantee that all backup entries would remain valid
(available) over the session period, as voluntary clients
could disconnect from the network at anytime.
Secondly, not every client is eligible to host DAPS.

Figure 5: Format of the heartbeat message

Heartbeat generation: The list is compiled in
ascending order according to one or more selected
properties of the target nodes (found in both static and
dynamic profiles). Properties include the mean of
cumulative voluntary period (VP), machine capacity
(MC), machine utilization (MU), and past service
hosting period (HP). The difference between VP and
HP is that, the formal refers to the amount of
voluntary periods that the client has offered since the
first execution of its copy of CPFnode software,
whereas the latter refers to the total time spent on
hosting DAPS. The MC refers to a threshold that is
defined in finite scales (could be based on the CPU
speed, memory size or a combination of both) to
induce the range of serving capability of the voluntary
machines. As an example, by scaling the machine
capacity into 5 levels, level-0 denotes machine with
the highest capacity while level-4 represents the
opposite extent.

Figure 6 shows the algorithm that generates
the heartbeat message based on these properties.

extracts each entry in the list to form two separate lists
of both NS and DAPS.

In the first part, we use two equally important
factors to serve as the requirements for backup
candidates, i.e. the mean of cumulative voluntary
period (Thresholdvp) and machine capacity
(Thresholdmc). The voluntary period allows us to
gauge the availability and thus reliability of the node,
whereas the machine load helps to guarantee
performance. Nodes are collected as long as they
satisfy the thresholds given by both Thresholdvp and
Thresholdmc. The collected nodes are then sorted
according to machine utilization. This is to ensure that
lightly loaded nodes are put at higher priorities. Given
that a few nodes might be of equivalent workloads,
performing a secondary sorting based on the mean
hosting period helps to place less loaded nodes with
fewer hosting periods at higher priority.

The reasons for putting nodes with fewer
hosting periods in front of the list is for costing
purposes. Since CPF relies on the concept of voluntary
computing, the main motivation to attract more
volunteers is by means of hosting rewards, i.e.
volunteers are paid for hosting services. In such
reward scheme, the hosting period determines the
amount of rewards. Longer hosting periods incur
higher cost to the content providers, but yield more
incentives to the volunteers. Hence, keeping nodes of
equivalent loads but of lower hosting periods at higher
priority gains, results in acceptable performance with
minimal hosting costs.

As described earlier, only a few nodes should
be inserted into the heartbeat to reduce processing and
transmission overheads. This is realized by x, which
takes the minimum value of either the total client size,
or the summation of both thresholda and thresholdb.
These thresholds state the maximum number of the
backups for each DAPS and NS section. The sorted
and minimized list is then constructed, denoted by R.

The last part is a loop that traverses through R
to form two virtual sub-lists represented by the list S at
the size |S| = |R| + 2. The upper portion of S that is of
size p = ceil(|S|/2) is used by DAPS backups while the
remaining lower portion is occupied by NS backups at
the size of q = floor(|S|/2) such that p ≥ q. The current
DAPS and NS will not be replaced if they are not
overloaded, and thus their entries will stay at the first
position in each portion.

If either of them were overloaded or failed, the
most capable backup candidates at each portion will
be appointed to take over the responsibilities. Details
of the handover shall be discussed in our subsequent
paper. In cases where R is empty, i.e. no qualified
candidates, NS would distribute the heartbeat that
consists of the same entries as before, i.e. only with
the current NS and DAPS.

Execution cost: The algorithm is executed at

fixed time interval based on the most recent dynamic
profiles collected from all NCs. NS collects these
profiles based on the continuous monitoring technique,
∀ i (i | i is a voluntary client)
 if (VPi > Thresholdvp) ∧ (MCi > Thresholdmc)
 then Q Q ∪ { i }

sort Q according to MU;
 then by the HP, both in ascending order

R first x number of clients in Q;
 where x min(|∑ ∀i| , Thresholda + Thresholdb)

l m n 0
S [l] URL of current DAPS
S [ceil((|R|+2)/2)] URL of current NS

while (n < |R|)
 l ((++m) * ((n+1)%2==1)) +
 ((ceil((|R|+2)/2) + m) * ((n+1)%2==0))
 S [l] R [n]
 n n + 1
Figu

The
part genera
first x numb
entries of th

re 6: Heartbeat generation algorithm

 algorithm consists of two parts. The first
tes an intermediate list that contains the
er of backup nodes. This list excludes the
e current DAPS and NS. The second part

instead of the on-demand technique to increase the
sensitivity of NS to clients’ availability and status
changes. Doing this keeps service interruptions to the
CPF-enabled applications at a minimal level in the
event of DAPS failure, at the expense of frequent
monitoring traffics.

There are 2 types of monitoring costs, namely
the horizontal (hc) and vertical costs (vc). These costs
are measured in unit of message injected into the
network. The hc incurs whenever nodes that stay
within the same network segment communicates, i.e.
sending or receiving either the heartbeat (h) or profiles
(p). In short, hc is a function of both h and p (i.e. the
volume of 2 types of messages), as shown in the
following equation:

hc = |U|*h + |I|*p (1)

where U is a set of all CPF clients in a
particular network segment, and I is composed of both
R and R’, i.e. the first x number of voluntary clients
that meet the proxy hosting requirements (See Figure
6), and those do not, respectively. Such cost is usually
insignificant given the speed of today’s Ethernet
connectivity.

The vc refers to overheads produced by
communicating nodes situated across different
segments, e.g. LAN to ISP, or LAN to LAN over the
Virtual Private Network (VPN). It grows slightly
slower than the linear rate, i.e. log|I| < |I|/Ci < |I|,
where Ci refers to the capability of the specific NS
machine i, in serving requests. This growing rate is
also applicable to the DAPS allocations. In brief,
NAM allows only 2 vertical connections to be made,
i.e. one for contents delivery (DAPS) and another for
monitoring (NS) purpose.

In summary, potential backup nodes include those that
have high CPU power, light workloads, and possess
hosting records, i.e. have hosted DAPS in a reliable
manner before.

Implementation rules
As explained earlier, the allocation of NS and NC is
triggered by the activation of the internal modules in
the MMM, i.e. the SM and CM, respectively. There
are cases where both CM and SM are active at the
same time. In short, there are three models that guide
how both interact as shown in Figure 7.

DAPS host with workloads incurred by NS. The
second reason is to avoid a complete failure if the
single host that serves both services fails. We apply
the segregation of tasks to ease proxy handover
process by isolating the status management routines of
NS into different hosts.
In cases where DAPS is found overloaded, the second
client could take over the task of DAPS only if the
second client is more capable than the DAPS host.
Doing this will incur a twist of both NS and NC
identity between the respective clients. If the DAPS
fails, the second client either form a direct connection
to the central content server, or connect to a parent NS
for further redirections (if the parent NS is available).
The second model as depicted in Figure 7, arrow (b)
applies to clients (NCs) that interact with their local
NS in a LAN environment. This model applies when
the LAN has at least three clients, i.e. the DAPS
(HOB), NS and NC (LOB). If either the DAPS or NS
fails, there is now an extra NC that could take over the
responsibility.
The last model as shown in Figure 7, arrow (c) shows
a cascading relationship between the NS and NC, with
both situated at different network levels. Here, the
LOB at lower hierarchical level serves two identities,
i.e. NS (for its local clients) and NC (to its parent NS).
In the event of parent NS failure, NC could refer to
other parent NS backup(s) listed in the most recent
heartbeat message. In scenario where the DAPS in the
ISP network fails or overloads, parent NS could
activate the backup DAPS (if there is any). Otherwise,
the parent NS would just identify other parent DAPS
(through other NSs) to serve all subordinate client
requests.
In a network where none of the clients are volunteers,
multiple connections shall be made directly to the
central content server, and no instance of DAPS, NS
or NC will be instantiated. However, if DAPS services
are discovered in the network neighbourhood (ISP or
other subnetworks) within the performance and
security boundary, client requests will be redirected
accordingly.
In cases where there is only one CPF-enabled client,
the respective NS is activated to connect to external
NS, which could be in the parent network or the
Figure 7: The NAM interaction models

In general, the interaction between NS and NC starts
as soon as there are two voluntary clients in the
network. Based on the current proxy allocation policy
in CPF, the first voluntary client will be selected as
DAPS and regarded as the NC. Serving as NC allows
the performance of DAPS to be constantly monitored
by the NS, which is served by the second client
(LOB). Such NS and NC relationship adopts the first
model depicted in Figure 7, arrow (a).
The reason of separating the execution of DAPS and
NS into different hosts is to avoid overloading the

Internet. Such connection style is categorized under
the third model.

Management of fault and overloading

Fault management: NAM is designed to
protect CPF from two types of failures, i.e. DAPS and
NS failures, which essentially occur in the client
network. We do not emphasized fault issues of the
central server because existing distributed models such
as the server farms and replications (passive and
active) are readily adoptable as solutions.

Given either the DAPS or NS has failed, they
are basically 3 ways to perform recovery. The first or
coarse-grained solution is to get all clients to
reconnect to the central server. Second is to instruct
only selected clients to reconnect to the central server,
and shares their subsequent downloaded contents with
other clients. The third approach is to redirect the
selected clients to reconnect to their immediate
predecessors (e.g. DAPS or NS in the ISP network
segment), rather than to the central server. NAM uses

the third approach, i.e. by getting the clients to
reconnect to some “stand-by” backup node, dictated in
their most recently received heartbeat. This allows the
clients to resume their interrupted sessions without
incurring a sudden surge of workload to the central
server. To guarantee a seamless and smooth service
recovery, both backup DAPS and NS should be
previously allocated but configured to a passive state,
waiting to be invoked at later time. Such approach is
similar to the traditional techniques in distributed
systems such as the hot backups, and object group
replication with virtual synchrony.

In network where there are only 2 clients, i.e.
the DAPS and NS. The termination of either client
would cause the remaining client to link directly to its
immediate predecessor.

Overloading management: As noted, the

workload of NS increases as more voluntary clients
join the CPF session. Besides distributing heartbeats,
and receiving heartbeats from parent NS, the local NS
has to make decision on filtering and selecting capable
voluntary clients. If there were any client that is more
capable than the present DAPS, in terms of CPU
power and memory capacity, the NS would call for a
proxy handover session. The selected voluntary client
shall then be promoted to serve as the new DAPS, and
the current DAPS will be discarded once every client
has been redirected to the new DAPS. Future clients
shall also be redirected to this new DAPS until another
possible proxy handover is initiated.

Appropriate proxy handover helps to deliver
certain degree of QoS guarantees to the CPF-enabled
applications. This is made possible by monitoring the
current DAPS while not ignoring the potentiality of
other voluntary clients to host DAPS. However, to
avoid performance degradation and unnecessary
overheads, proxy handover is initiated only if the
present DAPS is near to the overloading state, instead
of depending merely on the availability of better
resources. Proxy handover could be driven by a linear
cost model, i.e. by averaging and accumulating the
cost of serving each connection (by executing a small
benchmark program on the CPFnode), followed by
performing an n-step ahead prediction where total cost
(TC) = TC + n, where TC < Tmax. Tmax is the maximum
service capability of the respective DAPS. This allows
us to conduct simple prediction on future workloads.
However, such prediction is only possible if DAPS is
hosted on a dedicated voluntary machine, unlike those
in SETI [8], where user’s computations (launching of
applications, etc.) could interrupt any ongoing services
in the background.

4. CONCLUSIONS AND FUTURE WORKS

We have proposed an agent called ObjectBasket (OB)
to serve as an application setup coordinator with
network awareness capability in a dynamic proxy
framework named the CPF. A Network Awareness
Module (NAM) that is aims to foster load monitoring,
load migration and fault management is also
presented. We have explained how NAM serves as a
single model to fortify CPF with migration, failure and
performance transparency, and integration to the
application layers on delivering best-effort QoS
guarantees.

The challenges to efficient and effective agent design
are the tradeoffs between usability and cost. Including
all the described features into the agent could make the
agent bulky and less mobile, thus slowing down the
delivery process. It is envisioned that future
improvements would be on partitioning partial
responsibilities of the agent to the CPFnode for reason
of performance. The ultimate objective is to produce a
lightweight agent that is both effective and efficient.
With the incorporation of network-awareness
functionality, we believe DAPS could be allocated
efficiently and yet effectively to serve requests with
minimal service interruptions.
In any distributed system like this, security will be an
issue. A malicious host could tap into any ongoing
CPF session and claim to be the valid NS in order to
gain control of redirecting client requests. A
subsequent and probably more serious problem is that,
given a malicious NS, clients may be redirected to a
malicious DAPS that delivers fake contents in
response to client requests.
We do not yet have sufficient experience with NAM to
comment on its usability, programmability, cost, and
performance, however, we have started addressing its
security flaws, and planned to evaluate the feasibility
and performance of NAM with prototype
implementations in the near future.

5. REFERENCES
[1] A. Nakao, L. Peterson and A. Bavier,
“Constructing End-to-end Paths for Playing Media
Objects”, Elsevier Publ., Computer Networks, Vol.38,
No.3, 2002, pp. 373-389.
[2] B. Knutsson and L. Peterson, “Transparent Proxy
Signaling”, Journal of Communications and Networks,
Korean Institute of Communication Sciences (KICS)
Vol.3, No.2, 2001.
[3] M. Yarvis et al., “Conductor: A Framework for
Distributed Adaptation”. IEEE Workshop on Hot
Topics in Operating Systems, 1999, pp. 44-49.
[4] T. Sundsted, Alternative Deployment Methods,
JavaWorld.com, July 2000.
[5] M.S. Greenberg et al., “Mobile Agents and
Security”, IEEE Communications Magazine, Vol.36,
No.7, 1998.
[6] A. Ghost, M. Fry and G. Maclarty, “An
Infrastructure for Application Level Active
Networking”, Elsevier Publ., Computer Networks,
Vol.36, No.1, 2001, pp. 5-20.
[7] P. Francis et al., “IDMaps: A Global Internet Host
Distance Estimation Service”, IEEE/ACM
Transactions on Networking, Vol.10, No.4, 2001, pp.
525-540.
[8] SETI@home, available at http://setiathome.ssl.
berkeley.edu, 2000.

	Department of Computer and Communication, Faculty of Engineering
	ABSTRACT
	It has been observed that research in mobile agent focused on the development of platforms and on the application of the concept. Network awareness is one of the applications of mobile agent, concerning of how agent determine and make the most efficient
	1. INTRODUCTION
	
	
	
	
	Architecture of NAM

	NAM hand-shaking protocol
	Heartbeat message: format, generation and cost
	Implementation rules
	
	
	
	
	Management of fault and overloading

	Overloading management: As noted, the workload of NS increases as more voluntary clients join the CPF session. Besides distributing heartbeats, and receiving heartbeats from parent NS, the local NS has to make decision on filtering and selecting capable
	5. REFERENCES

	footer14: - 14 -
	footer15: - 15 -
	footer16: - 16 -
	footer17: - 17 -
	header: JCS&T Vol. 3 No. 1 April 2003
	footer18: - 18 -
	footer19: - 19 -
	footer13: - 13 -

