

Design Composition
Johannes R. Sametinger

Johannes Kepler Universität Linz
A-4040 Linz, Austria

and
Rudolf K. Keller

Zühlke Engineering AG
CH-8952 Schlieren-Zürich, Switzerland

ABSTRACT

Object-oriented software development has proven effec-
tive for systems development, but the creation of reusable
and changeable software architectures is still a challenging
task. Design patterns capture the expertise for reusable
design solutions, but there is no methodical approach to
providing conceptual design building blocks in tangible
and composable form. Design components have been sug-
gested to address this problem. We suggest design compo-
sition with design components, role models and role con-
straints.

We claim that design expertise in composable form with
explicit design constraints and with explicit documenta-
tion has many advantages. It provides alternative views on
software systems at a high level of abstraction, and it can
help in prohibiting known design flaws as well as design
blurring and degradation during subsequent modifications.
In this paper, we refine the notion of design components,
include role models and constraints, and discuss compo-
nent types as well as design composition.

Keywords: design component, design constraints, design
pattern, software architecture, role model, software reuse

1. INTRODUCTION
Component-based software development stands for soft-
ware construction by assembly of prefabricated, configur-
able, and independently evolving building blocks [1, 6,
30]. Emerging software component models, such as the
Component Object Model [4] and JavaBeans [28] pre-
scribe standards for the collaboration of independent com-
ponents and are aimed at improved development produc-
tivity and at more resilience of software to changing re-
quirements [15]. Current approaches to component-based
software development are inadequate for the creation of
reusable and changeable software architectures. Architec-
tural design is more than an adept combination of micro-
applications. It is an evolutionary process that requires
abstract thinking and expertise in both the application
domain and software design. Successful software architec-
tures usually arise from a continuous reassessment of de-
sign alternatives and redistribution of responsibilities
among system components. To accomplish this, deep in-
sight into the components’ design is required. The appar-
ent lack of design information in today’s components is
considered to be one of the most significant problems of
software development based on components [8]. In addi

tion, reuse of architectural design issues has not been an
option on a compositional basis so far [23]. We consider
compositional design reuse as a major step in overcoming
at least some of the shortcomings mentioned above. We
state that design expertise in composable form with ex-
plicit design constraints and documentation leads to
- an increase in systematic design reuse,
- a decrease of implicit reuse of design flaws,
- less design blurring during subsequent modifications,
- an alternative design view on software systems, and
- better documentation of design.

In Section 2 we start with the discussion of foundations of
our work. Design components follow in Sections 3. Sec-
tion 4 provides a categorization of these components. In
Section 5 we describe design constraints. Design composi-
tion is discussed in Section 6. Considerations about infra-
structure are made in Section 7. Section 8 follows with a
review of related work. Section 9 draws conclusions and
points out future work.

2. FOUNDATION
Design patterns [9], the notion of design components [11]
and role modeling [17, 21] build the cornerstone of our
approach to compositional design reuse.

Design Patterns
Design patterns are frequently described as a problem/con-
text/solution triple [5, 9]. "A design pattern systematically
names, motivates, and explains a general design that ad-
dresses a recurring design problem in object-oriented sys-
tems" [9]. Design patterns are abstract ideas that can be
illustrated in different ways and that can be instantiated in
many ways. They can be illustrated, for example, using
class diagrams [5] or using role models [21], or a combi-
nation thereof. Design patterns provide a common design
vocabulary, a documentation and learning aid, an adjunct
to existing methods, and a target for refactoring.

Design Components
Design components address the blurring of design patterns
during implementation and maintenance, and suggest a
more systematic approach to define, implement, and trace
them [11]. Design components are reified design patterns,
Collections of design components can be envisioned that
provide solutions to design problems based on role mod-
els. These design components are to be reused in a compo-
sitional way. It is understood that they be adequately and
systematically documented. With design components,
design patterns constitute the foundation of software de-
velopment. Design patterns are provided as tangible de-
sign components that are embedded in an incremental and
iterative design process. Design composition provides the
concepts and mechanisms which are necessary to make
pattern-based software development more practical.

This research was supported by the SPOOL project organized by
CSER (Consortium for Software Engineering Research) which is
funded by Bell Canada, NSERC (National Sciences and Re-
search Council of Canada), and NRC (National Research Coun-
cil of Canada).
This work was conducted when Rudolf K. Keller was a full-time
faculty at the University of Montreal.

JCS&T Vol. 3 No. 1 April 2003

- 27 -

Role Models
Role models are abstractions on object models where pat-
terns of objects are recognized and described as corre-
sponding patterns of roles [17]. Role models support sepa-
ration of concern and describe static and dynamic proper-
ties. A role captures the responsibilities of an object with
respect to achieving the purpose needed in a collaboration.
It defines the abstract state and behavior of an object in a
collaboration with other objects. The actual definition of a
role is based on what the other roles in a collaboration
require in order to achieve a joint purpose [19]. A role
represents the view that other objects have on the object
playing that role in a certain collaboration [12, 18, 19].
Role models have been used in the OOram software engi-
neering method [17]. They also play an important factor in
a design approach for frameworks [20, 21]. Typically,
classes play many roles in an object-oriented software
system. Often, roles correspond to methods in classes. But
playing a role can also be mapped to part of a method, i.e.,
to particular declarations and statements. Roles played by
classes get easily obfuscated and the design becomes
blurred over several redesign and/or maintenance cycles.
We take design components one step further by substanti-
ating them and including role models (Section 3) and by
introducing additional component categories (Section 4)
as well as component constraints (Section 5).

3. DESIGN COMPONENTS
We model the structure of design components at three
levels of abstraction. We call these the description level,
the role model level, and the implementation level:
- component description:

why to choose a particular design.

- component role model:
how to put the design into practice (independent of a
programming language).

- component implementation:
how to map a role model to a programming language.

At the fourth level, instances of design components in
specific software systems are described. Typically, devel-
opers will instantiate design components based on infor-
mation in the description level, choose a role model that
fits their needs, and pick a concrete implementation for
their specific platform, thus resulting in an instantiation.

Component Description
The description of a design component contains all its
constituents, i.e., name, classification, motivation, intent,
applicability, structure, various diagrams, known uses, etc.
[9]. Fig. 3-1 depicts the description of a design component
reifying the Visitor pattern as described in [9]. The de-
scription does not provide more information as is given in
design pattern descriptions as published in [9]. Rather, we
segregate general information. Specific information like
implementation details is included in lower levels.

description {
 component: Visitor Pattern
 author: Gamma, Helm, Johnson, Vlissides
 date: 1995
 version: v1.0
 short: Design component based on Visitor Pattern...
 intent: Represent an operation to be performed on...
 motivation: Consider a compiler that represents programs...
 applicability: An object structure contains many classes of...
 consequence: Visitor makes adding new operations easy. ...
 knownuse: The Smalltalk-80 compiler has a Visitor class ...
}

Figure 3-1: Component Description

Role Model
The description provides general information like motiva-
tion, applicability and consequences. It does not supply
any hints on how the design has to be in order to achieve
whatever the description promises, e.g., adding new opera-
tions should be made easy. The role model states how the
design has to be made, if we recognize, that our situation
is as described in the component’s description. With the
role model we aim at explicitly documenting the roles of a
design component. During instantiation this information
will be conserved by assigning roles to classes. Various
classes will play the roles of a design component in order
to adhere to the design captured by this component.

Component Implementation
At the implementation level a role model is being mapped
onto a specific programming language and can be based
on a class library or application framework. Again, there
can and typically will be several implementations for a
role model. This level is used to support different imple-
mentation platforms. Many design reifications will be
independent of any programming language and any class
library. However, an implementation has to be provided
for various platforms in order to allow instantiations to be
included in systems being developed on these platforms.

Component Instantiation
An instantiation defines which roles specified in the role
model are played by which classes of the actual implemen-
tation. The instantiations of several design components
typically interrelate with each other as classes will play
roles of several instantiations. An instantiation can also
contain modifications and extensions to specific roles in
order to address a specific system’s functionality. javadoc
comments [29] have been used to capture the design com-
ponent information for this instantiation. We use a
@pattern tag which states the name of the design compo-
nent (Visitor), the role being played (AbstractVisitor), and
the name of the instantiation (QuizVisitor) [25]. There can
be various implementation strategies for a component
expressed through different role models. Additionally,
there can be various implementations for each role model.
A more detailed description about design components is
given in [26].

4. COMPONENT CATEGORIZATION
Typical candidates for design components are design pat-
terns. Thus, a design component represents a reification of
a design pattern. However, we want additional component
types in order to completely describe software systems by
design components, such that we have a design view on
the entire system rather than just on parts of it. The crucial
point is that these additional components describe various
design aspects by defining roles similar to components
reifying design patterns. Besides pattern components, we
introduce model components, GUI components, aspect
components and architecture components for that purpose.

Pattern Components
Design expertise has been captured with design patterns.
We use reification of such patterns in order to make the
design explicit and reuse good design decisions. The de-
scription of components capturing design patterns can be
deducted from various sources of information about de-
sign patterns, e.g., [5, 9, 16, 22]. Information for the role
model and for constraints is usually available but not al-
ways given explicitly. The same holds for implementation

JCS&T Vol. 3 No. 1 April 2003

- 28 -

strategies and implementation details, e.g., sections de-
scribing participants and sample code for C++ are given in
[9].

Model Components
Modeling of an application can be done in several ways,
for example by using a UML editor [7]. The modeling
process will result in a model, which can then be captured
with model components. Model components are fairly
simple; they provide only a single role and are primarily
for the purpose of modeling the data of applications. Thus,
model components define attributes, which will be as-
signed to the classes playing these roles, when the compo-
nent is instantiated.

GUI Components
GUI components capture a system’s graphical user inter-
face, e.g., a dialog or a window. They have to define not
only the static structure of user interfaces, e.g., menus and
buttons, but also its dynamic behavior, e.g., dimming of
buttons, as well as the connection to a system’s functional-
ity. Therefore, we imagine four different roles for GUI
components, the GUI role, the custom role, the glue role
and the client role. The source code of the GUI role is
typically created by a GUI builder. The custom role has to
access application-specific data, i.e., model components,
and customize the user interface accordingly. The glue
role is intended as a means of attaching system functional-
ity to user activities. The client can be another GUI com-
ponent, e.g., the main window can be the client of a GUI
component representing the save file dialog.

Aspect Components
In order to keep track of aspects with possibly scattered
source code, we use aspect components with one primary
and several secondary roles. The primary role is played by
whoever plays the major role in an aspect, e.g., whoever
starts a specific action. Any other participants contributing
to this action play secondary roles. Aspect components are
used to keep parts together that logically belong together
but are spread all over the system, e.g., reading input data
with methods that are spread over many classes. Similar to
model components, the necessity of such components will
become clear when the design of a large system becomes
too complex to keep track of all aspects.

Architecture Components
The architectural structure of software systems can also be
captured with design components, providing design alter-
natives on a rather abstract level. For example, a design
component can capture the general design of a compiler, a
domain which is well-understood, and where similar de-
signs have proven to be effective. Roles of such a compo-
nent include lexical analyzer, parser, semantic check, and
code generation. Other examples for architecture compo-
nents are pipes/filters, event-based systems, layered sys-
tems, and state transition systems.

Further Component Types
All component types share one commonalty. They enfold
source code being spread over several classes. There are
cases where source code, that is somehow logically be-
longing together, is neither one of the above mentioned
component types, i.e., component types presented here are
not adequate or sufficient in all problem domains. Another
categorization with specific role models will be useful in
such situations.

5. DESIGN CONSTRAINTS
Composing design components means attaching roles to
new and existing classes or interfaces. In order to support
the creation of a decent design, design components’ roles
may or may not be combined with each other. This infor-
mation will be expressed by design constraints. For exam-
ple, in order to separate model and view in an application,
it is necessary to separate the corresponding roles. A con-
straint is a restriction on values of a model or system. The
object constraint language (OCL) is part of the unified
modeling language (UML) and is used for expressing
constraints on object-oriented models [31]. The object
constraint language focuses on restrictions on objects and
classes. Constraints apply to elements of an object-
oriented model or system and restrict values of these ele-
ments.
With design components we primarily focus on roles of
classes and objects. With design constraints we restrict
arbitrary role assignments. Thus, a design constraint is a
binary relationship between roles. It specifies whether
roles may be played by the same class. Advantages of
design constraints include better documentation, improved
precision, better communication, and last but not least,
they will lead to better designs. A similar relationship has
been proposed for composite design patterns in [19],
where the binary relationship can take one of three differ-
ent values: Two roles can be played by the same class,
they must be played by the same class, or they must not be
played by the same class. The set of design constraints can
be expressed as a role relationship matrix, which relates
roles with each other [19]. Similarly, the role constraints
role-implied, role-equivalent, role-prohibited, and role-
don’tcare are used in [21]. We distinguish five different
relations between roles:
- must: roles must be played by the same class
- maybe: roles may be played by the same class
- prohibited: roles must not be played by same class
- sub: role 1 must be played by subclass of role 2, or by

class implementing the interface that is playing role 2
- super: role 1 must be played by superclass of role 2,

or by interface being implemented by class playing
role 2

In addition to intra-design constraints proposed in [19],
we regard what we call inter-design constraints to be cru-
cial for good designs. Inter-design constraints provide
information about possible and forbidden role combina-
tions not only within a specific design component, but also
among different design components, i.e., among different
design component instantiations of the same abstract
and/or role model as well as among completely different
design components. We also regard the number of classes
playing the same role to be important. This provides addi-
tional information that can be checked against a concrete
instantiation of a component. Fig. 5-1 shows constraints
on roles of the Visitor component. The instantiation of a
Visitor component will include one instantiation of the
roles AbstractVisitor and AbstractElement. There can and
should be more than one instantiation of the roles Con-
creteVisitor and ConcreteElement. The roles client and
object structure will typically be instantiated only once,
but several instantiations can be useful as well.
There can be additional constraints between roles of the
same component but of different instantiations and also
between roles of different components. For example, GUI
roles and model roles must never be played by the same

JCS&T Vol. 3 No. 1 April 2003

- 29 -

class; GUI roles of one instantiation may be played by one
class, but GUI roles of different instantiations have to be
played by different classes. These are rather obvious con-
straints. However, it is advantageous to have them docu-
mented and checked automatically, especially when non-
expert designers are involved in the design of a system.
With more experiences with design components we expect
to have more sophisticated constraints available. For ex-
ample, a combination of roles of a Visitor component and
an AbstractFactory component can indicate poor design,
because the consequences of these pattern’s applications
do not work together well. The example in Fig. 5-2 puts
constraints on roles between the Visitor and the Abstract-
Factory role models.

rolemodel {
 component = Visitor Pattern
 name = default
 description: A client that uses the Visitor pattern must create...
 roletype: ...
 constraint 1: AbstractVisitor
 constraint 2+: ConcreteVisitor
 constraint 1: AbstractElement
 constraint 2+: ConcreteElement
 constraint 1+: ObjectStructure
 constraint prohibited: AbstractVisitor, AbstractElement
 constraint prohibited: AbstractVisitor, ConcreteElement
 constraint sub: AbstractVisitor, ConcreteVisitor
 constraint sub: AbstractElement, ConcreteElement
 ...
}

Figure 5-1: Intra-design Role Constraints

Similarly, the combination of a GUI role with a subject
role of an observer component can also serve as an indica-
tion of questionable design. In addition to having con-
straints on the roles of a model, i.e., on a certain instantia-
tion of a model, there can also be constraints on the roles
of different instantiations of the same role model, e.g., on
the roles of two Visitor instantiations. For example, a
class playing an AbstractVisitor of a Visitor instantiation
must not play a role of another Visitor instantiation.

constraint {
 rolemodels = Visitor, AbstractFactory
 description: A combination of roles of a visitor component and
 an abstract factory component can indicate poor design,...
 the consequences of these pattern’s applications do not ...
 constraint prohibited:
 Visitor.AbstractVisitor, AbstractFactory.AbstractFactory
 constraint prohibited:
 Visitor.AbstractElement, AbstractFactory.AbstractProduct
 ...
}

Figure 5-2: Inter-design Role Constraints

6. DESIGN COMPOSITION
The use of design components does not impose any design
process or a process model. Users are free to do their de-
sign however they like. For example, they can create a
model by means of the UML and then implement this
model by composing design components. They can also
start with an empty application and then evolve the appli-
cation by adding and modifying design component instan-
tiations. Say we want to build a quiz application that can
be used to quiz users on questions. Various forms of ques-
tions should be supported, e.g., single choice questions,
multiple choice questions, text questions, and boolean
questions. The system can be used to prepare for various
tests, e.g., driver’s license, pilot license.
A first evolutionary step creates the basic structure of the
application with classes for the application (class Quiz-
App), its representation on the screen (class QuizAppl-

Frame), a dialog to pick files (class FileDialog), and two
classes containing the questions of the quiz (classes Ques-
tionList and Question). Focusing on design components
rather than on classes yields a view, as is depicted in Fig.
6-1. This illustration gives a better overview of the basic
design of the application than, e.g., the inheritance hierar-
chy. We can see that there are two GUI components, the
main Quiz window and a save file dialog. The data struc-
ture is modeled as quiz and question list. And, for the
moment, there is one aspect available, i.e., the action of
saving a quiz.

GUI
Quiz

client

GUI

Aspect
Save Quiz

client

secondary

primary

Model
Quiz

client

model

Model
QuestionList

client

model

GUI
SaveFile

client

GUI

class QuizMain

class FileDialog

class QuizApplFrame

class QuizApplication

class QuestionList

class Question

Figure 6-1: Design overview with focus on the design

We argue, that the view on design components provides a
better overview of the design than the class view can. This
is not obvious in this simple example with only six
classes. But consider a class hierarchy with thousands of
classes on the one hand, and a collection of, say, hundreds
of components representing GUIs, data models, design
patterns, and aspects on various levels of abstractions on
the other hand. Classes are needed for full understanding,
but design components provide useful information about
how and why these classes interact. Say we want to add
flexibility to our quiz application by adding various output
forms like HTML output and LaTeX output. A visitor can
add such flexibility without the need of making any
changes to existing code. First, we check the description
of the 'Visitor' component, that provides all the informa-
tion necessary to decide whether to use this design in our
particular scenario. These Java roles have to be applied to
either existing or new classes, see Fig. 6-2.

Abstract Factory
Adapter
Bridge
Builder

Composite
Decorator

Factory Method
Prototype
Singleton

...
Visitor

Design Components

AbstractVisitor
ConcreteVisitor
AbstractElement
ConcreteElement
ObjectStructure

New...

Answer
ExamItem
ExamList
Question

QuestionCatalog
QuestionList

QuestionListFrame
QuizApp

QuizAppFrame
QuizBundle

QuizBundle_de
QuizFactory
QuizFrame
QuizMain

Roles Classes

Figure 6-2: Instantiation Process

The ‘AbstractVisitor’ role will be assigned to a new inter-
face called Visitor, which according to the Java implemen-
tation in Fig. 3-3 results in three visit methods being in-
serted, one for each concrete element. The ‘ConcreteVisi-
tor’ roles will be played by new classes, e.g., HTMLVisi-

JCS&T Vol. 3 No. 1 April 2003

- 30 -

tor and LaTeXVisitor, whereas the other roles will be
assigned to existing classes, e.g., QuizApplication, Ques-
tionList, Question.
Rather than making extensions and modifications on the
source code level alone, we propose to operate on the
design component level, i.e., to include new components,
modify existing components, or remove components. All
these operations result in the creation, modification or
removal of classes or interfaces. Including new design
components results in the assignment of the component’s
roles to existing or new classes. Thus, we add new meth-
ods to classes and insert new classes. The removal of a
design component leads to the removal of methods and
even to the removal of entire classes, should they play
only a single role. Modifications of components include
changes in instantiation-specific code, role assignments to
additional classes, removal of roles from classes, or even
the picking of a different role model with new role as-
signments altogether.
Most of a design component’s source code will be mod-
eled at the method level. Thus, a method typically belongs
to one instantiation of a design component. However,
there are situations, where modifications or extensions
have to be made within existing methods, e.g., to register
an object as an observer to another one. In such cases,
methods belong to several component instantiations.
Should we decide during maintenance of our quiz applica-
tion to modify source code in certain classes, this will
have an effect on roles of design components. We should
be aware of the roles being played by the source code we
are modifying in order to prohibit changes against the
original intent of the design. Deleting source code will
also have an effect on roles of design components. This
can leave components incomplete and suggest their re-
moval as well. Studying these components can also lead to
the insight that deleting the source code was not a good
idea from the beginning.

7. INFRASTRUCTURE
A basic infrastructure is indispensable in order to carry out
development at the abstraction level of design components
and also in order to present a system’s design in an appro-
priate form to development and maintenance personnel.
Tools are needed for the application of design components
on a large scale. Tool support can be provided at the de-
sign and source code level, depending on the way design
component information is stored.
At the design level, all development steps are done at the
design component level, and the source code is simply
generated whenever wanted. Any application specific code
has to be integrated into design component instantiations.
In this scenario, it is necessary to have a compiler inte-
grated into the system, such that errors and warnings can
be shown at the component level. At the source code level,
all the information about design components is kept in the
source code, e.g., in special comments. Users can utilize
any tools operating on the source code, and they can use
the design component tool, which extracts the design view
out of the source, presents it to the users, lets them make
modifications, and makes the appropriate modifications in
the source code. The tool also has to check for inconsis-
tencies, e.g., source code that does not belong to any de-
sign component.
Tool support can also be provided at both the source code
and the design level. In this case, both views will be avail-
able as separate documents. Thus, the tool can read in

design information, but can also extract this information
out of source code. This tool can be used for both forward
and reverse engineering. If both design information and
source code were available, then checks for inconsisten-
cies can and will have to be done. Information about de-
sign components can be stored in many forms. Its wide-
spread acceptance has lead us to experiment with the Ex-
tensible Markup Language (XML) [32]. This enables us to
use standard editors to administer design information be-
fore we have more comfortable tools available.
Documenting design components in the source code can
be done with comments like that used for javadoc [25, 29].
The comments will contain information about name, type,
and role of design components. This information can be
used to recreate design information. The generated docu-
mentation can include a list of design component instan-
tiations with links to all involved roles as well as links to
general information of the specific type of design compo-
nent. As a first step, we have developed an extension to
javadoc to support this kind of documentation. A simple
example documentation can be found in [24]. Currently,
we are working on tools to administer design components
on a higher level of abstraction and to support design
composition in a programming environment [27].

8. RELATED WORK
In this section, we briefly review work that is related to
design composition as presented in this paper, i.e., library
design patterns, aspects, literate programs, layered model-
ing, a design approach with role modeling, design pattern
constraints, and architecture description languages.
Library design patterns have been proposed in [2]. The
central idea is to store fundamental design patterns in a
library where they are easily accessible. Application of
design patterns can be done by inheriting from classes in
the library. Disadvantages are that it is hardly possible to
adapt them in other ways than those that have been fore-
seen as well as the fixed use of names. We are more flexi-
ble without any constraints on names.
Aspects are meant to capture important design decisions
that involve code being scattered throughout the system,
i.e., they crosscut the system’s functionality [10]. Aspects
have been introduced because programming languages do
not provide abstraction and composition mechanisms for
several design issues, i.e., for all kinds of units a design
process breaks a software system into. Aspects provide an
important contribution in trying to capture design issues
that cannot be adequately expressed otherwise. Aspects
cover only specific design aspects, but can be generic in
that they can be applied to classes and methods with cer-
tain properties. We see the advantages of aspects but leave
out genericity. Currently, we think that capturing static
aspects is sufficient for major design issues.
Literate programming supports the idea that we should
not try to instruct the computer what to do, but rather we
should try to tell humans what we want the computer to do
[13]. We agree with Knuth’s claim that literate program-
ming is a process which should lead to more carefully
constructed programs with better, relevant system docu-
mentation. Literate programming is related with aspect-
oriented programming in that a literate program typically
consists of a description of various aspects of a system.
These aspects are documented in sections in a literate
program and contain source code that is typically scattered
throughout the code. Literate programming sections corre-
spond to aspect components. Literate programs can explic-

JCS&T Vol. 3 No. 1 April 2003

- 31 -

itly describe design issues like patterns. However, there is
neither a compositional support nor is there any support of
constraints.
Layered modeling of design patterns has been proposed in
[14]. The three suggested layers comprise role models,
type models and class models. The role model expresses a
pattern in terms of abstract state and behavioral semantics,
thus, capturing the spirit of a pattern without non-essential
details. The type model adds domain-specific refinements.
The class model represents a deployment of the type
model in application-specific terms. Constraint informa-
tion is also proposed. It is represented in terms of sets,
upon which constraints applying to set members are speci-
fied. There are similarities to our approach in that we also
use role models to describe the structure of cooperating
objects. We roughly capture their role and type model in
our role model and the class model in the implementation
level. Thus, we do not explicitly refine role models into
type models. However, we additionally have introduced
the instantiation level, where all the application-specific
information is kept. Their constraint information is repre-
sented in terms of sets, upon which constraints applying to
set members are specified. We have chosen a less formal
approach. Experiences will show whether this will suffice
in practice.
A framework design approach with role modeling has
been introduced in [21]. This design approach contains
explicit description mechanisms not only for role models,
role types and role constraints, but also for frameworks,
layers, and class models. Additionally, it takes extension
points, free role types, and built-on classes into considera-
tion. Thus, it provides a more extensive means for design
descriptions, especially for frameworks, than our design
components. Primarily concentrating on compositional
reuse, we model only reusable design aspects, but leave
out framework and layer issues. Frameworks and layers
are too specific and extensive to have their design reused
as a whole, i.e., for the development of other frameworks
or layers.
Design pattern constraints have been proposed in [19].
These constraints have been imposed on roles of design
patterns published in [9], but also on patterns being com-
posed from these basic patterns. Role type constraints are
also used in [21]. These constraints closely relate to our
constraints, especially those being applied to composite
patterns. However, we additionally distinguish different
instantiations of the same as well as of different design
components.
Architecture description languages provide notations for
the description of software system structures in terms of
hierarchical configurations and interacting components.
Aspects being modeled with such languages are compo-
nents, connectors, roles, ports, bindings, and configura-
tions. Examples of architecture description languages
include Darwin, UniCon, Aesop, and Wright [3]. We are
able to include and model architectural knowledge to
some extent. Experiences will have to show the usability
of such architectural components. Such components will
be less powerful than existing architecture description
languages, but their compositional reusability is a definite
advantage.

9. CONCLUSIONS AND FUTURE WORK
The benefits of design patterns will not come to full frui-
tion unless they are directly integrated into the basic de-
velopment activities of software engineers. In this paper,

we elaborated on an approach in which design issues con-
stitute the foundation of software development. Designs
are provided as tangible design components that are em-
bedded in an incremental and iterative design process.
Classes represent designs only badly. They are too fine-
grained and language-dependent. We believe that design
composition provides the concepts and mechanisms that
are necessary to make pattern-based software development
more practical. Our approach does not contain a new de-
sign methodology, but it provides a means of reusing de-
sign knowledge and keeping relevant information about
design issues in a software system. There are several ad-
vantages of developing software with design components.
Consider the goals we have mentioned in the introduction:
- increase in systematic design reuse

Explicit availability of design expertise increases re-
use at an abstraction level where it is much more ef-
fective than at the source code level. Additionally,
having explicit design information in many systems
will allow us to gain additional insights about proper-
ties of good and bad designs. This will help in teach-
ing design as well as in providing tool support for de-
sign checks, i.e., for spotting locations where indica-
tions of good or bad designs have been found.

- decrease of implicit reuse of design flaws
Design constraints can prohibit design flaws more ef-
fectively than the documentation of design patterns.
The fact that the design is explicitly available also
makes design and code reviews much more produc-
tive. Design experts can easily see whether compo-
nents have been used for purposes they were or were
not intended to, or whether a lack of such compo-
nents indicates that the design can be improved.
Without explicit information provided by design
components the design review process is more tedi-
ous and less efficient.

- less design blurring
Information in design component instantiations must
not get lost or blurred when maintaining a system. On
the one hand, software systems become better exten-
sible and modifiable by composing well-known and
proven designs. On the other hand, modifications can
be done on the design level, explicitly conserving de-
sign information by role assignments to classes.

- alternative design view on software systems
Unless we have explicit design documentation avail-
able, the source code remains the only trustable in-
formation about software systems. With powerful
tools, many aspects of systems can be inspected, e.g.,
inheritance hierarchy. Design components provide a
view on systems that is essential in system compre-
hension, but cannot be produced out of the source
code alone by even the most powerful tools.

- better documentation of design
With design components, design aspects and design
decisions become documented without the need of
writing a single line of text. Additionally, the learning
curve is reduced, because new people on projects can
immediately see how a system is composed of design
components, many of which will be known to them
already. Far too often design decisions remain un-
documented due to time pressure. Another hindrance
is the lack of design documents where such informa-
tion can be kept. Each instantiation of a design com-
ponent represents a design decision. It is only natural

JCS&T Vol. 3 No. 1 April 2003

- 32 -

to keep any information that has lead to a specific in-
stantiation with that instantiation.

We imagine additional benefits from composing software
at the design level. For example, porting a system to other
platforms is quite easy, especially when the design com-
ponents used in a system are available also for these plat-
forms. If not, these components will have to be imple-
mented only once and can then be used for the porting of
other systems. Additionally, changes in the functionality
of an application can easily be redone for other platforms.
When new, not upward-compatible versions of class li-
braries and/or application frameworks appear and have to
be integrated into the software system, this process is often
combined with tedious and often error-prone activities.
When the same design components are available for both
versions, then the shift is possible without any further
activity on the side of the application programmer.
We believe the idea of design components to be advanta-
geous in many respects. Yet, more work is needed to fur-
ther refine the concepts of design components and to
prove their usefulness. First of all, a basic set of design
components has to be defined with associated roles and
constraints. Infrastructure support is essential to ease the
use of design components. As a next step, case studies for
the explicit capturing of the designs of systems built by
design experts have to be done. This will provide impor-
tant insights in good designs, e.g., information about use-
ful constraints to design components’ roles. This reverse
engineering step will also spark the inclusion of new de-
sign components and indicate weaknesses and misconcep-
tions in existing components.

10. REFERENCES
[1] Richard M. Adler. Emerging standards for compo-
nent software. IEEE Computer, 28(3):68–77, March 1995.
[2] Ellen Agerbo and Aino Cornils. How to preserve the
benefits of Design Patterns. OOPSLA Proceedings, pages
134–143, 1998.
[3] Robert J. Allen. A Formal Approach to Software
Architecture. Ph.D. Thesis, CMU-CS-97-144, May 1997.
[4] Don Box, Essential COM. Addison-Wesley. 1998.
[5] Frank Buschmann, et al.. Pattern-Oriented Software
Architecture. Wiley & Sons, 1996.
[6] Paul Clements. From subroutines to subsystems:
Component-based software development. In Alan W.
Brown, Ed., Component-based Software Engineering:
Selected Papers from the Software Engineering Institute,
pages 3–6. 1996.
[7] Martin Fowler, Kendall Scott. UML Distilled: Ap-
plying the Standard Object Modeling Language. Addison-
Wesley, 1998.
[8] David Garlan, R. Allen, and J. Ockerbloom.
Architectural mismatch or why it’s hard to build systems
out of existing parts. Proceedings of ICSE 17, pages 179–
185, Seattle, WA, April 1995.
[9] Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design Patterns. Elements of Reusable
Object-oriented Software. Addison-Wesley, 1995.
[10] Gregor Kiczales, et al.. Aspect-Oriented Program-
ming. Proceedings ECOOP'97. Lecture Notes in Computer
Science, Vol. 1241. Springer 1997.
[11] Rudolf K. Keller and Reinhard Schauer. Design
Components: Towards Software Composition at the De-
sign Level, Proceedings of ICSE 20, pages 302–311,

Kyoto, Japan, IEEE, April 1998.
[12] Bent Bruun Kristensen and Kasper Osterbye. Roles:
Conceptual Abstraction Theory and Practical Language
Issues. Theory and Practice of Object System. Vol. 2, No.
3. pages 143–160. 1996.
[13] Donald E. Knuth. Literate Programming. Stanford
University Center for the Study of Languages and Infor-
mation, Leland Stanford Junior University, 1992.
[14] Anthony Lauder and Stuart Kent. Precise Visual
Specification of Design Patterns. Proceedings of ECOOP
98, Springer-Verlag, January, 1998.
[15] Oscar Nierstrasz and Laurent Dami. Component-
oriented software technology. In Oscar Nierstrasz and
Dennis Tsichritzis, editors, Object-oriented Software
Composition, chapter 1, pages 3–28. 1995.
[16] Wolfgang Pree. Design Patterns for Object-Oriented
Software Development. Addison-Wesley, 1995.
[17] Trygve Reenskaug. Working with Objects – The
OOram Software Engineering Method. Manning Publica-
tions, 1996.
[18] Dirk Riehle. Describing and Composing Patterns
Using Role Diagrams. WOON ’96: 1st Int’l Conference
on Object-Orientation. St. Petersburg Russia, 1996.
[19] Dirk Riehle. Composite Design Patterns. In Pro-
ceedings of the 1997 Conference on Object-Oriented Pro-
gramming Systems, Languages and Applications (OOP-
SLA '97). pages 218–228. ACM Press, 1997.
[20] Dirk Riehle, Thomas Gross. Role Model Based
Framework Design and Itegration. Proceedings of the
Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA '98). ACM Press,
pp. 117-133, 1998.
[21] Dirk Riehle. Framework Design: A Role Modeling
Approach. Ph.D. Thesis, No. 13509. Zürich, Switzerland,
ETH Zürich, 2000.
(http://www.riehle.org/diss/index.html)
[22] Linda Rising (ed.). The Patterns Handbook: Tech-
niques, Strategies, and Applications. Cambridge Univer-
sity Press. 1998.
[23] Johannes Sametinger. Software Engineering with
Reusable Components. Springer-Verlag. 1997.
[24] Johannes Sametinger. Sample HTML Documenta-
tion. http://www.swe.uni-linz.ac.at/research/deco/docu/
[25] Johannes Sametinger, M. Riebisch. Evolution Sup-
port by Homogeneously Documenting Patterns, Aspects
and Traces. 6th European Conference on Software Main-
tenance and Reengineering, CSMR 2002, Budapest, Hun-
gary, March 11-13, 2002.
[26] Johannes Sametinger, Rudolf Keller. Compositional
Design Reuse. CACIC 2002, VIII Argentinean Conference
on Computer Science, Universidad de Buenos Aires, Ar-
gentina, October 15-18, 2002.
[27] Johannes Sametinger. Pattern Support for Eclipse.
http://www.se.jku.at/people/sametinger/research/pse.html
[28] Sun Microsystems. JavaBeans API Specification.
http://java.sun.com/Beans/spec.html.
[29] Sun Microsystems. javadoc home page.
http://java.sun.com/products/jdk/javadoc/.
[30] Clemens Szyperski. Component Software: Beyond
Object-Oriented Programming. Addison-Wesley 1998.
[31] Jos Warmer and Anneke Kleppe. The Object Con-
straint Language – Precise Modeling with UML. Addison-
Wesley, 1999.
[32] XML. Extensible Markup Language.
http://www.xml.com

JCS&T Vol. 3 No. 1 April 2003

- 33 -

