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ABSTRACT 
 

This paper includes part of the strategies used to solve a scheduling 

problem developed for a company that produces flexible packaging, 

presented in a quite general form though. In this problem it is 

necessary to schedule several jobs that involve four process and for 

each one of them there is a group of machines available (of similar 

characteristics). Each activity is performed on just one machine. 

Besides, for our application, the scheduling must try to verify certain 

conditions. For each process (and consequently for all the activities 

that perform this process) there is a list of attributes. 

The problem is not only to assign each activity to a starting time and to 

a specific machine, but also to try to verify conditions that depend on 

the values of the attributes of the activities. Moreover, there are criteria 

to choose a particular machine. 

An approach to solve this problem was presented first in [1]. As 

mentioned there, some due dates could not be fulfilled on time. An 

approach to decrease the quantity of due dates violations was presented 

in [2]. This approach generates acceptable results for most of the cases 

in the real application. However, there were some cases in which the 

Algorithm did not work properly. The present work includes an 

Algorithm that improves the results generated in [2] for some special 

cases that arose in the real application. 

Keywords: Scheduling Problems, Constrains Satisfaction, 

Optimization,  Production, Flexible Packaging. 

1. INTRODUCTION 

This paper includes part of the strategies used to solve a scheduling 

problem developed for a company that produces flexible packaging. 

The application have been implemented in C++, employing routines 

of Ilog [3]. In this problem it is necessary to schedule several jobs. 

These jobs involve four process: Printing, Laminating, Cutting and 

Packing and for each one of them there is a group of machines 

available (of similar characteristics). Each job is described by a list of 

four activities of given processing times, that perform the mentioned 

processes in that order. Each activity is performed on just one 

machine. For example, if a represents a printing activity and {M1, 

...,Mk} represent the set of machines capable of executing the 

printing process, a will be performed by a member of the set {M1, 

...,Mk}. For our application the scheduling must also try to verify 

certain conditions. 

 

 

For each process (and for all the activities that perform this process) 

there is a list of attributes. For the printing process, the attributes are:  

ink line, duration of the (printing) process, etc. These attributes are 

also associated to the machines but their values depend on the time. 

For each printing machine M1, ...,Mk, the values of the attributes at 

time t are defined as equal to the values of the attributes of the 

activity that is being performed at time t. If no activity is being 

performed at t, these values are set to those of the last activity 

performed before t. For each attribute, there is a condition that must 

try to satisfy the schedules of the machines M1, ...,Mk. 

Given a machine M and an activity a, each condition associated to M 
is evaluated at time t, as a function of the value of the corresponding 

attribute of M at time t, and the value of the same attribute of a. For 

example, for the attribute ink line, (corresponding to the printing 

process) the condition is to preserve the ink line. If the activity a uses 

machine M and is scheduled starting at time t, the condition to 
preserve the ink line holds at time t, if the value of the attribute ink 
line for M at time t is equal to the value of the attribute ink line of the 

activity a. In the practical application, the verification of this condition 

represents the fact that the activity a and the previous one use the 

same ink line. 

The problem is to assign each activity to a starting time and to a 

specific machine trying to verify the conditions. This problem can be 

considered as a  “Multi Objective COmbinatorial”  (MOCO)  

problems where the objectives are determined by the conditions. In 

the bibliography that we have found about MOCO problems, the 

multi-objective functions are evaluated after finding a solution (see 

[4] & [5] ). 

In our problem, the objectives to be fulfilled have a very peculiar 

characteristic: The conditions (i.e. to preserve ink line, etc.) that  

must be verified, are associated with pairs of activities scheduled 

consecutively in one machine; whereas [4] & [5] need all the 

activities to be scheduled to evaluate  the objective functions. As a 

result, our algorithm can evaluate the objectives in each step that 

leads to a solution, as opposed to evaluating the multi-objective 

function after the whole solution was found, as it is done in [4] & [5]. 

A comparison of these approaches would be deceptive since we take 

advantage of particular features of our problem that allows us to 

guide our search for solutions whereas the other approaches are much 

more general. The problem has been initially modeled in [1], using 

alternative resource sets [3]. 

From now on alternative resource sets will be referred as AltResSets. 

An AltResSet is a compound resource that contains two or more 

equivalent resources, called alternative resources, to which activities 

 

 



 

can be assigned. An AltResSet is defined for each process. Each 

AltResSet represents a set of machines such as {M1, ...,Mk} and 

contains  k  alternative resources that represent the machines  M1, 

...,Mk. 

The present work includes an Algorithm that improves the results 

generated in [2] for some special cases that arose in the real 

application (see 2.3). 

2.  SOLVING THE PROBLEM 

In order to take into account the due dates, we define two attributes 

associated to the activities: PriorityWeight and MaxEnd.  

Each job J has a due date, referred as dueDate(J). The values of the 

attribute MaxEnd are set by executing the following pre-processing: 

 

For each job J  

 { 

    Let a1, a2, a3 and a4 be the activities belonging to the job J 

(Printing, Laminating, Cutting and Packing, respectively) 

a4.MaxEnd = dueTime(J) 

for i = 3 down to 1{ai.MaxEnd = ai+1.MaxEnd – duration(ai+1)} 

 } 

 

For each activity a, a.MaxEnd represent the maximum time in which 

the activity a can finish. This value does not change during the 

execution of the Algorithm, whereas a. PriorityWeight is initially set 

to 0 and it increases its value every time that a.End > a.MaxEnd in 

the reached solution (a.End represents the end of the activity a). It 

has been assumed that each activity requires only one AltResSet. 
Let AltResSets, AltResources, and Conditions represent: all the 

AltResSets, all the alternative resources, and all the conditions, 

respectively. Below we included the functions involved in the 

Algorithms.  

StartMin: takes as argument an activity not scheduled, and returns 

the minimal possible start time.  

AltResSet: takes as argument an activity, and returns the AltResSet 

required by this activity. 

Verify: takes as arguments an activity act, an alternative resource 

altRest, and a condition cond, and returns 1 if act verify the 

condition cond at the time StartMin(act) with respect to the 

alternative resource altRest. Otherwise the function returns 0. 

Conds: takes as argument an AltResSet, and returns the set of 

conditions associated with the argument. 

Possible: takes as arguments, an activity act, and an alternative 

resource altRes, and returns 1 if it is possible to assign 

altRes to act at the time StartMin(act). Otherwise it 

returns 0. 

Weight: takes a condition and returns a value that represents the 

degree of importance of that condition. 

AltRes:  takes an AltResSet and returns the set of alternative 

resources that are part of the AltResSet. 

AltResPreference: takes an activity and an alternative resource, and 

returns a non negative integer number, whose 

value is set according to the convenience of 

assigning the alternative resource to the activity. 

Given,  

an activity a,  

an AltResSet altResSet,  
an Alternative Resource altRes∈ AltRes(altResSet), 
and conds = Conds(AltResSet), 

the functions AltConvenience, AltResSetConvenience and 

ActivityConvenience are defined as follows: 

 

AltConvenience(a, altRes, conds) = 
                Possible(a, altRes) * (AltResPreference(a, altRes) 
               + ∑c∈ conds Verify(a, altRes,c) * Weight(c))              
               +  a.PriorityWeight 
AltResSetConvenience(act, altResSet) =  

            MaxrecAlt∈ AltRes(altResSet) 

                                     AltConvenience(act, altRes, Conds(altResSet)) 
ActivityConvenience(act) = 
                     AltResSetConvenience(act, AltResSet(act)) 
 

2.1. Obtaining a Solution 

The next Algorithm produces a solution in which the number of due 

dates violation depend on the value of the attribute PriorityWeight 
assigned to each activity. Activities represent the set of all the 

activities that have to be scheduled. 

 
repeat  

Min = Min act∈ Activities StartMin(act)   

(Get the minimum time in which it is possible to schedule an 

activity) 

MinSet = {act∈ Activities : StartMin(act) = Min} 

  

(Get the set of activities with minimum start time Min) 

  

MaxConvenience=Max act∈ MinSet ActivityConvenience(act) 

Pairs = 

    { 

      (a, altRes): a∈ MinSet, r = AltResSet(a), 

       altRes ∈  AltRes(r), conds = Conds(r), 

       AltConvenience(a,  altRes, conds) = MaxConvenience 

    } 

(Get the set of pairs Activity-AlternativeResource that 

maximise the function AltConvenience). 

Select an element of the set Pairs. Let’s say (a, altRes). 

Schedule the activity a at time Min assigning the alternative 

resource altRes. 

until All the activities are scheduled 
 

Algorithm 1. Algorithm to obtain a solution 

2.2 Reducing due dates violation. First Version 

The Algorithm is similar to the one presented in [2] and  is based 

on repeatedly solving the scheduling while trying to verify as many 

conditions as possible (initially completely disregarding due dates) 

and calculating the lateness of the activities with respect to the 

maximum times in which the activities can finish. 

This information is used in the Algorithm in the following 

iterations so that the delayed activities tend to be scheduled earlier. 

n represent the maximum quantity of iterations. 

 

iter = 0;  

for each a∈ Activities  { a.PriorityWeight = 0} 

(initially due dates will be disregarded) 

 
repeat 
   execute Algorithm 1 
 



  for each a∈ Activities   

     {a.lateness = a.End – a.MaxEnd 

 if a.lateness > 0 

    then 
       a.PriorityWeight = a.PriorityWeight + a.lateness * Step 

      } 

   iter = iter + 1 

until (a.lateness <= 0 for all a∈ Activities) or (iter>n) 

 

Algorithm 2. Algorithm to obtain a solution minimizing due dates 

violation 
The greater the lateness is for an activity the greater its priority to be 

chosen will be in the next iteration. Step determines how fast the 

delayed activities increase will their priorities. 

2.3 Reducing due dates violation. Second Version 

Algorithm 2 generates acceptable results for most of the cases in the 

real application. However, there were some cases in which the 

Algorithm did not work properly. We can summarize the found 

drawbacks in the following issues: 

1.  The value of Step is not automatically set and has to be 

carefully chosen. An inadequate value for Step can produce 

bad results. There are two cases. 

1.a. In each iteration, the weights and the preferences of the 

alternative resources compete with the latenesses of 

activities. If we choose too high a value for Step, we take the 

risk that the weights and the preferences of the alternative 

resources have no influence whatsoever. In this case, the 

Algorithm will blindly first schedule all the activities with 

lateness. 

1. b. Conversely, if the value of Step is too low, the lateness will 

exert insignificant influence and the scheduling will mainly 

be driven by the weights and the preferences of the 

alternative resources. So the performance of the Algorithm is 

strongly dependent on the value chosen for Step. 

2.   Even by choosing a suitable value for Step in order to avoid 

the problem pointed out previously, problems still may arise 

in some cases. Consider two altResSets r1 and r2 such that 

the sum of the weight of r1 is much lower than the sum of 

the weights of r2. A low value for Step is suitable for r1 and 

too low for r2. Conversely, A high value for Step is suitable 

for r2 and too high for r1. 

The Algorithm 3 improves the Algorithm 2, (and the one presented 

in [2]) for special cases that arose in the real application. Cases in 

which there are too many weights and therefore a suitable value for 

Step is nor easy to find, and cases in which the situation pointed out 

in 2 happens.   

To overcome the problems previously mentioned, we propose the 

Algorithm 3 based on the following idea: 

For each activity a that requires the AltResSet r, such that a.Lateness 
is greater than zero, a.PriorityWeight is calculated taking into 

account the lateness of a, the maximum lateness of the activities that 

require r, the weights of r, the preferences of using one or another 

alternative resource of r, and the number of the current iteration. 

Given, an activity a, an AltResSet altResSet, and an Alternative 

Resource ar∈ AltRes(altResSet), we define the following functions in 

order to calculate the value of a.PriorityWeight if a.Lateness is 

greater than zero. 

RequiredActivities(altResSet)= 
                                 {a∈ Activities: AltResSet(a) = altResSet} 

MaxWeight(altResSet) = ∑c∈ Conds(altResSet) Weight(c) 

MaxAltResPreference(altResSet)=  
Maxa∈ RequiredActivities(altResSet),ar∈ AltRes(altResSet) AltResPreference(a, ar) 
Max(altResSet) = 
          MaxWeight(altResSet)+ MaxAltResPreference(altResSet); 
MaxLateness(altResSet) =  
         Max a∈ RequiredActivities(altResSet) (a.End – a.MaxEnd) 

(a.End – a.MaxEnd represents the Lateness of activity a) 

The Algorithm 3 works as follows. As a consequence of the first 

line, Algorithm 1 is initially executed disregarding due dates. The 

solution initially found is dedicated to verify as many conditions 

as possible. 

The Algorithm then iterates n times or stops if no lateness is found. 

In each iteration, after executing the Algorithm 1, values for 

a.Lateness are determined and the values of a.PriorityWeight are 

evaluated for each activity a in order to be used in the next 

iteration. 

The value of n has to be high enough to produce good results as 

will be explained later on. 

    iter = 0; 

    for each a∈ Activities {a.PriorityWeight = 0}     

    //(initially due dates will be disregarded) 

    repeat 
execute Algorithm 1; 

//updates a.PriorityWeight for all activity 

for each r∈ AltResSets  

 { 

  maxLateness = MaxLateness(r); 

  max = Max(r); 

  for each a∈ RequiredActivities(r) 

   { 

     a.Lateness = a.End – a.MaxEnd; 

     if (a.Lateness > 0)  

         then  
           a.PriorityWeight =   

                   (i/n) * max * (1 + a.Lateness /maxLateness) 

         else 
            a.PriorityWeight =0; 

    }; 

  }; 

 iter = iter + 1 

    until (a.lateness <= 0 for all a∈ Activities) or (iter > n) 
 

Algorithm 3. Improved Algorithm to obtain a solution minimizing 

due dates violation 
 

If at least one of the activities violates the due date in the last 

iteration (iter = n), we can deduce that  

    a.PriorityWeight =  max * (1 + a.Lateness /maxLateness)  
for some a such that a.Lateness > 0 

 

It can be proven that for this iteration the Algorithm will first 

schedule all the activities that violate due dates, avoiding the risk 

pointed out in 1.b. 

 

Proof:  

Given an AltResSet altResSet, 
if altRes∈ AltRes(altResSet), 
   conds = Conds(altResSet), a∈ RequiredActivities(altResSet) 
and a.Lateness > 0,  

    we can ensure that maxLateness > 0 



 

    Consequently 

         a.PriorityWeight > Max(altResSet), 
    and therefore 

         AltConvenience(a, altRes , conds) > Max(altResSet), 
    since  

Possible(a, altRes) >=0, 
AltResPreference(a, altRes) >= 0, and 
∑c∈ conds Verify(a´, rAlt,c)*Weight(c) >=0 

 

Let’s consider now the activities scheduled on time. For all activity 

a´∈ RequiredActivities(altResSet), such that a´.Lateness = 0, the 

following holds: 

 

for all altRes´∈ AltRes(altResSet),  
         AltConvenience(a´, altRest´ , conds) =  
        Possible(a´, altRes´) * (AltResPreference(a´, altRes´)  
        + ∑c∈ conds Verify(a´, altRes´,c)*Weight(c)) + a´.PriorityWeight; 

  
We can infer that 

         AltConvenience(a´, altRest´ , conds) <= Max(altResSet)  
since  

Possible(a´, altRes´) <= 1, 
                          AltResPreference(a´,altRes´) <= 
                                                  MaxAltResPreference(altResSet) 

∑c∈ conds Verify(a´, altRes´,c)*Weight(c) <= 
                                          MaxWeight(altResSet) 

and 
a´.PriorityWeight = 0. 
 

As a result, 

      AltConvenience(a, altRes , conds) >  
                                      AltConvenience(a´, altRest´ , conds) 

for any pair 

  altRes, altRes´∈ AltRes(altResSet),  
and for any pair a, a´, 
such that a.Lateness > 0 
and a´.Lateness = 0.  

 

Thus, at the last iteration, the Algorithm will first schedule all the 

activities that violate due date.  

 

On the other hand, if we take a .high enough value of n, 

a.PriorityWeight will be very low for the first iterations and then the 

function AltConvenience will strongly depend on the weights and on 

the preference of the alternative resources, avoiding the risk cited out 

in 1.a. 

 

Finally, the risk pointed out in 2, is clearly avoided since the values of 

a.PriorityWeight depend on the weights of the particular AltResSet 

that is required by a. 

3.  OBTAINED RESULTS 

In our application, we do not use an objective function to minimize, 

but rather we provide different measures to evaluate the quality of  

the results. Between these measures are, the percentage of conditions 

that are verified, and the measures related to the violations of due 

date. It is difficult to obtain an average behavior in terms of execution 

time or in terms of percentage of conditions verified, due to the fact 

that the output is strongly dependent on the particular input data. 

Unfortunately the industrial application is too complex to include 

input data and results. However, we can comment on the relevant 

problems that arose. In spite of an acceptable percentage of 

conditions verified, some due dates could not be reached. 

The solution adopted in [1] to overcome these problems was to 

divide the set of activities into clusters, scheduling them 

independently. As it was shown in [1], this solution generates idle 

periods of time for the machines. 

The solution found in [2] reduces the quantity of due date 

violations without generating idle periods of time for the machines, 

but these reductions, as described in this paper, depend on the data. 

The approach presented in [2] showed acceptable results for most 

of the data used at that time, but showed poor performance for 

some particular cases which arose later on in the factory. The 

present Algorithm is mainly focussed on generating acceptable 

results for these cases, while keeping acceptable results for the 

previous cases. 

The execution time of the Algorithm presented here is roughly the 

time required to execute one iteration (see [1]) multiplied by the 

number of iterations. 

4.  CONCLUSION 

In this work, an Algorithm for solving a Scheduling for Flexible 

Package Production minimizing Due Times violations has been 

examined. This paper presents an Algorithm that improves the 

results generated in [2] for some particular cases.  

That is, mainly, cases in which there are many conditions 

associated with the resources and also the weights of the resources 

are very different among them. Typically, the performance of the 

Algorithm improves as the number of iterations grows, but of 

course the execution time increases as well. 

Although the results obtained up to now with the Algorithm 

presented here are better than those obtained in [2] for the 

mentioned cases, an exhaustive evaluation on both Algorithms has 

to be done on a large variety of data and this is the task that is being 

carried out at the present moment. 
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