
An Algorithm for Minimising Due Times Violations
in Flexible Package Production Scheduling

Francisco S. Ibáñez
Daniel Díaz Araya

Raymundo Q. Forradellas

LISI – Laboratorio Integrado de Sistemas Inteligentes
IdeI - Instituto de Informática – Dpto. de Informática

Universidad Nacional de San Juan

Cereseto y Meglioli – 5400 San Juan – Argentina

Tel: +54 264 426 47 21 - Fax: +54 264 426 51 01
{fibanez, ddiaz, kike}@iinfo.unsj.edu.ar

ABSTRACT

This paper includes part of the strategies used to solve a scheduling

problem developed for a company that produces flexible packaging,

presented in a quite general form though. In this problem it is

necessary to schedule several jobs that involve four process and for

each one of them there is a group of machines available (of similar

characteristics). Each activity is performed on just one machine.

Besides, for our application, the scheduling must try to verify certain

conditions. For each process (and consequently for all the activities

that perform this process) there is a list of attributes.

The problem is not only to assign each activity to a starting time and to

a specific machine, but also to try to verify conditions that depend on

the values of the attributes of the activities. Moreover, there are criteria

to choose a particular machine.

An approach to solve this problem was presented first in [1]. As

mentioned there, some due dates could not be fulfilled on time. An

approach to decrease the quantity of due dates violations was presented

in [2]. This approach generates acceptable results for most of the cases

in the real application. However, there were some cases in which the

Algorithm did not work properly. The present work includes an

Algorithm that improves the results generated in [2] for some special

cases that arose in the real application.

Keywords: Scheduling Problems, Constrains Satisfaction,

Optimization, Production, Flexible Packaging.

1. INTRODUCTION

This paper includes part of the strategies used to solve a scheduling

problem developed for a company that produces flexible packaging.

The application have been implemented in C++, employing routines

of Ilog [3]. In this problem it is necessary to schedule several jobs.

These jobs involve four process: Printing, Laminating, Cutting and

Packing and for each one of them there is a group of machines

available (of similar characteristics). Each job is described by a list of

four activities of given processing times, that perform the mentioned

processes in that order. Each activity is performed on just one

machine. For example, if a represents a printing activity and {M1,

...,Mk} represent the set of machines capable of executing the

printing process, a will be performed by a member of the set {M1,

...,Mk}. For our application the scheduling must also try to verify

certain conditions.

For each process (and for all the activities that perform this process)

there is a list of attributes. For the printing process, the attributes are:

ink line, duration of the (printing) process, etc. These attributes are

also associated to the machines but their values depend on the time.

For each printing machine M1, ...,Mk, the values of the attributes at

time t are defined as equal to the values of the attributes of the

activity that is being performed at time t. If no activity is being

performed at t, these values are set to those of the last activity

performed before t. For each attribute, there is a condition that must

try to satisfy the schedules of the machines M1, ...,Mk.

Given a machine M and an activity a, each condition associated to M
is evaluated at time t, as a function of the value of the corresponding

attribute of M at time t, and the value of the same attribute of a. For

example, for the attribute ink line, (corresponding to the printing

process) the condition is to preserve the ink line. If the activity a uses

machine M and is scheduled starting at time t, the condition to
preserve the ink line holds at time t, if the value of the attribute ink
line for M at time t is equal to the value of the attribute ink line of the

activity a. In the practical application, the verification of this condition

represents the fact that the activity a and the previous one use the

same ink line.

The problem is to assign each activity to a starting time and to a

specific machine trying to verify the conditions. This problem can be

considered as a “Multi Objective COmbinatorial” (MOCO)

problems where the objectives are determined by the conditions. In

the bibliography that we have found about MOCO problems, the

multi-objective functions are evaluated after finding a solution (see

[4] & [5]).

In our problem, the objectives to be fulfilled have a very peculiar

characteristic: The conditions (i.e. to preserve ink line, etc.) that

must be verified, are associated with pairs of activities scheduled

consecutively in one machine; whereas [4] & [5] need all the

activities to be scheduled to evaluate the objective functions. As a

result, our algorithm can evaluate the objectives in each step that

leads to a solution, as opposed to evaluating the multi-objective

function after the whole solution was found, as it is done in [4] & [5].

A comparison of these approaches would be deceptive since we take

advantage of particular features of our problem that allows us to

guide our search for solutions whereas the other approaches are much

more general. The problem has been initially modeled in [1], using

alternative resource sets [3].

From now on alternative resource sets will be referred as AltResSets.

An AltResSet is a compound resource that contains two or more

equivalent resources, called alternative resources, to which activities

can be assigned. An AltResSet is defined for each process. Each

AltResSet represents a set of machines such as {M1, ...,Mk} and

contains k alternative resources that represent the machines M1,

...,Mk.

The present work includes an Algorithm that improves the results

generated in [2] for some special cases that arose in the real

application (see 2.3).

2. SOLVING THE PROBLEM

In order to take into account the due dates, we define two attributes

associated to the activities: PriorityWeight and MaxEnd.

Each job J has a due date, referred as dueDate(J). The values of the

attribute MaxEnd are set by executing the following pre-processing:

For each job J

 {

 Let a1, a2, a3 and a4 be the activities belonging to the job J

(Printing, Laminating, Cutting and Packing, respectively)

a4.MaxEnd = dueTime(J)

for i = 3 down to 1{ai.MaxEnd = ai+1.MaxEnd – duration(ai+1)}

 }

For each activity a, a.MaxEnd represent the maximum time in which

the activity a can finish. This value does not change during the

execution of the Algorithm, whereas a. PriorityWeight is initially set

to 0 and it increases its value every time that a.End > a.MaxEnd in

the reached solution (a.End represents the end of the activity a). It

has been assumed that each activity requires only one AltResSet.
Let AltResSets, AltResources, and Conditions represent: all the

AltResSets, all the alternative resources, and all the conditions,

respectively. Below we included the functions involved in the

Algorithms.

StartMin: takes as argument an activity not scheduled, and returns

the minimal possible start time.

AltResSet: takes as argument an activity, and returns the AltResSet

required by this activity.

Verify: takes as arguments an activity act, an alternative resource

altRest, and a condition cond, and returns 1 if act verify the

condition cond at the time StartMin(act) with respect to the

alternative resource altRest. Otherwise the function returns 0.

Conds: takes as argument an AltResSet, and returns the set of

conditions associated with the argument.

Possible: takes as arguments, an activity act, and an alternative

resource altRes, and returns 1 if it is possible to assign

altRes to act at the time StartMin(act). Otherwise it

returns 0.

Weight: takes a condition and returns a value that represents the

degree of importance of that condition.

AltRes: takes an AltResSet and returns the set of alternative

resources that are part of the AltResSet.

AltResPreference: takes an activity and an alternative resource, and

returns a non negative integer number, whose

value is set according to the convenience of

assigning the alternative resource to the activity.

Given,

an activity a,

an AltResSet altResSet,
an Alternative Resource altRes∈ AltRes(altResSet),
and conds = Conds(AltResSet),

the functions AltConvenience, AltResSetConvenience and

ActivityConvenience are defined as follows:

AltConvenience(a, altRes, conds) =
 Possible(a, altRes) * (AltResPreference(a, altRes)
 + ∑c∈ conds Verify(a, altRes,c) * Weight(c))
 + a.PriorityWeight
AltResSetConvenience(act, altResSet) =

 MaxrecAlt∈ AltRes(altResSet)

 AltConvenience(act, altRes, Conds(altResSet))
ActivityConvenience(act) =
 AltResSetConvenience(act, AltResSet(act))

2.1. Obtaining a Solution

The next Algorithm produces a solution in which the number of due

dates violation depend on the value of the attribute PriorityWeight
assigned to each activity. Activities represent the set of all the

activities that have to be scheduled.

repeat

Min = Min act∈ Activities StartMin(act)

(Get the minimum time in which it is possible to schedule an

activity)

MinSet = {act∈ Activities : StartMin(act) = Min}

(Get the set of activities with minimum start time Min)

MaxConvenience=Max act∈ MinSet ActivityConvenience(act)

Pairs =

 {

 (a, altRes): a∈ MinSet, r = AltResSet(a),

 altRes ∈ AltRes(r), conds = Conds(r),

 AltConvenience(a, altRes, conds) = MaxConvenience

 }

(Get the set of pairs Activity-AlternativeResource that

maximise the function AltConvenience).

Select an element of the set Pairs. Let’s say (a, altRes).

Schedule the activity a at time Min assigning the alternative

resource altRes.

until All the activities are scheduled

Algorithm 1. Algorithm to obtain a solution

2.2 Reducing due dates violation. First Version

The Algorithm is similar to the one presented in [2] and is based

on repeatedly solving the scheduling while trying to verify as many

conditions as possible (initially completely disregarding due dates)

and calculating the lateness of the activities with respect to the

maximum times in which the activities can finish.

This information is used in the Algorithm in the following

iterations so that the delayed activities tend to be scheduled earlier.

n represent the maximum quantity of iterations.

iter = 0;

for each a∈ Activities { a.PriorityWeight = 0}

(initially due dates will be disregarded)

repeat
 execute Algorithm 1

 for each a∈ Activities

 {a.lateness = a.End – a.MaxEnd

 if a.lateness > 0

 then
 a.PriorityWeight = a.PriorityWeight + a.lateness * Step

 }

 iter = iter + 1

until (a.lateness <= 0 for all a∈ Activities) or (iter>n)

Algorithm 2. Algorithm to obtain a solution minimizing due dates

violation
The greater the lateness is for an activity the greater its priority to be

chosen will be in the next iteration. Step determines how fast the

delayed activities increase will their priorities.

2.3 Reducing due dates violation. Second Version

Algorithm 2 generates acceptable results for most of the cases in the

real application. However, there were some cases in which the

Algorithm did not work properly. We can summarize the found

drawbacks in the following issues:

1. The value of Step is not automatically set and has to be

carefully chosen. An inadequate value for Step can produce

bad results. There are two cases.

1.a. In each iteration, the weights and the preferences of the

alternative resources compete with the latenesses of

activities. If we choose too high a value for Step, we take the

risk that the weights and the preferences of the alternative

resources have no influence whatsoever. In this case, the

Algorithm will blindly first schedule all the activities with

lateness.

1. b. Conversely, if the value of Step is too low, the lateness will

exert insignificant influence and the scheduling will mainly

be driven by the weights and the preferences of the

alternative resources. So the performance of the Algorithm is

strongly dependent on the value chosen for Step.

2. Even by choosing a suitable value for Step in order to avoid

the problem pointed out previously, problems still may arise

in some cases. Consider two altResSets r1 and r2 such that

the sum of the weight of r1 is much lower than the sum of

the weights of r2. A low value for Step is suitable for r1 and

too low for r2. Conversely, A high value for Step is suitable

for r2 and too high for r1.

The Algorithm 3 improves the Algorithm 2, (and the one presented

in [2]) for special cases that arose in the real application. Cases in

which there are too many weights and therefore a suitable value for

Step is nor easy to find, and cases in which the situation pointed out

in 2 happens.

To overcome the problems previously mentioned, we propose the

Algorithm 3 based on the following idea:

For each activity a that requires the AltResSet r, such that a.Lateness
is greater than zero, a.PriorityWeight is calculated taking into

account the lateness of a, the maximum lateness of the activities that

require r, the weights of r, the preferences of using one or another

alternative resource of r, and the number of the current iteration.

Given, an activity a, an AltResSet altResSet, and an Alternative

Resource ar∈ AltRes(altResSet), we define the following functions in

order to calculate the value of a.PriorityWeight if a.Lateness is

greater than zero.

RequiredActivities(altResSet)=
 {a∈ Activities: AltResSet(a) = altResSet}

MaxWeight(altResSet) = ∑c∈ Conds(altResSet) Weight(c)

MaxAltResPreference(altResSet)=
Maxa∈ RequiredActivities(altResSet),ar∈ AltRes(altResSet) AltResPreference(a, ar)
Max(altResSet) =
 MaxWeight(altResSet)+ MaxAltResPreference(altResSet);
MaxLateness(altResSet) =
 Max a∈ RequiredActivities(altResSet) (a.End – a.MaxEnd)

(a.End – a.MaxEnd represents the Lateness of activity a)

The Algorithm 3 works as follows. As a consequence of the first

line, Algorithm 1 is initially executed disregarding due dates. The

solution initially found is dedicated to verify as many conditions

as possible.

The Algorithm then iterates n times or stops if no lateness is found.

In each iteration, after executing the Algorithm 1, values for

a.Lateness are determined and the values of a.PriorityWeight are

evaluated for each activity a in order to be used in the next

iteration.

The value of n has to be high enough to produce good results as

will be explained later on.

 iter = 0;

 for each a∈ Activities {a.PriorityWeight = 0}

 //(initially due dates will be disregarded)

 repeat
execute Algorithm 1;

//updates a.PriorityWeight for all activity

for each r∈ AltResSets

 {

 maxLateness = MaxLateness(r);

 max = Max(r);

 for each a∈ RequiredActivities(r)

 {

 a.Lateness = a.End – a.MaxEnd;

 if (a.Lateness > 0)

 then
 a.PriorityWeight =

 (i/n) * max * (1 + a.Lateness /maxLateness)

 else
 a.PriorityWeight =0;

 };

 };

 iter = iter + 1

 until (a.lateness <= 0 for all a∈ Activities) or (iter > n)

Algorithm 3. Improved Algorithm to obtain a solution minimizing

due dates violation

If at least one of the activities violates the due date in the last

iteration (iter = n), we can deduce that

 a.PriorityWeight = max * (1 + a.Lateness /maxLateness)
for some a such that a.Lateness > 0

It can be proven that for this iteration the Algorithm will first

schedule all the activities that violate due dates, avoiding the risk

pointed out in 1.b.

Proof:

Given an AltResSet altResSet,
if altRes∈ AltRes(altResSet),
 conds = Conds(altResSet), a∈ RequiredActivities(altResSet)
and a.Lateness > 0,

 we can ensure that maxLateness > 0

 Consequently

 a.PriorityWeight > Max(altResSet),
 and therefore

 AltConvenience(a, altRes , conds) > Max(altResSet),
 since

Possible(a, altRes) >=0,
AltResPreference(a, altRes) >= 0, and
∑c∈ conds Verify(a´, rAlt,c)*Weight(c) >=0

Let’s consider now the activities scheduled on time. For all activity

a´∈ RequiredActivities(altResSet), such that a´.Lateness = 0, the

following holds:

for all altRes´∈ AltRes(altResSet),
 AltConvenience(a´, altRest´ , conds) =
 Possible(a´, altRes´) * (AltResPreference(a´, altRes´)
 + ∑c∈ conds Verify(a´, altRes´,c)*Weight(c)) + a´.PriorityWeight;

We can infer that

 AltConvenience(a´, altRest´ , conds) <= Max(altResSet)
since

Possible(a´, altRes´) <= 1,
 AltResPreference(a´,altRes´) <=
 MaxAltResPreference(altResSet)

∑c∈ conds Verify(a´, altRes´,c)*Weight(c) <=
 MaxWeight(altResSet)

and
a´.PriorityWeight = 0.

As a result,

 AltConvenience(a, altRes , conds) >
 AltConvenience(a´, altRest´ , conds)

for any pair

 altRes, altRes´∈ AltRes(altResSet),
and for any pair a, a´,
such that a.Lateness > 0
and a´.Lateness = 0.

Thus, at the last iteration, the Algorithm will first schedule all the

activities that violate due date.

On the other hand, if we take a .high enough value of n,

a.PriorityWeight will be very low for the first iterations and then the

function AltConvenience will strongly depend on the weights and on

the preference of the alternative resources, avoiding the risk cited out

in 1.a.

Finally, the risk pointed out in 2, is clearly avoided since the values of

a.PriorityWeight depend on the weights of the particular AltResSet

that is required by a.

3. OBTAINED RESULTS

In our application, we do not use an objective function to minimize,

but rather we provide different measures to evaluate the quality of

the results. Between these measures are, the percentage of conditions

that are verified, and the measures related to the violations of due

date. It is difficult to obtain an average behavior in terms of execution

time or in terms of percentage of conditions verified, due to the fact

that the output is strongly dependent on the particular input data.

Unfortunately the industrial application is too complex to include

input data and results. However, we can comment on the relevant

problems that arose. In spite of an acceptable percentage of

conditions verified, some due dates could not be reached.

The solution adopted in [1] to overcome these problems was to

divide the set of activities into clusters, scheduling them

independently. As it was shown in [1], this solution generates idle

periods of time for the machines.

The solution found in [2] reduces the quantity of due date

violations without generating idle periods of time for the machines,

but these reductions, as described in this paper, depend on the data.

The approach presented in [2] showed acceptable results for most

of the data used at that time, but showed poor performance for

some particular cases which arose later on in the factory. The

present Algorithm is mainly focussed on generating acceptable

results for these cases, while keeping acceptable results for the

previous cases.

The execution time of the Algorithm presented here is roughly the

time required to execute one iteration (see [1]) multiplied by the

number of iterations.

4. CONCLUSION

In this work, an Algorithm for solving a Scheduling for Flexible

Package Production minimizing Due Times violations has been

examined. This paper presents an Algorithm that improves the

results generated in [2] for some particular cases.

That is, mainly, cases in which there are many conditions

associated with the resources and also the weights of the resources

are very different among them. Typically, the performance of the

Algorithm improves as the number of iterations grows, but of

course the execution time increases as well.

Although the results obtained up to now with the Algorithm

presented here are better than those obtained in [2] for the

mentioned cases, an exhaustive evaluation on both Algorithms has

to be done on a large variety of data and this is the task that is being

carried out at the present moment.

5. REFERENCES
[1] Ibañez F., Diaz D., Forradellas R.,“Scheduling for flexible

package production”, Proceedings IEPM’2001. Vol. 1, 385-

400, Quebec, Canada, 2001. Selected work for the

International Journal of Production Economics (IJPE) topic

“Operation Management”

[2] Ibañez F., Diaz D., Forradellas R.,“ Scheduling for Flexible

Package Production Minimising Due Times Violations”,

Eighth International Workshop on Project Management and

Scheduling, EURO Working Group, (PMS 2002),

www.adeit.uv.es/pms2002/, Valencia, Spain, 2002.

[3] “Ilog Schedule- Reference Manual Version 4.4”, Ilog, France,

1999.

[4] Teghem J., Tuyttens D., Ulungu E.L., “An interactive

heuristic method for multiobjective combinatorial

optimization”. Computers and Operations Research , Vol. 27.

621-634(2000).

[5] Teghem J., Ph. Fortemps, Tuyttens D., T. Loukil “Solving

multi-objective production scheduling problems using

metaheuristics”, Proceedings IEPM’2001. Vol. 1, 385-400,

2001.

	footer29: -29-
	header: JCS&T Vol. 3 No. 2 October 2003
	footer30: -30-
	footer31: -31-
	footer32: -32-

