
3D Requirements Visualization

Alfredo Raúl Teyseyre
Facultad de Ciencias Exactas, Universidad Nacional del Centro de la Pcia. de Bs. As.

Campus Universitario Paraje Arroyo Seco - (7000) Tandil, Bs. As., Argentina.

ABSTRACT
The importance of correctly determining the re-

quirements of a system at the very beginning of the
development process it is a well known fact. Experi-
ence shows that the incorrect definition of the require-
ments leads to the development of deficient systems,
increases the cost of its development or even causes
projects to fail. Therefore it is crucial for the clients
to verify that the planned system satisfies their needs.
This means that the system must be described in a
form that clients can clearly understand it. In this con-
text, visualization techniques appear as a useful tool
to help the users in the process of requirements under-
standing and validation.
This work proposes the use of 3D visualization tech-
niques to validate the requirements of a system with
the user. The use of these techniques can reduce the
communication gap between the clients and the devel-
opers resulting in a much more effective process of re-
quirements validation. The approach tries to take ad-
vantage of the benefits of the 3D visualization, com-
plementing this with the advantages of formal speci-
fications.
A tool, called ReqViz3D, that materializes the pro-
posal was developed. This tool allows to specify
the requirements in the formal language Z, define a
graphical representation of them, and create a 3D ani-
mated visualization of theirs execution through which
the users can validate them.

Keywords: Requirements, Visualization, Require-
ments Visualization, 3D Graphics, Formal Specifica-
tions.

1 INTRODUCTION
Meeting user requirements of a software system is

a major challenge to software developers. Experience
in a number of large projects reveals that a very large
percentage of errors were consequence of the impre-
cision in the earlier stages of the development pro-
cess [22]. Therefore, it is a well-accepted fact that it
is crucial to express user requirements as completely,
correctly and unambiguously as possible. Moreover,
it is vital for the customers to be able to confirm that
the planned system meets their needs, and this means
that the system must be described in a way that they
can understand it [23].

Many conventional approaches have been applied
to validate requirements, but, most of them, fail in

detecting errors [14]. On the other hand, formal ap-
proaches, give clarity and precision at specification
time. In that sense, formal specifications, enable us to
denote unambiguously the meaning of a requirements
specification document due to their formal syntax and
semantics. However, except in safety-critical work,
the cost of full verification is prohibitive [11]. More-
over, formal specifications often fail in the user val-
idation process since they are based on formal nota-
tions not always comprehensible by users and hence
they fit better to software developers than customers.
Therefore, in order to overcome these difficulties vi-
sualization techniques appear as an interesting alter-
native to explore.

Visualization is a method to comprehend informa-
tion by the use of diagrams to represent it. Data are
transformed into geometric representations that help
users in the understanding process. In general, graphi-
cal representations provide a closer match to the men-
tal model of the users than textual representations and
take advantage of their perception capabilities.

In spite of their success in numerous computing ar-
eas, little research has been reported in the area of
requirements visualization. The previous approaches
enable developers to validate visually the specifica-
tion of a system with the user, but their poor expres-
sive graphics make difficult understanding. More-
over, neither of the works make use of current 3D
graphics capabilities in order to present more real an-
imations. However, 3D visualization techniques can
be a powerful tool to facilitate the analysis and un-
derstanding of requirements. The use of visualization
techniques could reduce the communication gap be-
tween the customer and developer resulting in a more
effective requirements validation process [21]. In this
context, the main objective of this work is using 3D
visualization and animation techniques to validate re-
quirements with the user.

A tool, called REQV IZ3D, that materializes the
proposal was developed. This tool allows to specify
the requirements in the formal language Z [28], de-
fine a graphical representation of them, and create a
3D animated visualization of theirs execution through
which the users can validate them.

This paper is organized as follows. Section 2 sur-
veys current efforts towards requirements validation.
Section 3 presents an overview of visualization and
3D graphics. Section 4 describes the approach and

presents a case study. Section 5 presents a brief
description of the prototype tool ReqViZ3D. Finally
section 6 outlines some preliminary conclusions and
future work.

2 RELATED WORK
Intuitively, the simple choice to capture the require-

ments of a software system is natural language. How-
ever natural languages specifications have been one
of the main sources of ambiguity due its rich vocab-
ulary and its expressiveness [19]. As an alternative
formal specification languages have been proposed.
Formal specification languages have a formal syn-
tax and semantics which makes it possible to unam-
biguously denote the meaning of the requirements.
The best known formal specifications languages are
Z [27], B [16] and VDM [12] among others.

Although formal specification languages are pre-
cise, concise and unambiguous, which make them an
excellent medium for communication between system
designers, analysts and testers, they fail in the vali-
dation process with the customer: it is difficult for a
customer to understand formal specifications because
they are based on mathematical foundations and no-
tations. However having formalized a system, auto-
mated support is available for validating the model by
execution.

Many have proposed the use of executable formal
specifications for the construction of prototypes to
validate software requirements with the users at an
early stage through feedback [6]. Techniques like ex-
ecution have been introduced to overcome the dif-
ficulty of using a non executable specification lan-
guage, allowing the specifier to either test or rapidly
implement his specification document. Several re-
searchers have reported success in executing subsets
of Z translating them to languages such as PROLOG

or LISP [21, 8].
Although specification execution can provide im-

mediate feedback during the process of writing a
specification and reduce the errors made at the early
stages of the development process, seems yet to be
more useful to developers rather than to users. This is
due to the fact that the execution is still based on the
underlying specification notations and the system is
still described in a way that users can not understand.

Visualization techniques have been used in many
computing areas. However, in spite of their success,
little research has been reported in the area of re-
quirements visualization. Most of the reported works
are oriented towards the validation of requirements
on specific domains, as for example real-time sys-
tems (IPTES [24] and ENVISAGER [7]), and do
not address a wide range of problems as formal speci-
fication methods do. Moreover there is only one fixed
graphic representation of requirements, for example
nets, limiting in consequence the expressive power of
the visual presentations. This could lead to poor ex-
pressive presentations that make difficult understand-

ing.
Among the few works reported two of them can be

remarked: VIZ [21] and POSSUM [8]. Both systems
enable the developer to validate visually specifica-
tions in Z. Technology provided by VIZ allows soft-
ware developers to choose an appropriate represen-
tation of objects used in an executable formal speci-
fication and create animations of these objects in an
interactive fashion. However, the system only sup-
ports the construction of simple presentations. On
the other side, POSSUM facilitates the construction
of complex presentation using Tcl/Tk, but it does not
provide assistance in the construction of the presenta-
tions. Moreover, both systems only supports 2D pre-
sentations and does not take advantage of current 3D
graphics technologies. In contrast, we attempt to fully
exploit visualization techniques and also assist the de-
veloper in building the presentation.

3 3D VISUALIZATION
Lets first state the notion of visualization, which is

defined by Card [4] as follows:“the use of computer-
supported, interactive, visual representations of data
to amplify cognition”, where cognition is the acquisi-
tion or use of knowledge (see figure 1). So, the pur-
pose of visualization is insight, not pictures. The main
goals of this insight are discovery, decision making
and explanation. Information visualization is useful
to the extent that it increases our ability to perform
these and other cognitive activities. Moreover, visual-
ization is a powerful tool to facilitate the analysis and
understanding of complex information such as soft-
ware requirements. This is mainly because, it pro-
vides a closer match to the mental model of the users
than textual representations and also reduces the com-
munication gap between the customer and the devel-
oper.

Figure 1: Visualization Process

At the beginning most of the visualization systems
display 2D graphics, but nowadays, more and more
applications use 3D graphics in their visual presen-
tations. Using this kind of presentations provides
several advantages. The first and, perhaps the most
clear one, is a greater information density than two-
dimensional presentations as a consequence of a big-
ger physical space [25]. Also, they help to have a

clear perception of the relations between objects by
integration of local with global views [17] and by
composition of multiples 2D views in a single 3D
view [15]. Moreover their similitude with the real
world enables us to represent it in a more natural way
than 2D. This means that the representation of the ob-
jects can be done according to its associated real con-
cept, the interactions can be more powerful and the
animations can be even more real.

On the other hand, several problems arise, as inten-
sive computation and more complex implementation
than two-dimensional interfaces. These problems can
be lighten using powerful and specialized hardware
and several tools like 3D toolkits as JAVA 3D [26] or
3D modeling languages such as VRML [10].

In general, 3D presentations should not be used in
all visualizations, they should be used only when it is
possible to take advantage of their benefits and avoid
their weakness [20]. 3D presentations are not essen-
tial, however a good utilization could be very helpful.

4 THE APPROACH
Our main objective is the visualization and ani-

mation of requirements to achieve a more effective
requirements validation process. The approach pro-
poses the use of visualization as well as formal spec-
ifications. Before describing the approach lets state
what a validation means [16]:“Validation of a de-
scription D against a descriptionC means checking
that D satisfies the properties specified inC, whereC
is the informal or semi-formal description.”

In the context of requirements validation, the check
consist in ensuring that the specified system (D) is
the system that the clients wants, whereC is an in-
formal set of the clients expectations. Figure 2 re-
sumes the key ideas behind this project. First, we ex-
press requirements formally in Z. A formal specifica-
tion makes it possible to unambiguously denote the
meaning of the system requirements. After that, we
define suitable graphic representations of the specifi-
cation concepts and validate visually the specification
with the user. Therefore, knowing that the require-
ments specification conforms to the user needs, it is a
much more reliable base for developing the system.

The formal approach adopted can be classified as a
light one, in the sense that no formal reasoning (the-
orem proving) is carried out to check if the proper-
ties of the specified system respond to the informal
requirements and the emphasis is focused on the ex-
ecution of the specification [13, 9]. Using formal
methods in a lighter way is both a key to using them
on large-scale applications and a way of penetrat-
ing fields outside the safety-critical area, where for-
mal methods are mainly used and a detailed applica-
tion can be justified because of the danger of loss of
life [13].

We have decided to formalize requirements in Z.
This is mainly because the experience gained in the

Figure 2: Requirements Validation Process

past years from case studies has proven that a large
variety of specifications problems may be success-
fully addressed in Z and set theory forms an adequate
basis for building the more complex data structures
which are needed in specifications [22]. However, it
should be noted that also other formal specification
languages could have been used.

In order to present an animated presentation, to val-
idate requirements, the formal specification is exe-
cuted. The execution of the specification allows the
user to walk through a specification using different
scenarios that are shown by visual presentations. The
animation displays the behavior of the specified sys-
tem and provides a means of dynamic testing. As a
result of the approach:

• Misunderstandings between clients and developers are
detected.

• New services arise and obscure ones are clarified.

• Inconsistencies in the specification are detected.

• The developed system is much closer to the needed
system.

• The development effort is reduced.

In the next subsections each part of the approach is
discussed in more detail: from system specification in
Z, execution of specifications and visualization using
a simple example.

Execution of formal specifications
Formal specification languages such as Z have been

developed to precisely and concisely define the char-
acteristics and specifications of a software system.
However, formal specification languages fail in estab-
lishing a very important property for an immediate re-
flection of the consequences of the specifications and
for an early validation: the executability of a specifi-
cation [6].

Z was not conceived for execution, since its aim is
to define abstract properties of the system being built
and not the design decisions or the implementation

details of the system. Z specifications are declarative
and the developer can declare non-computationally
entities, such as infinite sets or non-computable func-
tions and specify properties and operations on them.

Therefore, in order to execute a formal specifi-
cation of Z, the notation of Z must be restricted
to a subset almost directly executable. This means
that Z is restricted forbidding the declaration of non-
computationally entities and adapting it to the capac-
ities of executables languages that, on the other side,
are less expressive that non-executables ones, because
their functions must be computable and their domains
must be finite.

At this time several problems arise that must be
faced according to the chosen method of translation
and the target language. In general, most problems
derive from trying to match different levels of abstrac-
tion. Any acceptable solution has to balance declar-
ativeness versus efficiency in the sense that we want
not only an executable form of a very high-level spec-
ification, but also a reasonable efficient execution to
test the specification [2].

Due to the mathematical and logical foundations
of the formal languages the declarative or functional
languages seem to be the most suitable ones. For ex-
ample, a straightforward way to animate Z documents
seems to be the mapping of Z specifications into PRO-
LOG as practice shows that most predicates found in
Z documents have an easy implementation in terms
of PROLOG clauses. A logic programming language
is a very interesting choice for translating a specifi-
cation language as Z, which is based, on first order
logic. The conceptual gap between a logic program-
ming language (which is a subset of a first order logic)
and an specification based on logic is significatively
less than a specification based on logic and an imper-
ative language.

In fact, it is possible to take a subset of Z for gener-
ating PROLOG code. This point of view is compatible
with the assertion that a considerable part of Z has ex-
ecutable semantics [2]. In particular, the approach we
adopted is similar to the approach proposed by Ster-
ling [29]:
• The semantics of a subset of Z on which the

transformation is based, is clear.

• The transformation of the subset is almost direct.

• The expressivity of the subset is powerful
enough for many applications.

Each of these assertions demands a deeper discussion.
However, as the focus is the application of logic pro-
gramming in software engineering, these assertions
will not be discussed, showing instead how the trans-
formation can be carried out by using an example.

Translating Z to Prolog
The main construction in Z is the schema. A

schema enables us to decompose a specification into

small pieces. In Z, schemas are used to describe both
static anddynamic aspects of the systems. The static
aspects include the states it can occupy and the in-
variant relationships that are maintained as the system
moves from state to state. On the other hand, the dy-
namic aspects include the operations that are possible,
the relationship between their inputs and outputs and
the changes of state that happen. In order to clarify
this ideas a simple and widely discussed LIFT SYS-
TEM [5] example is presented:

“A lift controller system has to service requests
coming from the buttons placed on the floors of a
building. The lift is moved by the controller in a di-
rection satisfying the pending requests until no more
requests are found; in this case the lift changes direc-
tion to service other new or pending requests”.

First, we introduce a schema to describe the sys-
tem state which corresponds to the static part of the
system, as figure 3 shows. The lift can be defined
by its position, direction, state, door state and pend-
ing requests. The direction of the lift can beup or
down, while the state indicates if the lift ismovingor
stopped. The lift door opens when the lift arrives at a
floor and it is closed while the lift ismoving. Possible
requests areupor downrequests. The invariant states
that the movement of the lift is restricted to an interval
of valid floors and asserts that while the lift is moving
the door must be closed.

Figure 3: Z State Schema and its Translation Proce-
dure

In order to translate a state schema, a PROLOG

clause will be created whose name is the same of
the schema, the arguments of the clause will be the
state variables and the invariant of the schema as the
body of the clause. An additional argument is also
added for storing global declarations of the specifi-
cation. For example, figure 3 shows the translation of
theLift schema. The clausegetContain, which is used
to access the values of global declarations, enable us
to obtain the value of the constantMax Level.

We can now start defining the system operations,

that is the dynamic aspects of the system (see fig-
ure 4). MakeRequestsschema adds a new request to
the requests set. Operation schemaMoveUpUpde-
fines the operation of moving the lift up if up requests
are present above the lift (also similar operations are
defined for the other directions and for opening and
closing the door, not reported for conciseness).

In an operation schema we can identify a declara-
tion part and a predicate part. The declaration part
defines the inputs and the outputs of the operation as
well as the system state schemas over which its oper-
ates. The declaration∆Lift tells us that the schema is
describing a state change inLift schema. The declara-
tion names ended in a question mark define the inputs
of the schema. The part of the schema below the line,
that is the predicate part, defines conditions that con-
strain the values declared in the declaration part.

Figure 4: Translation of an Operation Schema

For translating an operation schema a PROLOG

clause is created whose name is the same of the
schema and the inputs and outputs of the operations
as the arguments of the clause (figure 4 shows the
translation procedure). Also, two additional param-
eters are needed (PROLOG structures) for holding the
state of the system before and after the execution of
the operation. Other two parameters are included for
maintaining global declarations and logging and trac-
ing the execution of the operations (information used
to animate visualizations). Finally the body of the
clause will be the assertions of the Z schema, that
is, pre and post conditions of the schema operations.
Also, after the execution of an operation schema the
invariant must still remain true, so in order to ver-
ify that fact a call to the clause of the state schema
is needed. Figure 4 illustrates the translation proce-
dure of the schemaMakeRequests. The operationad-
dChangeOpregisters in the global state that the oper-
ation was executed.

3D Visualization
Once the system is specified in Z, the developer de-

fines the graphical representation of the requirements

for visualizing and animating the specification con-
cepts in a 3D world (as figure 5 shows), and so vali-
dated by the users. In this example the user can press
the buttons of each floor an see how the lift services
user requests to go up or down. When the button is
pressed is lighted on and when the lift services the re-
quest is lighted off. For building the visualization RE-
QV IZ3D provides a graphical specification language
to define the geometry and behavior of the 3D graph-
ics objects. An object specification is composed by
three main parts:geometry definition, actionsandrec-
ognized events.

Figure 5: Lift System Visualization

The geometry section defines the different shapes
that can be used to present a graphic object. For ex-
ample, the next script defines the lift graphic object:

geometry([def(open,file(’models/DBLDOORO.3DS’)),

def(closed,file(’models/DBLDOORC.3DS’))]).

In particular, in this example, it defines all the alter-
native geometries of the lift, that is one when the lift
is closed and another when it is opened. Also each
geometry can be named in order to be identified and
accessed.

The next section defines the behavior of the
lift (open, close and goto). These actions are de-
fined in terms of a set of predefined actions (translate,
move,..). For example the actionopencall theswitch
action in order to show a graphic of the lift opened:

action(open, [switch(open)]).
action(close,[switch(closed)]).
action(goto(Floor,From),[call(Time is abs((From-Floor))),

moveTo(time(0,Time),[point3d(0.0,Floor,0.0)])]).

Finally the events section defines the reactions of
the lift in response to changes in the execution of
a Z specification, using a change-propagation mech-
anism, that ensures consistency between the speci-
fications and visualizations based on implicit invo-
cation [3]. The mechanism maintains a registry of
the dependent components within the specification.
Changes in the state of the model trigger events
that are propagated to the visualizations. Using this
mechanism the Z animator announces different events
about the state of the execution of a specification. The
first event that is propagated when an operation is ex-
ecuted is thestart operationevent. It may be possible
that the execution of the operation fails, so thefail
operationevent is announced. In contrast, if the oper-

ation is successfully executed, anend operationevent
is propagated. At last, if the operation changed the
state of the system anstate changedevent is triggered.
For example, when the lift is closed the presentation
must be updated (switch toclosedgeometry):

event(stateChanged,goto(X),[value(’position’,Pos),
oldValue(’position’,OPos),goto(Pos,OPos)]).

event(stateChanged,openDoor,[open]).
event(stateChanged,closeDoor,[close]).

5 THE TOOL
In essence, this tool takes a specification as input

and generates a visualization as output, through which
users can validate requirements. REQV IZ3D was de-
veloped in JAVA . In order to animate a Z specification,
it is translated to PROLOG and executed. As we de-
veloped REQV IZ3D in JAVA , a way to integrate JAVA

and PROLOG was needed. This integration was done
using JAVA LOG [1]. JAVA LOG is a PROLOG inter-
preter written in JAVA designed to allow easy inte-
gration between JAVA and PROLOGmixing Logic/OO
paradigms. Also, trying to take advantage of 3D visu-
alizations we developed the View subsystem on the
top of JAVA 3D. Figure 6 presents a global system
view of REQV IZ3D that defines a blueprint of the
overall structure of the application and corresponds
to the architectural modelModel-View-Controller[3].
This model prescribes the division of an interactive
application in three parts, theModel that represents
the application functionality, theViewresponsible for
the output interface and theController responsible for
the input handling.

Figure 6: Global System View

Also, another examples were developed using this
tool, as figure 7 shows: an automatic teller machine
and a vending machine. The first example is about a
vending machine that sells cans. A client inserts coins
in the coin slot. After that, if the required amount of
money was inserted, the client obtains a can by press-
ing the eject button. The machine can expend a lim-
ited number of cans.

The second example is an automatic teller machine
which provides these basic services: deposit, with-
draw, transfer, balance and user authentication. In or-
der to use the ATM machine the user inserts its card
and is prompted for a password. The password is val-
idated and if it is correct the client can make different
transactions by touching the screen buttons and enter-
ing values using the keyboard. The user receives a

ticket for each operation and, in the case of extracting
money, takes it.

Figure 7: Examples

6 CONCLUSIONS
The main contribution of this work is the utilization

of 3D visualization techniques to reduce the commu-
nication gap between the costumer and the developer
resulting in a much more effective process of require-
ments validation:the system is described in a way that
users can understand. Therefore, as a consequence of
validating requirements in the earlier stages of the de-
velopment process, the total effort to develop a system
is reduced.

Also a prototype tool to visualize requirements was
developed. This tool assists the developer in several
stages in the development process: from requirements
specification in Z and definition of graphical objects,
to animation and execution of requirements in a 3D
world. Several examples were presented showing that
the use of visualization techniques were very useful
in analyzing the dynamics of them.

Three dimensional graphics were used in the con-
struction of the visualizations. Their similitude with
the real world enables us to represent it in a more nat-
ural way than 2D. This means that the representation
of the objects can be done according to its associ-
ated real concept. However, the construction of 3D
graphics presentations is a difficult and time consum-
ing task, besides it requires specific knowledge and
even artistic skills. Therefore, a future extension is
the automatization of the presentation extending the
ideas presented in several works about the automatic
generation of presentations [18, 30].

At last, the work combines an informal ap-
proach (visualization) with a formal light one, result-
ing in a more effective technique. In that sense, a light
application of formal methods can be an economical
way to improve the quality of specifications without
using formal proofs.

Others future extensions include supporting OB-
JECTZ as specification language, provide a basic li-
brary of 3D graphics components and develop new

examples about software architectures.

7 REFERENCES

[1] A. Amandi, A. Zunino, and R. Iturregui. Multi-
paradigm languages supporting multi-agent de-
velopment. InMAAMAW’99, pages 128–139,
1999.

[2] P. Breuer and J. Bowen. Towards Correct Exe-
cutable Semantics for Z. InProc. 8th Z Users
Workshop (ZUM), pages 185–212. Springer-
Verlag, 1994.

[3] Frank Buschmann, Regine Meunier, Hans
Rohnert, Peter Sommerlad, and Michael Stal.
Pattern-Oriented Software Architecture: A Sys-
tem of Patterns. John Wiley & Sons, 1996.

[4] Stuart Card, Jock MacKinlay, and Ben Shnei-
derman, editors.Readings in Information Visu-
alization: Using Vision to Think. Morgan Kauf-
mann Publishers, 1998.

[5] A. S. Evans. Specifying and verifying concur-
rent systems using Z.Lecture Notes in Com-
puter Science, 873, 1994.

[6] N. Fuchs. Specifications are (preferably) exe-
cutable. IEEE Software Engineering Journal,
7(5):323–334, September 1992.

[7] J. P. Diaz Gonzalez and J. E. Urban. Language
aspects of ENVISAGER. an object-oriented en-
vironment for the specification of real-time sys-
tems.Computer Languages, 16(1):19–37, 1991.

[8] D. Hazel, P. Strooper, and O. Traynor. Pos-
sum: An animator for the SUM specification
language. InProceedings: 4th Asia-Pacific Soft-
ware Engineering and International Computer
Science Conference, pages 42–51. IEEE Com-
puter Society Press, 1997.

[9] Johann Hörl and Bernhard K. Aichernig. Val-
idating voice communication requirements us-
ing lightweight formal methods.IEEE Software,
17(3):21–27, May/June 2000.

[10] ISO. Vrml97, international specification. Tech-
nical report, ISO, 1997.

[11] Daniel Jackson and Jeanette Wing. Lightweight
Formal Methods.IEEE Computer, 29(4):22–23,
April 1996.

[12] Cliff B. Jones. Systematic Software Develop-
ment Using VDM. Prentice-Hall International,
Englewood Cliffs, New Jersey, second edition,
1990. ISBN 0-13-880733-7.

[13] Cliff B. Jones. Formal methods light: A rig-
orous approach to formal methods.Computer,
29(4):20–21, April 1996.

[14] John C. Kelly, Joseph S. Sherif, and Jonathan
Hops. An analysis of defect densities found dur-
ing software inspections.The Journal of Systems
and Software, 17(2):111–117, February 1992.

[15] Hideki Koike. The role of another spatial di-
mension in software visualization.ACM Trans-
actions on Information Systems, 11(3):266–286,
1993.

[16] Kevin Lano. The B Language and Method:
A guide to Practical Formal Development.
Springer Verlag London Ltd., 1996.

[17] J. D. Mackinlay, G. G. Robertson, and S.K.
Card. The perspective wall: Detail and context
smoothly integrated. InProceedings of ACM
CHI’91, pages 173–179, 1991.

[18] Jock Mackinlay. Automating the design of
graphical presentations of relational informa-
tion. ACM Transactions on Graphics, 5(2):110–
141, April 1986.

[19] Bertrand Meyer. On formalism in specifications.
IEEE Software, 2(1):6–26, January 1995.

[20] Kevin Mullet, Diane L. Schiano, George
Robertson, Joel Tesler, Barbara Tversky, Kevin
Mullet, and Diane J. Schiano. 3d or not 3d:
More is better or less is more? InProceedings of
ACM CHI’95 Conference on Human Factors in
Computing Systems, volume 2 ofPanels, pages
174–175, 1995.

[21] M. B. Ozcan, P. W. Parry, I. C. Morrey, and
J. I. Siddiqi. Visualisation of executable formal
specifications for user validation.Lecture Notes
in Computer Science, 1385, 1998.

[22] Ben Potter, Jane Sinclair, and David Till.An In-
troduction to Formal Specification and Z. Pren-
tice Hall, New York, 1991.

[23] C. Potts. Expediency and appropriate technol-
ogy: An agenda for requirements engineering
research in the 1990s.Lecture Notes in Com-
puter Science, 550, 1991.

[24] P. Pulli, R. Elmstrom, G. Leon, and de la Puente.
IPTES - incremental prototyping technology for
embedded real-time systems. Technical report,
ESPRIT, 1991.

[25] George Robertson, Stuart K. Card, and Jock D.
Mackinlay. Information visualization using 3D
interactive animation.Communications of the
ACM, 36(4):57–71, April 1993.

[26] H. Sowizral, K. Rushforth, and M. Deering.The
Java 3D API Specification. Addison-Wesley,
1998.

[27] J. M. Spivey. Understanding Z. Cambridge
Tracts in Theoretical Computer Science 3. Cam-
bridge University Press, 1988. ISBN 0-521-
33429-2.

[28] J. M. Spivey. The Z Notation. Prentice Hall
International, UK, 2 edition, 1992.

[29] L. Sterling, P. Ciancarini, and T. Turnidge. On
the Animation of Not Executable Specifications
by Prolog. Int. Journal on SE and KE, 6(1):63–
88, 1996.

[30] Michelle X. Zhou. Automated visual discourse
synthesis: Coherence, versatility, and interactiv-
ity. In Proceedings of ACM CHI 98 Conference
on Human Factors in Computing Systems (Sum-
mary), volume 2 ofDoctoral Consortium, pages
76–77, 1998.

	footer45: -45-
	header: JCS&T Vol. 3 No. 2 October 2003
	footer46: -46-
	footer47: -47-
	footer48: -48-
	footer49: -49-
	footer50: -50-
	footer51: -51-

