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Abstract

The Web has became an obiquitous resource for dis-
tributed computing making it relevant to investigate new
ways of providing efficient access to services available at
dedicated sites. Efficiency is an ever-increasing demand
which can be only satisfied with the devel opment of parallel
algorithmswhich are efficient in practice.

This tutorial paper focuses on the design, analysis and
implementation of parallel algorithms and data structures
for widely-used text database applications on the Web. In
particular we describe parallel algorithms for inverted files
and suffix arrays structures that are suitable for implement-
ing search engines. Algorithmic design is effected on top
of the BSP model of parallel computing. This model en-
sures portability across diverse parallel architecturesrang-
ing from clusters to super-computers.

1 Introduction

In the last decade, the design of efficient sequential data
structures and algorithms for text databases and related ap-
plications has received a great deal of attention due to the
rapid growth of the Web [3]. Typical applications are those
known as client-server in which users take advantage of
specialized services available at dedicated sites. For the
cases in which the number and type of services demanded
by clients is such that it generates a very heavy work-load
on the server, its efficiency in terms of running time is of
paramount importance. As such it is not difficult to see that
the only feasible way to overcome limitations of sequential
computers is to resort to the use of several computers or
processors working together to service the ever-increasing
demands of clients.

The advent of powerful processors and cheap storage has
allowed the consideration of alternative models for informa-
tion retrieval other than the traditional one of a collection of
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documents indexed by keywords. One such a model which
is gaining popularity is the full text model. In this model
documents are represented by either their complete full text
or extended abstracts. The user expresses his/her informa-
tion need via words, phrases or patterns to be matched for
and the information system retrieves those documents con-
taining the user specified strings. While the cost of search-
ing the full text is usually high, the model is powerful,
requires no structure in the text, and is conceptually sim-
ple [3].

An approach to efficient parallelization is to split up the
data collection and distribute it onto the processors in such
a way that it becomes feasible to exploit locality by effect-
ing parallel processing of user requests, each upon a subset
of the data. As opposed to shared memory models, this dis-
tributed memory model provides the benefit of better scala-
bility [20]. However, it introduces new problems related to
the communication and synchronization of processors and
their load balance.

The bulk-synchronous parallel (BSP) model of comput-
ing [29, 35] has been proposed to enable the development of
portable and cost-predictable software which achieves scal-
able performance across diverse parallel architectures. BSP
is a distributed memory model with a well-defined structure
that enables the prediction of running time. Unlike tradi-
tional models of parallel computing, the BSP model ensures
portability at the very fundamental level by allowing algo-
rithm design to be effected in a manner that is independent
of the architecture of the parallel computer. Shared and dis-
tributed memory parallel computers are programmed in the
same way as they are considered emulators of the more gen-
eral bulk-synchronous parallel machine.

The practical model of BSP programming is SPMD,
which is realized as P program copies running on the P
processors, wherein communication and synchronization
among copies is performed by ways of libraries such as
BSPIib [33] or BSPub [34]. We emphasize that BSP is ac-
tually a paradigm of parallel programming and not a par-
ticular communication library. In practice, it is certainly
possible to implement BSP programs using the traditional
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PVM and MPI libraries. However, a number of studies have
shown that BSP algorithms lead to more efficient perfor-
mance than their message-passing or shared-memory coun-
terparts in many applications [29, 30].

To reduce the cost of searching a full text, specialized
indexing structures are adopted. The most popular of these
are inverted lists [3]. Inverted lists are useful because their
search strategy is based on the vocabulary (the set of distinct
words in the text) which is usually much smaller than the
text, and thus fits in main memory. For each word, the list
of all its occurrences (positions) in the text is stored. Those
lists are large and take space which is 30% to 100% of the
text size.

On the other hand, SUffix arrays or PAT arrays [3] are
more sophisticated indexing structures than inverted in-
dexes, which also take space close to the text size. They
are superior to inverted lists for searching phrases or com-
plex queries such as regular expressions [3]. In addition,
suffix arrays can be used to index texts other than occiden-
tal natural languages, which have clearly separated words
that follow some convenient statistical rules [3]. Examples
of these applications include computational biology (ADN
or protein strings), music retrieval (MIDI or audio files) and
oriental languages. However, their efficient parallelization
is more involved than inverted lists since they exhibit a very
poor data locality during query processing.

This tutorial paper focuses on the design, analysis and
implementation of parallel algorithms for these two index
data structures. It surveys our work on BSP realizations
of inverted lists and suffix arrays [16, 17, 18] and cites re-
lated work built upon traditional models of parallel com-
putation such asynchronous message passing. In section 2
we present a description of the BSP model of parallel com-
puting. Section 3 presents methods for inverted lists and
section 4 presents methods for suffix arrays. Finally section
5 describes research topics.

2 Model of parallel computing

In the BSP model [29, 35], any parallel computer is seen
as composed of a set of P processor-local-memory com-
ponents which communicate with each other through mes-
sages. The computation is organised as a sequence of Su-
persteps. During a superstep, the processors may perform
sequential computations on local data and/or send messages
to other processors. The messages are available for pro-
cessing at their destinations by the next superstep, and each
superstep is ended with the barrier synchronisation of the
processors.

In most cases, optimal efficiency comes from solutions
devised using pure BSP concepts rather than translations
from algorithms devised for the traditional models of com-
puting. The cost of a BSP algorithm is given by the sum

of the cost of its supersteps where every superstep is costed
taking the observed maxima in computation and communi-
cation. Proper load balancing is crucial and also algorithms
should minimize the total number of supersteps.

More specifically, the total running time cost of a BSP
program is the cumulative sum of the costs of its supersteps,
and the cost of each superstep is the sum of three quanti-
ties: w, h g and [, where w is the maximum of the com-
putations performed by each processor, h is the maximum
of the messages sent/received by each processor with each
word costing ¢ units of running time, and [ is the cost of
barrier synchronising the processors. The effect of the com-
puter architecture is cost by the parameters g and [, which
are increasing functions of P. These values along with the
processors’ speed s (e.g. mflops) can be empirically de-
termined for each parallel computer by executing bench-
mark programs at installation time [29] or by determining
asymptotic expressions in accordance with the topology of
the communication network connecting the BSP processors
[20].

As an example of a basic BSP algorithm let us consider
a broadcast operation which will be implicitly used in the
algorithms described in the following sections. Suppose a
processor “wants” to send a copy of P chapters of a book,
each of size a, to all other P processors (itself included). A
naive approach would be to send the P chapters to all pro-
cessors in one superstep. That is, in superstep 1, the send-
ing processor sends P chapters to P processors at a cost of
O(P? (a+aG)+ L) units of running time. Thus in super-
step 2 all P processors have available into their respective
incoming message buffers the P chapters of the book. An
optimal algorithm for the same problem is as follows. In
superstep 1, the sending processor sends just one different
chapter to each processor at a cost of O(P (a + a G) + L)
units. In superstep 2, each processor sends its arriving chap-
ter to all others at a cost of O(P (a + a G) + L) units. Thus
at superstep 3, all processors have a copy of the whole book.
That is, the broadcast of a large P-pieces a-sized message
can be effected at O(P (a + a G) + L) cost.

The well-defined structure of BSP computations allows
optimizations such as packing into a single large message
a set of small messages sent by a processor to another pro-
cessor. This amortizes overheads associated with the com-
munication of many small messages addressed to the same
processor. Also the requirement of periodically barrier syn-
chronizing the processors can be relaxed in situations in
which a given processor knows before hand the number of
messages it should expect from all others. In this case, a
given processor just waits until it receives the proper num-
ber of messages to further continue its computations on lo-
cal data. Barrier synchronization of sub-sets of processors
is also possible [34, 35].
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3 Inverted Lists
Server-broker relationship

We assume a server operating upon a set of P identi-
cal machines, each containing its own main and secondary
memory. We treat secondary memory like the communica-
tion network. That is, we include an additional parameter
D to represent the average cost of accessing the secondary
memory. Its value can be easily determined by benchmark
programs available on Unix systems. The textual database
is evenly distributed over the P machines. If the whole
database index is expected to fit on the P sized main mem-
ory, we just assume D = 1.

Clients request service to one or more broker machines,
which in turn distribute them evenly onto the P machines
implementing the server. Requests are queries that are
solved by using an index data structure distributed on the
P processors. We assume that the index is implemented us-
ing an inverted list which, as described in the next section, is
composed of a vocabulary (set of terms) and a set of identi-
fiers representing all the documents that contain at least one
of the words that are members of the vocabulary. The in-
verted list data structure enables the efficient retrieval of all
identifiers for which a given term appears in the respective
documents.

We assume that under a situation of heavy traffic the
server is able to process batches of ) = ¢ P queries. Ev-
ery query is composed of one or more vocabulary terms for
which it is necessary to retrieve all document identifiers as-
sociated with them. Only the identifiers of the most relevant
documents are presented to the user, namely those which
more closely match the user information need represented
by the query terms. For this, it is necessary to perform a
ranking of documents. A widely used strategy for this task
is the so-called vector model [3], which provides a measure
of how close is a given document to a certain user query.
We assume that the reader is familiar with this method and
overall terminology [3].

Minimal broker

In order to exploit the available parallelism we try to
minimize the amount of sequential work performed by the
broker machine. We restrict its functionality to receive user
requests, distribute the queries onto the processors (uni-
formly at random), receive the best ranked documents (X
in total) from the server, and pass them back to the user.

The two most basic operations related to providing an-
swers to user queries are left to the parallel sever. That
is, the retrieval of document identifiers and its respective
ranking. Both operations are effected in parallel where the
broker is responsible for scheduling those in a manner that

keeps load balance of processors work as close to the opti-
mal 1/P as possible. This is achieved by the combination
of two strategies.

Firstly, the terms of the vocabulary are distributed uni-
formly at random onto the processors. This kind of strategy
has proven to be a very effective tool for destroying corre-
lation among the input data [35]; query terms in our case,
with imbalance coming from the fact that user preferences
could cause that many terms be routed to the same proces-
sor. We use a hashing function on the term’s characters for
this purpose. This function is used to distribute the vocab-
ulary’s terms at index construction time and during the bro-
ker’s term distribution process.

Secondly, for every query the broker chooses a server
processor in which performing the ranking of documents.
Later this processor sends the K best ranked ones back to
the broker. As the terms of a given query (or set of queries),
are likely to be located in different processors, the broker
chooses such processor in a way that tends to maintain a
good load balance with all other processors. That is, this
processor is chosen in a way that attempts to evenly dis-
tribute all ranking tasks onto the P processors. This is ef-
fected by maintaining a counter for each processor. These
counters keep the number of ranking tasks scheduled in ev-
ery processor for queries which have not been completed
yet. A ranking task for a given query is scheduled on one
of the processors that are associated with their respective
terms. From those, the processor with the smallest counter
value is the selected one.

Thus the query terms are distributed uniformly at ran-
dom by ways of the hashing function. The targets proces-
sors for these terms perform the work required to retrieve
their associated lists of document identifiers. Then the lists
associated with every query are routed to the processor se-
lected for their final ranking. Lists associated with different
queries are expected to be routed to different processors.

A pseudo-code for the steps executed by the broker is the
following,

while (true)
{
msg= rcvMessage ()
switch( msg.from/(
{
case USER: // new query arrival.
// select final ranking of docs.
proc= rankingProcessor (msg.Query()) ;

) )

foreach term in msg.QueryTerms ()
term.ranker (proc) ;
serverProc= hashing(term.str()) ;
sndMsg (serverProc, term) ;

}

break;
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case SERVER: // server answer arrival.

updLoadBalanceCounters (msg.Query()) ;
sndMessage (msg.user,
msg.rankedDocumentsList) ;

break;

Bulk-synchronous parallel server

The details of the operations executed by the parallel
server are described in the next section as its design is con-
ditioned by the inverted lists strategy being employed. In
general, the server executes a never-ending sequence of su-
persteps in which batches of ¢ terms are processed in each
processor along with the ranking of documents. The terms
are routed to each processor by the broker as described
above. In each superstep, the processing of a new batch is
started. Depending on the kind of index strategy employed
the processing of a given term plus the associated ranking
of documents can take two or more supersteps to complete.
Thus at any given superstep we can have several batches be-
ing processed, each at a different stage of execution. This is
intended to achieve a good amortization of communication
and synchronization costs.

Local and global inverted lists

For a collection of documents the inverted lists strategy
can be seen as a vocabulary table in which each entry con-
tains a term (relevant word) found in the collection and a
pointer to a list of document’s identifiers that contains such
term. These lists are called inverted-lists. Thus, for exam-
ple, a query composed of the logical AND of terms 1 and
2 can be solved by computing the intersection between the
inverted-lists associated with the terms 1 and 2. The result-
ing list of documents can be then ranked so that the user is
presented with the most relevant documents first (the tech-
nical literature on this kind of topics is large and diverse,
e.g., see [3]). Parallelization of this strategy has been tack-
led using two approaches [2, 9, 19, 27, 32].

In the local index approach the documents are assumed
to be uniformly distributed onto the processors. A local
inverted-lists index is constructed in each processor by con-
sidering only the documents there stored respectively. We
thus have P individual inverted-lists structures so that a
query consisting of, say, one term must be solved by simul-
taneously computing the local sub-lists of document identi-
fiers in each processor, and then producing the final global
list from these P local sub-lists.

The BSP realization of the local index approach is as
follows. Once the broker machine routes by ways of the
hashing function a term w belonging to a query u to pro-
cessor ¢, this processor broadcasts the term w to all other
processors in the current superstep. Every processor does
the same for each term they receive. In the following super-
step, all processors scan their local inverted lists to obtain
the sub-list of document identifiers for each term they re-
ceived in the previous broadcast. These sub-lists are then
sent to the processors acting as rankers. Thus if processor
k happens to be the ranker for query u, the sub-list associ-
ated with term w in processor ¢ along with the ones located
in all other processors for term w, are routed to processor
k. The same is effected for all other terms belonging to the
query u so the processor k can perform the final ranking
in the following superstep. The size of these sublists is re-
duced by performing a pre-ranking before sending them to
their rankers. Also if two terms of query u happens to be in
the same processor a pre-merging is performed (see [2] for
this kind of optimizations). The whole process of a query u
takes 3 supersteps to complete and send back the final list
of document identifiers to the broker.

The second approach is the so-called global index. Here
the whole collection of documents is used to produce a sin-
gle inverted lists index which is identical to the sequen-
tial one. Then the T terms that form the global term ta-
ble are uniformly distributed onto the P processors along
with their respective lists of document identifiers. This is
done by ways of the same hashing function employed by the
broker. Thus, after the mapping, every processor contains
about T'/P terms per processor. In the local index case,
each processor contains the same 7" terms but the length of
document identifier lists are closely a fraction 1/P of the
global index ones.

The BSP realization of the global index is as follows.
Like the previous strategy, each term is routed to one server
processor by the broker. For each term w belonging to a
query u the inverted lists associated with terms of w are re-
trieved in their respective processors. Then these lists are
sent to the ranker processor defined for the query u to then
proceed in the next superstep like the local inverted lists
case. The whole process takes 2 supersteps to complete.

An efficiency reduction problem in the global index
strategy may arise when the most frequently visited terms
tend to be located in the same processors. This produces
load imbalance both in computation and communication.
There exists some solutions to this problem. For example,
in [9] a statistical analysis of terms co-occurrence in every
document is effected at initialization time in order to deter-
mine which terms should be mapped on different proces-
sors. This is an example of static mapping. However, below
we provide empirical evidence that when static mapping is
done in a randomized manner by using a hash function this
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imbalance does not arise. On the other hand, a dynamic
re-distribution of terms can be applied to move pairs (term,
list) to other processors when load imbalance is detected.

Note that real-life textual databases produce index struc-
tures with very differing lengths for the document identifier
lists (e.g., try to evaluate the Zipf’s formula described in
[3]). Combining a term with a small-sized list with a term
with a large-sized one into the same query can have a catas-
trophic effect in the global index approach. The local index
approach does not have this problem but it is less efficient
with small-sized lists because of the relative increase of the
cost of broadcasts. Yet small sized lists arise frequently
when user put into their queries terms which are very spe-
cific to the subject they are looking for. This clearly sug-
gests an approach which combines the two strategies. That
is, terms with large identifier document lists are treated us-
ing the local index approach whereas terms with small lists
are treated using the global one. We call this composite in-
verted lists.

Simulation study

To motivate the introduction of the composite approach
described in the next section, we present simulation results
describing the performance of the two the local and global
approaches to parallel inverted lists. Note that other re-
searchers have already shown that it is feasible to achieve
efficient performance with distributed inverted lists on clus-
ters [2]. Also the fully parallel construction of inverted lists
has been investigated in [26].

Table 1 shows the performance of global and local in-
verted lists for 8 ... 64 processors. The results were ob-
tained for 128 new query arrivals per superstep with simu-
lation runs of 20000 completed queries. Queries were ran-
domly generated by choosing uniformly from 1 to 4 terms,
wherein terms for the first and second part of the table were
also chosen uniformly at random from a total of 1300 and
6500 terms respectively. The sizes of the lists associated
with these terms ranged from L, (the maximum) to L; (the
minimum) in accordance with the Zipf’s law normalized to
the FR-TREC collection excluding stopwords as described
in [1].

Efficiency columns E. and E,, indicate the load balance
(speed-up divided by the number of processors) for com-
putation and communication respectively. The ratio m/e
indicates the total amount of communication over the total
amount of computation effected during the simulation.

The results of table 1 confirm the above claims, namely
the global and local approaches can outperform each other
under different situations. First and given that only 128 new
queries arrive in each superstep, for 64 processors we have
a modest amount of terms to be processed in each cycle (be-
tween 128 and 512, with average 320). Thus as the number

global 1lists index

P L, L, E, E,, m/e

8 116 76 0.88 0.88 0.68
16 116 76 0.82 0.79 0.73
32 116 76 0.75 0.70 0.73
64 116 76 0.62 0.56 0.75

8 104355 76 0.58 0.72 0.25
16 104355 76 0.47 0.52 0.35
32 104355 76 0.30 0.35 0.41
64 104355 76 0.19 0.18 0.52

local lists index

P L, L E. E,, m/e

8 116 76 0.92 0.93 1.38
16 116 76 0.89 0.89 1.52
32 116 76 0.82 0.85 1.69
64 116 76 0.76 0.79 1.92

8 104355 76 0.97 0.92 0.29
16 104355 76 0.91 0.81 0.45
32 104355 76 0.81 0.72 0.65
64 104355 76 0.58 0.50 0.83

Table 1. Global vs local inverted lists. 128 new
gueries per superstep

of processors increases from § to 64 we see a clear reduc-
tion of the efficiencies in computation and communication.
As expected, the local strategy has better efficiencies in all
cases. Its efficiency is decreased only because of imbalance
in the process of composing the final answers to queries.
However, when the differences between inverted list sizes
is small, the efficiencies of the global approach are com-
petitive. In addition, for small sized inverted lists the ef-
ficiencies in both cases are fairly the same but the larger
values of m/e for the local approach show that broadcasts
start to have a significant effect in the communication cost.
Note that queries using terms which are more specific are
expected to work on small inverted lists. When we increase
from 128 to 1024 the number of queries that arrive at every
superstep, efficiencies increase to be near optimal. This for
terms selected uniformly at random. However, if we chose
terms with very large and very small inverted lists sizes to
compose the queries, this in an alternate and random fash-
ion, then the efficiencies decrease rather dramatically in the
global lists approach. A situation like this can arise when
users submit queries that contain very specific terms and
less specific ones.

Note that in the proposed BSP server both the selection
and ranking of documents is performed in the BSP proces-
sors. In particular, the ranking, which is running time de-
manding, is performed in parallel by attempting to choose a
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different processor to rank the documents associated with
every query. For small rate of query arrivals per super-
step, the way we select these processors can have a signifi-
cant impact on load balance and thereby in computation and
communication efficiencies. The load balancing method we
described in section 3 is simple and allows the achievement
of efficiencies much better than just selecting at random the
ranker processor.

Composite Inverted Lists

It is straightforward to combine into a single BSP algo-
rithm the two above described inverted lists strategies. Each
processor maintains a hash table to keep information about
which terms are kept as in the local index case and which
as in the global one. The following pseudo-code shows the
superstep executed by a BSP server using a composite in-
verted list index to solve user queries,

while (true) // Every BSP processor.

* Receive new messages and put them
in a queue Q.

* Foreach message msg in Q do

{

switch( msg.type )

{

case BROKER: // new term from the broker
if ( IsLocal (msg.term) true )
Broadcast (msg.term) ;
else
{ // retrieve and sub-rank doc list.

List= getInvertedList (msg.term) ;
subList= preRanking(List) ;

// buffer message for the ranker proc
bufferMsg (msg.ranker, RANKING, subList)

}

break;

case BROADCAST:

List= getInvertedList (msg.term) ;
subList= preRanking(List) ;

bufferMsg (msg.ranker, RANKING, subList) ;
break;

case RANKING:

if ( queueSize( msg.queryId ) ==
msg.numTermsQry )
{
L = dequeueAll (msg.queryId) ;

List= CalculateFinalRanking(L ) ;
bufferMsg( broker, SERVER, List);
}
else // queue up to wait for terms
enqueue (msg.queryIld, msg) ;

7

}
}

* Send all buffered messages to their
target processors, and synchronize.

A term is treated as global or local depending on the size
of its associated inverted list. We set the maximum size of
a list to be the one which produces the same ratio of com-
putation to communication than the global inverted list ap-
proach. List sizes below this maximum are treated as in
the global index case whereas sizes above the maximum are
treated as in the local index one.

This straightforward combination of the local and global
approaches is a strategy which we have found to be prac-
tical, efficient and very simple to implement. Its efficiency
comes from the fact that most queries containing relevant
terms tends to have inverted lists of small sizes. Table 2
shows simulation results for the same conditions to the one
above described. It can be seen that efficiencies are similar
to those of the local approach whilst the ratio communi-
cation/computation (m/e) are similar to that of the global
approach.

4 Suffix arrays

Suffix arrays or PAT arrays[3] are data structures for full
text retrieval based on binary searching. Given a text collec-
tion, the suffix array contains pointers to the initial positions
of all the retrievable strings, for example, all the word be-
ginnings to retrieve words and phrases, or all the text char-
acters to retrieve any substring. These pointers identify both
documents and positions within them. Each such pointer
represents a Suffix, which is the string from that position to
the end of the text. The array is sorted in lexicographical
order by suffixes as shown in Figure 1. Thus, for example,
finding all positions for terms starting with “tex” leads to a
binary search to obtain the positions pointed to by the ar-
ray members 7 and 8 of Figure 1. This search is conducted
by direct comparison of the suffixes pointed to by the array
elements.

A typical query consists of finding all text positions
where a given substring appears in. For the purpose of the
description of the algorithms presented in this paper we as-
sume that this is the query of interest and that it is solved by
performing two searches which locate the delimiting posi-
tions of the array for a given substring. Processing a single
query of this kind in a text of size N takes log IV time on
the standard sequential suffix array.

A suffix array can be distributed onto the processors us-
ing a global index approach in which a single array is built
from the whole text collection and mapped evenly on the
processors. A realization of this idea for the example in
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comp. lists index
P E. E,, m/e
8 0.88 0.88 0.68
16 0.82 0.79 0.73
32 0.75 0.70 0.73
64 0.62 0.56 0.75
8 0.97 0.90 0.25
16 0.90 0.78 0.37
32 0.75 0.61 0.44
64 0.53 0.43 0.54

global 1lists index
P E, E,, m/e
8 0.88 0.88 0.68
16 0.82 0.79 0.73
32 0.75 0.70 0.73
64 0.62 0.56 0.75
8 0.58 0.72 0.25
16 0.47 0.52 0.35
32 0.30 0.35 0.41
64 0.19 0.18 0.52

local lists index
P E, E,, m/e
8 0.92 0.93 1.38
16 0.89 0.89 1.52
32 0.82 0.85 1.69
64 0.76 0.79 1.92
8 0.97 0.92 0.29
16 0.91 0.81 0.45
32 0.81 0.72 0.65
64 0.58 0.50 0.83

Table 2. Composite, global and local inverted
lists. 128 queries per superstep. Thefirst part
of the tableis for L,= 116 and L,= 76, and the
second part is for L,= 104355 and L;= 76.

1 2 3 4 5 6 7 8 9

‘28‘14‘38‘17‘11‘25‘ 6‘30‘ 1‘

This text is an example of a textual database
for ottt t1
1 11 14 17

6 252830 38

Figure 1. Suffix array.

1 2 3 4 5 6 7 8 9
‘28‘14‘38‘17 11‘25‘6‘30‘1‘
T%mle oi a textual database
1 6 11 1417 2528 30 38
Processor 1 Processor 2

Figure 2. A global index suffix array dis-
tributed on two processors.

Figure 1 is shown in Figure 2 for 2 processors. Notice that
in this global index approach each processor stands for a
lexicographical interval or range of suffixes (for example,
in Figure 2 processor 1 represents suffixes with first letters
from “a” to “e”). The broker machine mantains informa-
tion of the values limiting the intervals in each machine and
route queries to the processors accordingly. This fact can be
the source of load imbalance in the processors when queries
tend to be dynamically biased to particular intervals.

A search for all text positions associated with a batch of
) = q P queries can be performed as follows. The broker
routes the queries to their respective target processors. Once
the processors get their g queries, in parallel each of them
performs ¢ binary searches. Note that for each query, with
high probability 1 —1/ P, it is necessary to get from a remote
processor a T'-sized piece of text in order to decide the result
of the comparison and go to the next step in the search. This
reading takes one additional superstep plus the involved cost
of communicating 7" bytes per query. Note that, it is not
necessary to wait for a given batch to finish since in each
superstep we can start the processing of a new batch. This
forms a pipelining across supersteps in which at any given
superstep we have a number of batches at different stages of
execution. The net effect is that at the end of every superstep
we have the completion of a batch. We call this strategy GO.

A very effective way to reduce the average number of re-
mote memory accesses is to associate with every array entry
the first ¢ characters of the suffix pointed. This technique is
called pruned suffixes. The value of ¢ depends on the text
and usual queries. In [14] it has been shown that this strat-
egy is able to put below 5% the remote memory references
for relatively modest ¢ values. Our experiments show rates
below 1%.

In the local index strategy, on the other hand, a suffix
array is constructed in each processor by considering only
the subset of text stored in its respective processor. See Fig-
ure 3. No references to text postitions stored in other pro-
cessors are made. Thus it is not necessary to pay for the
cost of sending 7T'-sized pieces of text per each binary search
step.
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1 6 11 1417 2528 30 38
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Figure 3. Local index suffix array.

However, for every query it is necessary to search in all
of the processors in order to find the pieces of local arrays
that form the solution for a given interval query. As an an-
swer, it suffices to send to the broker P pairs (a, b), one per
processor, where a/b are the start/end positions respectively
of the local arrays. Unfortunately, the broker must send ev-
ery query to every processor which can become significant
cost for large number of processors.

One drawback of the global index approach is related
to the possibility of load imbalance coming from large and
sustained sequences of queries being routed to the same pro-
cessor. The best way to avoid particular preferences for
a given processor is to send queries uniformly at random
among the processors. We propose to achieve this effect by
multiplexing each interval defined by the original global ar-
ray, so that if array element : is stored in processor p, then
elements ¢+ 1,7+ 2, ... are stored in processors p+1, p+ 2,

. respectively, in a circular manner as shown in Figure 4.
We call this strategy G2.

In this case, any binary search can start at any proces-
sor. Once a search has determined that the given term must
be located between two consecutive entries £ and k£ + 1 of
the array in a processor, the search is continued in the next
processor and so on, where at each processor it is only nec-
essary to look at entry k of its own array. For example, in
Figure 4 a term located in the first interval, may be located
either in processor 1 or 2. If it happens that a search for a
term located at position 6 of the array starts in processor 1,
then once it determines that the term is between positions
5 and 7, the search is continued in processor 2 by directly
examining position 6. In general, for large P, the inter-
processors search can be done in at most log P additional
supersteps by performing a binary search accross proces-
sors.

Note that the multiplexed strategy (G2) can be seen as
the opposite extreme of the global index distributed lexico-
graphically starting from processor 0 to P — 1, wherein each
processor holds a certain interval of the suffixes pointed to
by the N/ P array elements (GO). The delimiting points of
each interval of the GO strategy can be kept in an array of
size P — 1 so that a binary search conducted on it can de-

Processor 1 Processor 2
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Figure 4. Multiplexing the global index suffix
array entries.

termine to which processor to route a given query.

An intermediate strategy (G1) between GO and G2 can
be obtained by considering the global array as distributed
on V = 2F P virtual processors with & > 0 and that each of
the V' virtual processors is mapped circularly on the P real
processors using ¢ mod P for ¢ = 0...V with 7 being the i-th
virtual processor. In this case, each real processor ends up
with V/ P different intervals of N/V elements of the global
array. This tends to break apart the imbalance introduced by
biased queries. Calculation of the array positions are trivial.

In our realization of GO and G1 we keep in each proces-
sor an array of P (V) strings of size L marking the delimit-
ing points of each interval of GO (G1). The broker machine
routes queries uniformly at random to the P real proces-
sors, and in every processor a log P (log V') binary search is
performed to determine to which processor to send a given
query (we do so to avoid the broker becoming a bottleneck).
Once a query has been sent to its target processor it cannot
migrate to other processors as in the case of G2. That s, this
strategy avoids the inter-processors log P binary search. In
particular, G1 avoids this search for a modest £ whilst it ap-
proaches well the load balance achieved by G2, as we show
in the experiments. The extra space should not be a burden
as N > P and k is expected to be small.

Yet another method which solves both load imbalance
and remote references is to redistribute the original global
array so that every element of local arrays contain only
pointers to local text, as shown in Figure 5. This becomes
similar to the local index strategy whilst it still keeps global
information that avoids the P parallel binary searches and
broadcast per query. Unfortunately we now lose the capa-
bility of performing the inter-processors log P-cost binary
search, since the owners of the next global array positions
are unknown. In [17] we propose an O(r P/") cost strat-
egy to perform this search when necessary, at the cost of
storing 7 values per suffix array cell (instead of storing a
pruned suffix of ¢ chars per cell). The practicality of this
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Figure 5. Combining multiplexing with local-
only references.

method remains to be further investigated.
Experimental Results

We compared the multiplexed strategy (G2) with the
plain global suffix array (GO), and the intermediate strategy
(G1). The local index strategy was at least 3 times slower
than all others so we do not show empirical results for it.
For each element of the array we kept ¢ characters which
are the ¢-sized prefix of the suffix pointed to by the array
element. We found ¢ = 4 to be a good value for our text
collection.

In G2 the inter-processors binary search is conducted by
sending messages with the first ¢ characters of the query.
The complete query is sent only when it is necessary to de-
cide the final outcome of the search or when the ¢ char-
acters are not enough to continue the search (this reduces
the amount of communication during the inter-processors
search).

The text collection is formed by a 1GB sample
of the Chilean Web retrieved by the search engine
www . todocl . cl. We treated it as a single string of char-
acters. Queries were formed in three ways: (1) by select-
ing at random initial word positions within the text and ex-
tracting substrings of length 16; (2) similarly but starting
at words that start with the four most popular letters of the
Spanish language, “c”, “m”, “a” and “p” ; (3) taken from
the query log of www. todocl. cl, which registers a few
hundred thousand user queries submitted to the web site.
In set (1) we expect optimal balance, while in (2) and (3)
we expect large imbalance as searches tend to end up in a
subset of the global array.

The results were obtained on a PC cluster of 16 machines
(PIII 700, 128MB) contected by a 100MB/s communication
switch. Experiments with more than 16 processors were
performed by simulating virtual processors. In this small
cluster most speed-ups obtained against a sequential real-

ization of suffix arrays were super-linear. This was not a
surprise since due to hardware limitations we had to keep
large pieces of the suffix array in secondary memory whilst
communication among machines was composed by a com-
paratively small number of small strings. The whole text
was kept on disk so that once the first ¢ chars of a query
were found to be equal to the ¢ chars kept in the respective
array element, a disk access was necessary to verify that the
string forming the query was effectively found at that posi-
tion. This frequently required an access to a disk file located
in other processor, in which case the whole query was sent
to that processor to be compared with the text retrieved from
the remote disk.

We define two performance metrics devised to evaluate
load balance in computation and communication. They are
average maxima across supersteps. During the processing
of a query each strategy performs the same kind of opera-
tions, so for the case of computation the number of these
ones executed in each processor per superstep suffices as an
indicator of load balance for computation. For communica-
tion we measured the amount of data sent to and received
from at each processor in every superstep. We also mea-
sured balance of disk accesses. In all cases the same number
of supersteps were performed and a very similar number of
queries were completed. In each case 5 runs with different
seeds were performed and averaged. At each superstep we
introduced 1024/ P new queries in each processor.

In Table 3(1) we show results for queries biased to the 4
popular letters. Columns 2, 3, and 4 show the ratio G2/G0
for each of the above defined performance metrics (aver-
age maximum for computation, communication and disk
access). The results for G2/G1 are shown in Table 3(2).
These results confirm intuition, that is GO can degenerate
into a very poor performance strategy whereas G2 and G1
are a much better alternative. Noticeably G1 can achieve
similar performance to G2 at a small k£ = 4. This value de-
pends on the application, in particular on the type of queries
generated by the users. G2 is independent of the applica-
tion but, though well-balanced, it tends to generate more
message traffic due to the inter-processors binary searches
(especially for large t). The differences among G2, G1, GO
are not significant for the case of queries selected uniformly
at random. G2 tends to have a slightly better load balance.

As speed-ups were superlinear due to disk activity, we
performed experiments with a reduced text database. We
used a sample of 1MB per processor, which reduces very
significantly the computation costs and thereby it makes
much more relevant the communication and synchroniza-
tion costs in the overall running time. We observed an aver-
age efficiency (speed-up divided by the number of proces-
sors) of 0.65.

In Table 3(3) we show running time ratios obtained with
our 16 machines cluster. The upper of the table shows re-
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P | comp | comm | disk

21 095 090 | 0.89
41 049 0.61 | 0.69
8| 043 045 | 0.53
16 | 0.39 035 | 0.36
32| 0.38 029 | 0.24
64 | 0.35 0.27 | 0.17
(1) Ratio G2/GO.
| P | comp | comm | disk |
21 1.10 090 | 0.89
41 092 0.82 | 0.69
8| 0.86 0.65 | 0.53
16 | 0.80 055 | 0.36
32| 078 045 | 024
64 | 0.75 043 | 0.17
(2) G2/G1 witk k = 4.
P | G2/GO | G2/G1
4 0.68 0.87
8 0.55 0.66
16 0.61 0.67
4 0.78 0.77
8 0.78 0.73
16 0.86 0.83

(3) Running times ratios
Table 3. Comparison of search costs.

sults for the biased query terms (queries of type (2)) and the
lower part shows results for terms selected uniformly at ran-
dom (queries of type (1)). The biased workload increased
running times by a factor of 1.7 approximately.

The results of Table 3(3) show that the G2 strategy out-
performed the other two strategies, though G1 has competi-
tive performance for the imbalanced case (first part of the ta-
ble). Notice, however, that for the work-load with good load
balance (second part of the table) G2 tends to lose efficiency
as the number of processors increases. This is because, as
P grows up, the effect of performing inter-processors bi-
nary searches becomes more significant in this very low-
cost computation and ideal load balance scenario (case in
which GO is expected to achieve its best performance). We
observed that the cost of broadcasts and increased number
of binary searches at each processor were significant and
too detrimental for the local index strategy.

5 Research topics

Inverted lists. Note that a better approach for large num-
ber of processors is to actually look at an intermediate sit-
uation between the local and global approaches. The prac-
tical realization of this idea is to set buckets of a fixed size
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whose value is defined by the capacity of disk pages. Ev-
ery inverted list is divided in a certain number of buckets
which are distributed evenly onto the processor at initializa-
tion. The key problem to solve in this case is the method
employed to properly balancing the processing of queries
as we explain in the following.

A distribution of buckets uniformly at random onto the
processors is expected to solve in part the load imbalance
produced by queries containing natural language text. How-
ever it is necessary to consider that the set of documents
produced as a result of a given query must be ranked to
present them to the user sorted by relevance order. Previous
approaches leave this task to the broker machine. We be-
lieve that this is not a good idea because ranking demands
a significant amount of computation which can transform
the broker in a bottleneck. A broker machine should not
perform much more operations than just routing arriving
queries to the server processors, receiving the respective an-
swers and pass them back to the user.

Document ranking in parallel (which is a parallelization
of a strongly sequential algorithm presented in [25]) is ef-
fected in [2, 27] using two major steps. First, for each term
present in a batch query, a pre-ranking is performed among
the respective documents associated with the term. Then a
subset of the retrieved documents are selected to perform
the final ranking among all the documents associated with
the terms contained in the query. In [2] this final ranking is
performed in the broker. We believe it is more efficient to
effect this in one of the server processors so that good par-
allelism is achieved when queries from one or more batches
reach this stage and the final ranking tasks are scheduled in
different processors in a well balanced manner. No schedul-
ing algorithms for this case have been proposed so far.

Note that it is possible, as we did in the case of the
composite inverted lists approach [16], to employ heuris-
tics such as “the least loaded processor first”. However, it is
also possible to think in terms of whole batches of queries
rather than applying heuristics to individual queries. An in-
teresting research topic here is the analysis of existing job
scheduling algorithms to see which are more suitable for
this case and how they can be modified to deal with dynam-
ically biased user query terms as in natural language appli-
cations. In this case dynamic re-allocation of buckets is a
feasible option.

Suffix arrays. The efficient construction of suffix arrays
is a non-trivial problem which by itself justifies the use of
parallel computing because of the large sequential running
times involved. In the parallel setting the main problem to
cope with is the lack of locality. What one basically looks
for is an evenly distributed array of pointers to text positions
or documents that usually are located at different proces-
sors. The array is lexicographically sorted in the sense that
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the string pointed to by the position ¢ of the array is less than
the one pointed to by position ¢ + 1. Previous work on par-
allel construction of suffix arrays has been done in [14, 24]
for the message passing model of parallel computing. No
implementations have been effected and the strategies pro-
posed have been based on the adaptation of various sort-
ing algorithms, some of them specialized to text. However,
very recently three new sequential algorithms have been
proposed for constructing suffix arrays (submitted). It is
then relevant to study how to use the concepts behind those
algorithms to formulate BSP algorithms for this problem.

Dealing with compressed text. Compression techniques
are widely used in natural language text databases [10, 21,
22, 23]. These techniques are particularly relevant to paral-
lel text databases because they reduce the amount of infor-
mation to be transmitted among server machines themselves
and between server and broker machines.

In a distributed memory parallel computation setting like
the one supported by the BSP model, the database is evenly
distributed onto the machines. In this “sharing-nothing”
scheme, text compression can be applied in each machine
as they were independent text collections. Alternatively to
this local approach, text can be compressed by considering
the whole text collection. In both cases the amount and type
of operations that is necessary to effect are different.

Very recently a new method for text compression was
proposed in [8]. The method is particularly suitable for
searching. It is worthwhile to investigate the effectiveness
of this method in the parallel context. A key part of the
compression process is the construction and maintenance
of the coding alphabet table that allows the mapping be-
tween actual words and the compressed representation of
them. This table enables encoding of new text being entered
to the database and the necessary decoding for presentation
and other important operations such as searching. It appears
interesting to investigate efficient ways of maintaining this
table as new text is distributed onto the machines and search
queries must react properly to this dynamics.

Concurrency control. Another type of problem that is
worthwhile to study is concurrency control upon inverted
lists. In this case updates take place simultaneously with
queries (e.g., a news service) [11]. In [13] the classic in-
verted list approach [3] is instrumented with a simple con-
currency control mechanism which is based on the use
of locks. However, locks tend to significantly reduce the
level of parallelism that is possible to exploit from typi-
cal workloads for text databases applications. The appli-
cation of optimistic concurrency control techniques such
Time Warp [12, 15] remains to be investigated so far
[3,4,5,6,7, 13,28, 31, 36].
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