
Knowledge Insertion: an Efficient Approach to Reduce Search Effort in

Evolutionary Scheduling

Pandolfi D., Lasso M., De San Pedro M., Villagra A.
Proyecto UNPA-29/B0321

División Tecnología
Unidad Académica Caleta Olivia

Universidad Nacional de La Patagonia Austral
Ruta 3 Acceso Norte s/n

(9011) Caleta Olivia – Santa Cruz - Argentina
e-mail: {mlasso,dpandolfi,edesanpedro,avillagra}@uaco.unpa.edu.ar

Phone/Fax : +54 0297 4854888

Gallard R.
Laboratorio de Investigación y Desarrollo en Inteligencia Computacional (LIDIC)2

Departamento de Informática
Universidad Nacional de San Luis

Ejército de los Andes 950 - Local 106
(5700) - San Luis -Argentina
e-mail: rgallard@unsl.edu.ar

Phone: +54 2652 420823
Fax : +54 2652 430224

1 The Research Group is supported by the Universidad Nacional de La Patagonia Austral.
2 The LIDIC is supported by the Universidad Nacional de San Luis and the ANPCYT (National Agency to Promote Science and
Technology).

ABSTRACT

Evolutionary algorithms (EAs) are merely blind search
algorithms, which only make use of the relative fitness of
solutions, but completely ignore the nature of the problem.
Their performance can be improved by using new
multirecombinative approaches, which provide a good
balance between exploration and exploitation. Even though in
difficult problems with large search spaces a considerable
number of evaluations are required to arrive to near-optimal
solutions.

On the other hand specialized heuristics are based on some
specific features of the problem, and the solution obtained
can include some features of optimal solutions. If we insert in
the evolutionary algorithm the problem specific knowledge
embedded in good solutions (seeds), coming from some other
heuristic or from the evolutionary process itself, we can
expect that the algorithm will be guided to promising sub-
spaces avoiding a large search.

This work shows alternative ways to insert knowledge in the
search process by means of the inherent information carried
by solutions coming from that specialised heuristic or
gathered by the evolutionary process itself. To show the
efficiency of this approach, the present paper compares the
performance of multirecombined evolutionary algorithms
with and without knowledge insertion when applied to
selected instances of the Average Tardiness Problem in a
single machine environment.

Keywords: Average tardiness scheduling problem,
Evolutionary scheduling, conventional heuristics, problem-
specific knowledge.

INTRODUCTION

In a production system it is usual to stress minimum average
tardiness to achieve higher client satisfaction on the average.
The Average Tardiness problem (1 1/n Tj) [3, 15], is an
important NP-hard scheduling problem which measures the
adaptation of the system to client requirements. Its
minimization leads to a situation where it is less likely that
the waiting time of any given job will be unacceptably long.

Branch and Bound and other partial enumeration based
methods, which guarantee exact solutions, are prohibitively
time consuming even with only 20 jobs. To provide
reasonably good solutions in very short time the scheduling
literature offers a set of dispatching rules and heuristics.
Depending on the particular instance of the problem we are
facing, some of them behave better than others. Among
others heuristics [11], evolutionary algorithms (EAs) have
been successfully applied to solve scheduling problems [17,
18]. Current trends in evolutionary algorithms make use of
multiparent [4, 5, 6] and multirecombinative approaches [7,
8, 9]. The latter we called, multiple-crossovers-on-multiple-

parents (MCMP). Instead of applying crossover once on a
pair of parents this feature applies n1 crossover operations on
a set of n2 parents. In order to improve the balance between
exploration and exploitation in the search process a variant
called MCMP-SRI [12, 13] recombines a breeding individual
(stud) by repeatedly mating individuals that randomly
immigrates to a mating pool. Under this approach the random
immigrants incorporate exploration and the multi-mating
operation with the stud incorporates exploitation to the search
process.

If we are trying to incorporate knowledge to the blind
evolutionary search process, the issue here is how to

109

}]/)()[exp{/(avjjjj kpSpw

introduce problem-specific knowledge? If optimality
conditions for the solutions are known in advance we can
restrict the search operating only on solutions which hold
these conditions. When optimality conditions are unknown,
which is the case, the answer is to provide information which
is gathered by the evolution process itself and resides in the
elitist individual, or to import this knowledge from solutions
that come out from heuristics specifically designed for the
problem under consideration. Both kinds of knowledge-based
intermediate solutions contain some of the features, which
are present in the best (optimal or quasi-optimal) solution at
the end of the evolutionary process.

Consequently, MCMP-SRSI, a latest variant, considers the
inclusion of a stud-breeding individual in a pool of random
and seed-immigrant parents. Here, the seeds generated by
conventional heuristics or by the evolutionary process itself,
introduce the problem-specific knowledge. Next sections
describe the average tardiness-scheduling problem,
alternative ways to insert problem-specific knowledge and
discuss the results obtained.

1. THE AVERAGE TARDINESS SCHEDULING

PROBLEM

The problem [15] can be stated as follows: n jobs are to be
processed without interruption on a single machine that can
handle no more than one job at a time. Job j (j=1,...,n)
becomes available for processing at time zero, requires an
uninterrupted positive processing time pj on the machine, and
has a due date dj by which it should ideally be finished. For a
given processing order of the jobs, the earliest completion
time Cj and the tardiness Tj = max{Cj -dj,0} of job j can
readily be computed. The problem is to find a processing
order of the jobs with minimum average tardiness

n

j

jT
n

1

1

The problem has received considerable attention by different
researchers. For many years its computational complexity
remained open until established as NP-Hard in 1989 [15].

2. CONVENTIONAL APPROACHES TO THE

AVERAGE TARDINESS PROBLEM

Dispatching heuristics assign a priority index to every job in
a waiting queue and the one with the highest priority is
selected to be processed next. There are different heuristics
[11] for the Average Tardiness problem whose principal
property is not only the quality of the results, but also to give
an ordering of the jobs (schedule) close to the optimal
sequence. The following dispatching rules and heuristics
were selected to determine priorities, build schedules and
contrast their outcomes with those obtained by the
evolutionary algorithms.

SPT (Shortest Processing Time first) the job with the shortest
processing time is selected first and in the final schedule jobs
are ordered satisfying: p1 p2 … pn .

EDD (Earliest Due Date first) the job with earliest due date is
selected first and in the final schedule jobs are ordered
satisfying: d1 d2 … dn .

SLACK (Least slack) he job with smallest difference between
due date and processing time is selected first and in the final
schedule jobs are ordered satisfying: d1-p1 d2-p2 dn-pn .

Hodgson Algorithm: This heuristic provides a schedule
according to the following procedure,

Step 1: Order the activities in EDD order.

Step 2: If there are no tardy jobs, stop; this is the optimal
solution.

Step 3: Find the first tardy job, say k, in the sequence.

Step 4: Move the single job j (1 j k) with the longest
processing time to the end of the sequence.

Step 5: Revise the completion times and return to step 2.

The algorithm is optimal for a related objective (unweighted
number of tardy jobs) and can behave well for some instances
of average tardiness.

Rachamadagu and Morton Heuristic (R&M). This heuristic
provides a schedule according to the following priority,

with Sj = [dj – (pj + Ch)] is the slack of job j at time Ch,
where Ch is the total processing time of the jobs already
scheduled, k is a parameter of the method (usually k =2.0)
and pav is the average processing time of jobs competing for
top priority. In the R&M heuristic, also called the Apparent

Tardiness Cost heuristic, jobs are scheduled one at a time and
every time a machine becomes free a ranking index is
computed for each remaining job. The job with the highest-
ranking index, is then selected to be processed next.

3. MULTIRECOMBINATION OF RANDOM AND

SEED IMMIGRANTS WITH THE STUD

Multiple Crossovers per Couple (MCPC) [7, 8] and Multiple
Crossovers on Multiple Parents (MCMP) [9] are
multirecombination methods, which improve EAs
performance by reinforcing and balancing exploration and
exploitation in the search process. In particular, MCMP is an
extension of MCPC where the multiparent approach of Eiben
[4, 5, 6] is included. Results obtained in diverse single and
multiobjective optimization problems indicated that the
searching space is efficiently exploited by the multiple
applications of crossovers and efficiently explored by the
greater number of samples provided by the multiple parents.
A further extension of MCMP is known as MCMP-SRI [12,
13].

This approach considered the mating of an evolved individual
(the stud) with random immigrants. The process for creating
offspring is performed as follows. From the old population,
the stud is selected by means of proportional selection and
inserted in the mating pool. The number of n2 parents in the
mating pool is completed with randomly created individuals
(random immigrants). The stud mates every other parent, the
couples undergo partial mapped crossover (PMX) and 2n2

offspring are created. The best of these 2 n2 offspring is
stored in a temporary children pool. The crossover operation
is repeated n1 times, for different cut points each time, until
the children pool is completed. Finally, the best offspring
created from n2 parents and n1 crossover is inserted in the
new population. MCMP-SRSI [14, proposes to insert

110

problem-specific-knowledge by recombining potential
solutions (individuals of the evolving population) with seeds,
which are solutions provided by other heuristics specifically
intended to solve the scheduling problem under study. In
MCMP-SRSI, the process for creating offspring is similar to
that of MCMP-SRI, except that the mating pool contains also
seed immigrants. In this way the evolutionary algorithm
incorporates problem-specific-knowledge supplied by the
specific heuristic.

In the present work we propose different versions of the
MCMP family:

a) Without knowledge insertion

MCMP-SRI, it works as above described.

b) With knowledge insertion, including the following
MCMP-SRSI variants,

b1) internal knowledge insertion. Here the knowledge
acquired during the evolutionary process itself is
inserted as a seed.

SRSI-E. After the second generation, the best individual
found so far (the elitist individual), is inserted in the
mating pool as a unique seed individual along with the
stud and random immigrants.

SRSI-E-N. The mating pool is built as in SRSI-E variant
but here a neighbourhood operator is added to eliminate
possible copies of the best individual. After a search for
copies, this operator replaces each copy by a neighbour
created by random interchange of allele values. If more
than one copy exists then, a neighbour created by a
single interchange replaces the first copy, another
neighbour created by two interchanges replaces the
second copy, and so on. The idea is that copies will be
replaced by individuals that retain certain genetic
characteristics of the best individual, but differ more and
more from this best individual as the number of copies
augments.

b2) external knowledge insertion. Here, solutions
provided by other heuristics specifically intended to
solve the scheduling problem are inserted as seeds
in the mating pool.

SRSI-H. Here, only one immigrant seed is inserted in the
mating pool along with the stud and random immigrants.
This seed is selected as the schedule built by the best
heuristic in the corresponding instance. The seed
belongs to every mating pool.

b3) internal and external knowledge insertion. Here,
both the best individual found so far (elitist) and a
solution provided by the best heuristic, are inserted
as seeds in the mating pool.

SRSI-H-E. During the first two generations the schedule
built by the best heuristic, in the corresponding instance,
is inserted as a unique seed in the mating pool. In
successive generations, the elitist individual remains as
the unique seed. The seed shares the mating pool with
the stud and random immigrants.

SRSI-H-E-N. The mating pool is built as in SRSI-H-E
variant but here a neighbourhood operator is added to
eliminate possible copies of the best individual. The
neighbourhood operator works in the same way above
described.

4. EXPERIMENTAL TESTS AND RESULTS

As it is not usual to find published benchmarks for the
Average Tardiness problem we built our own test suite with
data (pj ,dj) extracted from 25 selected instances of the OR-
library benchmarks for the weighted tardiness problem, with
40-jobs problem size, [1,2]. This data was the input for
dispatching rules, conventional heuristics and our proposed
multi-recombined EAs, MCMP-SRI and MCMP-SRSI.

To evaluate the dispatching rules and the conventional
heuristics (SPT, EDD, SLACK, Hodgson and R&M) we used
PARSIFAL [11] which is a software package provided by
Morton and Pentico, to solve different scheduling problems
by means of different heuristics.

The initial phase of the experiments consisted in to establish
the best results from dispatching rules and conventional
heuristics to use them as upper bounds for this scheduling
objective. These results can be observed in table 1, where the
first column identifies the instance number and the rest
indicate the Average Tardiness achieved by each approach.

Inst. SPT LPT EDD SLACK HODG. R&M

1 40.23 106.68 13.05 19.85 22.18 25.30

6 94.60 314.38 116.68 132.35 88.55 95.70

11 214.28 676.25 292.65 350.78 203.08 228.00

19 542.85 991.68 773.78 808.05 557.45 610.35

21 525.43 1236.13 879.48 1036.38 805.40 616.03

26 51.33 97.23 0.40 0.90 0.40 5.58

31 150.08 427.75 93.95 99.53 100.83 84.95

36 233.10 617.88 353.78 377.30 199.88 232.63

41 413.65 980.10 667.68 709.78 400.70 471.83

46 375.33 1001.25 628.53 748.40 704.88 439.63

51 121.38 211.35 0.00 0.00 0.00 1.05

56 107.03 222.58 30.93 40.33 56.50 30.03

61 241.20 688.00 263.43 292.68 171.33 199.75

66 455.78 987.53 608.65 631.00 566.78 530.93

71 469.43 1059.28 670.50 789.10 800.25 538.43

76 42.38 171.30 0.00 0.00 0.00 0.00

81 162.88 348.90 4.85 7.10 28.58 7.20

86 207.70 599.63 127.35 139.23 157.03 128.70

91 404.28 903.35 558.25 583.23 477.90 383.68

96 658.40 1210.18 920.70 1009.35 872.85 767.30

101 76.70 112.45 0.00 0.00 0.00 0.00

106 180.25 412.40 0.00 0.00 0.00 0.00

111 397.63 727.25 333.85 350.55 441.70 275.23

116 325.78 894.18 412.00 457.85 509.23 319.13

121 598.78 1322.30 904.50 1030.98 941.65 654.80

Boldfaced values indicate the best (minimum) objective
value, which will be used as an upper bound.

Results in Table 1, shows that EDD is the best in 32% of the
cases (8 instances), then SPT follows being the best in 28%
of the cases (7 instances). Both best performers are followed

Table 1. Average Tardiness values found by each heuristic

111

by Hodgson and R&M which are he best in 20% of the cases
(5 instances).

The second phase of the experiments consisted in to establish
adequate parameter settings for MCMP-SRI and MCMP-
SRSI and then to run a number of experimental series. After a
series of initial trials the best parameter setting was
determined under each algorithm, as follows:

The maximum number of generations was fixed to 500 and
200 for MCMP-SRI and MCMP-SRSI, respectively. Both
algorithms run with a population size of 15 individuals, with
n1 = 20, n2 = 18, and crossover probability fixed at 0.65.
Mutation probability was set to 0.0 and 0.05 for MCMP-SRI
and MCMP-SRSI, respectively. Series of ten runs where
performed for each instance. To compare the algorithms, the
following relevant performance variables were chosen:

Ebest = ((best value - opt_val)/opt_val)100

It is the percentile error of the best-found individual when
compared with the known, or estimated (upper bound)
optimum value opt_val. It gives us a measure on how far the
best individual is from that opt_val.

Mean Ebest: It is the mean value of Ebest throughout all
runs.

Best: It is the minimum objective value corresponding to
some of the best-found individuals throughout all runs.

Max Best: It is the maximum objective value corresponding
to some of the best-found individuals throughout all runs.

Mean Best: It is the mean objective value obtained from the
best-found individuals throughout all runs.

Gbest:It is the generation where the best individual was
found.

Mean Gbest: It is the mean generation number where the
best individual was found, throughout all runs.

Hit Ratio: Denotes the percentage of runs where the
algorithm reaches the upper bound or improves it. Its value is
1 (a 100% of success) when the upper bound is reached or
improved in every run.

Evals: Is the number of evaluations necessary to obtain the
best-found individual in a run.

Mean Evals: Is the mean number of evaluations necessary to
obtain the best-found individual throughout all runs.

Values of some of these performance variables, obtained
under MCMP-SRI, are listed in the following tables.
Columns one to three indicate the instance number, the upper
bound and the heuristic providing that upper bound,
respectively, the remaining columns indicate the performance
variable values. At the bottom of the tables, average,
minimum and maximum Hit ratio, Avg Ebest and Avg Evals

values, are indicated.

Inst Upper

Bound

Provided

by

Best Max

Best

Mean

Best

Mean

Gbest

Hit Ratio Mean

Ebest

Mean

Evals

1 13.05 EDD 11.98 11.98 11.98 34.00 1.00 -8.20 174420

6 88.55 HDS 73.15 74.08 73.34 117.90 1.00 -17.18 604827

11 203.08 HDS 191.30 192.43 191.56 239.80 1.00 -5.67 1230174

19 542.85 SPT 509.25 514.07 511.25 377.60 1.00 -5.82 1937088

21 525.43 SPT 522.50 522.60 522.53 386.60 1.00 -0.55 1983258

26 0.40 EDD 0.40 0.40 0.40 22.60 1.00 0.00 115938

31 84.95 RM 71.32 71.88 71.43 230.70 1.00 -15.91 1183491

36 199.88 HDS 183.18 185.90 184.15 348.50 1.00 -7.87 1787805

41 400.70 HDS 374.50 378.10 376.76 359.20 1.00 -5.98 1842696

46 375.33 SPT 369.35 369.58 369.38 397.60 1.00 -1.58 2039688

51 0.00 EDD 0.00 0.00 0.00 34.10 1.00 0.00 174933

56 30.03 RM 16.17 17.00 16.28 198.00 1.00 -45.78 1015740

61 171.33 HDS 150.63 153.95 152.27 380.90 1.00 -11.12 1954017

66 455.78 SPT 395.90 396.00 395.95 431.90 1.00 -13.13 2215647

71 469.43 SPT 449.23 449.30 449.24 380.80 1.00 -4.30 1953504

76 0.00 EDD 0.00 0.00 0.00 5.20 1.00 0.00 26676

81 4.85 EDD 3.20 3.45 3.27 217.00 1.00 -32.52 1113210

86 127.35 EDD 82.55 85.07 83.29 388.10 1.00 -34.60 1990953

91 383.68 RM 329.98 330.63 330.14 407.30 1.00 -13.95 2089449

96 658.40 SPT 639.65 639.83 639.67 412.90 1.00 -2.84 2118177

101 0.00 EDD 0.00 0.00 0.00 5.50 1.00 0.00 28215

106 0.00 EDD 0.00 0.00 0.00 127.80 1.00 0.00 655614

111 275.23 RM 210.80 213.25 211.69 402.00 1.00 -23.09 2062260

116 319.13 RM 242.90 244.85 243.85 463.70 1.00 -23.59 2378781

121 598.78 SPT 576.57 576.68 576.60 448.40 1.00 -3.70 2300292

 Avg 272.72 1.00 -11.10 1399074

 Min 5.20 1.00 -45.78 26676

 Max 463.70 1.00 0.00 2378781

Table 2. MCMP-SRI. Values of the performance variables for the Average Tardiness problem

112

From table 2 the following observations can be done:

MCMP-SRI outperforms all other heuristics improving the
upper bounds except when EDD is optimal (reaching the
same optimal value), which is the case for instances 26, 51,
76, 101 and 106. Recall that for this problem EDD provides
an optimal schedule when the total tardiness is zero (and
consequently average tardiness is also zero) or when EDD
produces one tardy job [11]. Mean Ebest ranks from 0.0 to –
45.78% with a global average value of –11.10%.
Consequently, the Hit Ratio is 1 for each instance. These best
values are obtained through a number of generations Gbest

that goes from 5 to 474 (273 in average) which requires a
number of evaluations Mean Evals ranking from 26,676 to
2,378,781 (1,399,074 in average).
A similar study was done for each MCMP-SRSI variant. In
what follows we present tables summarizing results of mean
Ebest and mean Evals for each method.

MCMP

Inst. SRI SRSI-E SRSI-E-N SRSI-H SRSI-H-E SRSI-H-

E-N

1 -8.20 -8.20 -8.20 -8.20 -8.20 -8.20

6 -17.18 -16.72 -16.68 -17.09 -16.34 -17.14

11 -5.67 -5.42 -5.47 -5.74 -5.80 -5.24

19 -5.82 -5.94 -6.03 -5.74 -6.19 -6.19

21 -0.55 -0.56 -0.56 -0.56 -0.56 -0.56

26 0.00 0.00 0.00 0.00 0.00 0.00

31 -15.91 -15.72 -16.04 -15.98 -15.91 -16.04

36 -7.87 -8.23 -8.28 -8.08 -8.36 -8.36

41 -5.98 -5.75 -5.81 -5.81 -6.55 -5.99

46 -1.58 -1.59 -1.59 -1.59 -1.59 -1.59

51 0.00 0.00 0.00 0.00 0.00 0.00

56 -45.78 -37.95 -46.14 -46.05 -46.14 -46.14

61 -11.12 -11.71 -11.61 -11.83 -12.16 -12.15

66 -13.13 -13.14 -13.14 -13.08 -13.14 -13.14

71 -4.30 -4.30 -4.30 -4.30 -4.30 -4.30

76 0.00 0.00 0.00 0.00 0.00 0.00

81 -32.52 -34.02 -34.02 -34.02 -34.02 -34.02

86 -34.60 -35.40 -35.38 -35.03 -35.30 -35.21

91 -13.95 -14.00 -14.00 -13.78 -14.00 -14.00

96 -2.84 -2.85 -2.85 -2.85 -2.85 -2.85

101 0.00 0.00 0.00 0.00 0.00 0.00

106 0.00 0.00 0.00 0.00 0.00 0.00

111 -23.09 -23.27 -23.25 -22.73 -23.41 -23.41

116 -23.59 -23.89 -23.87 -23.41 -23.89 -23.87

121 -3.70 -3.71 -3.71 -3.71 -3.71 -3.71

Avg -11.10 -10.89 -11.24 -11.18 -11.30 -11.28

Min -45.78 -37.95 -46.14 -46.05 -46.14 -46.14

Max 0.00 0.00 0.00 0.00 0.00 0.00

Results in table 3 indicate that all MCMP evolutionary
algorithms outperform conventional heuristics showing
improvements that range from 0 to 46% and an average value
of about 11%. Although their performance is similar, SRSI-E

shows the lower and SRSI-H-E-N the higher performance,
respectively.

MCMP

Inst. SRI SRSI-E SRSI-

E-N

SRSI-H SRSI-

H-E

SRSI-

H-E-N

1 174420 170829 127737 141588 8208 7695

6 604827 234954 230337 349353 15903 80028

11 1230174 574560 451953 540189 26163 47709

19 1937088 533520 563274 795150 75924 97983

21 1983258 409887 354996 399627 24111 90801

26 115938 127224 41040 12312 39501 6669

31 1183491 349866 339093 370899 62073 32832

36 1787805 557118 538650 646380 42066 47196

41 1842696 407835 376542 559683 54378 224694

46 2039688 477090 418608 451953 28215 83619

51 174933 212382 180576 5130 5130 5130

56 1015740 279072 430920 377568 12312 32319

61 1954017 675108 739746 807975 68742 88236

66 2215647 552501 573534 903906 71820 88749

71 1953504 407322 381159 546858 37449 52839

76 26676 33345 29241 5130 5130 5130

81 1113210 471447 384237 28728 6669 35397

86 1990953 630990 601749 698193 84132 251370

91 2089449 619704 730512 933660 69255 111834

96 2118177 444258 428355 738720 38988 55404

101 28215 29241 31806 5130 5130 6156

106 655614 286767 310365 5130 6669 6669

111 2062260 441180 505818 938277 44118 97983

116 2378781 641250 587898 943920 83106 86184

121 2300292 471447 435024 840294 38475 39501

Avg 1399074 401556 391727 481830 38147 67285

Min 26676 29241 29241 5130 5130 5130

Max 2378781 675108 739746 943920 84132 251370

Table 4 indicates the mean number of evaluations necessary
to obtain the results shown in table 3. Here, we can observe
that MCMP-SRI (without knowledge insertion) is the most
costly algorithm needing 1,400,000 evaluations in average.
All other variants including some kind of knowledge reduce
the number of evaluation in a range that goes from 65.5%
(SRSI-H) to 97.3% (SRSI-H-E).

5. CONCLUSIONS

The scheduling problem of minimizing Average Tardiness in
a single machine environment is a difficult problem by itself
and some conventional heuristics were developed to provide
optimal or quasi-optimal solutions. In this work two of the
latest multirecombined evolutionary algorithms were
contrasted against the most common, rapid, and good
heuristics for the problem.

Evolutionary algorithms are robust search algorithms in the
sense that they provide good solutions to a broad class of
problems which otherwise are computationally intractable.
To improve EAs performance, multi-recombined EAs allow
multiple interchange of genetic material among multiple

Table3: Mean Ebest values

Table4: Mean Eval values

113

parents (MCMP). To ameliorate the search process, by means
of a better balance between exploration and exploitation, the
concept of the stud and the random immigrants was inserted
in MCMP-SRI.

Nevertheless the robustness of EAs has as a drawback the
kind of search process they perform: a blind search that
slightly addressed by the relative fitness of the solutions,
completely ignores the nature of the problem. In order to
improve their performance we decided to insert problem-
specific-knowledge by recombining internal or external seeds
in the evolutionary process.

Results indicate that:

Both multirecombined EAs produced solutions of
higher quality (11% in average) than those achieved by
typical heuristics.

MCMP-SRSI variants outperform the former MCMP-
SRI. In particular their superiority is strongly related to
speed of convergence, perceptible in a reduction of the
number of evaluations that ranges from 65.5% to
97.3%.

Further work will be dedicated to find alternative ways to
guide the evolutionary search for different scheduling
problems.

6. ACKNOWLEDGEMENTS

We acknowledge the co-operation of the LIDIC for providing
new ideas and constructive criticisms. Also to the
Universidad Nacional de San Luis, the Universidad Nacional
de La Patagonia Austral, and the ANPCYT from which we
receive continuous support.

Mainly and in his memory to Dr. Raúl Gallard who knew
how to inspire in this group desires of enhancement and for
whom we will keep the maximum affection, respect and
gratefulness.

7. REFERENCES

[1] Beasley J.E. “Common Due Date Scheduling”, OR
Library, http://mscmga.ms.ic.ac.uk/

[2] Crauwels H.A.J., Potts C.N. and Van Wassenhove L.N.
“Local search heuristics for the single machine total
weighted tardiness scheduling problem”, Informs

Journal on Computing 10, 341-350. 1998.

[3] Chen T. and Gupta M., “Survey of scheduling research
involving due date determination decision”, European

Journal of Operational Research, vol 38, pp. 156-166,
1989.

[4] Eiben A.E., Raué P.E., and Ruttkay Z., “Genetic
algorithms with multi-parent recombination”,
Proceedings of the 3rd Conference on Parallel

Problem Solving from Nature, Springer-Verlag, 1994,
number 866 in LNCS, pp. 78-87.

[5] Eiben A.E., Van Kemenade C.H.M., and Kok J.N.,
“Orgy in the computer: Multi-parent reproduction in
genetic algorithms”. Proceedings of the 3rd European

Conference on Artificial Life, Springer-Verlag, 1995,
number 929 in LNAI, pages 934-945.

[6] Eiben A.E. and. Bäck Th., “An empirical investigation
of multi-parent recombination operators in evolution
strategies”. Evolutionary Computation, 5(3):347-365,
1997.

[7] Esquivel S., Leiva A., Gallard R., “Multiple Crossover
per Couple in Genetic Algorithms”, Proceedings of the
Fourth IEEE Conference on Evolutionary Computation

(ICEC'97), Indianapolis, USA, April 1997, pp 103-
106.

[8] Esquivel S., Leiva A., Gallard R., “Couple Fitness
Based Selection with Multiple Crossover per Couple in
Genetic Algorithms“. Proceedings of the International

Symposium on Engineering of Intelligent Systems

(EIS´98), La Laguna, Tenerife, Spain, February 1998,
pp 235-241.

[9] Esquivel S., Leiva H., Gallard R., “Multiple crossovers
between multiple parents to improve search in

evolutionary algorithms”, Proceedings of the
Congress on Evolutionary Computation (IEEE).
Washington DC, 1999, pp 1589-1594.

[10] Michalewicz M., “Genetic Algorithms + Data

Structures = Evolution Programs”. Third revised
edition, Springer, 1996.

[11] Morton T., Pentico D., “Heuristic scheduling

systems”, Wiley series in Engineering and technology
management. John Wiley and Sons, INC, 1993.

[12] Pandolfi D., Vilanova G., M. De San Pedro, A.
Villagra, “Multirecombining studs and immigrants in
evolutionary algorithm to face earliness-tardiness
scheduling problems”. Proceedings of the

International Conference in Soft Computing.
University of Paisley, Scotland, U.K., June2001,
pp.138

[13] Pandolfi D., De San Pedro M., Villagra A., Vilanova G.,
Gallard R.- “Studs mating immigrants in evolutionary
algorithm to solve the earliness-tardiness scheduling
problem” . In Cybernetics and Systems of Taylor and

Francis Journal, Vol. 33 Nro. 4, pp 391-400 (U.K.)
June 2002.

[14] Pandolfi D. De San Pedro M. M., Villagra A.,
Vilanova G., R. Gallard – “Multirecombining random
and seed immigrants in evolutionary algorithms to
solve W-T scheduling problems”- In proceedings of

CSITeA02, pp 133-138, Iguazu Falls, June 2002,
Brazil.

[15] Pinedo M., “Scheduling: Theory, Algorithms and
System.” First edition Prentice Hall, 1995.

[16] Rachamadugu R.V., Morton T.E., “Myopic heuristics
for the single machine weighted tardiness problem”.
GSIA, Carnigie Mellon University, Pittsburgh, PA.
1982., Working paper 30-82-83.

[17] Reeves C., “A genetic algorithm for flow shop
sequencing”, Computers and Operations Research, vol
22, pp5-13, 1995.

[18] Tsujimura Y., Gen M., Kubota E.: “Flow shop
scheduling with fuzzy processing time using genetic
algorithms”. The 11th Fuzzy Systems Symposium,

Okinawa,. 1995,.pp 248-252.

114

	Text3: JCS&T Vol. 4 No. 2 August 2004

