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ABSTRACT 

Evolutionary algorithms (EAs) are merely blind search 
algorithms, which only make use of the relative fitness of 
solutions, but completely ignore the nature of the problem. 
Their performance can be improved by using new 
multirecombinative approaches, which provide a good 
balance between exploration and exploitation. Even though in 
difficult problems with large search spaces a considerable 
number of evaluations are required to arrive to near-optimal 
solutions. 

On the other hand specialized heuristics are based on some 
specific features of the problem, and the solution obtained 
can include some features of optimal solutions. If we insert in 
the evolutionary algorithm the problem specific knowledge 
embedded in good solutions (seeds), coming from some other 
heuristic or from the evolutionary process itself, we can 
expect that the algorithm will be guided to promising sub-
spaces avoiding a large search. 

This work shows alternative ways to insert knowledge in the 
search process by means of the inherent information carried 
by solutions coming from that specialised heuristic or 
gathered by the evolutionary process itself. To show the 
efficiency of this approach, the present paper compares the 
performance of multirecombined evolutionary algorithms 
with and without knowledge insertion when applied to 
selected instances of the Average Tardiness Problem in a 
single machine environment.  

Keywords: Average tardiness scheduling problem, 
Evolutionary scheduling, conventional heuristics, problem-
specific knowledge. 

INTRODUCTION 

In a production system it is usual to stress minimum average 
tardiness to achieve higher client satisfaction on the average. 
The Average Tardiness problem (1 1/n  Tj) [3, 15], is an 
important NP-hard scheduling problem which measures the 
adaptation of the system to client requirements. Its 
minimization leads to a situation where it is less likely that 
the waiting time of any given job will be unacceptably long. 

Branch and Bound and other partial enumeration based 
methods, which guarantee exact solutions, are prohibitively 
time consuming even with only 20 jobs. To provide 
reasonably good solutions in very short time the scheduling 
literature offers a set of dispatching rules and heuristics. 
Depending on the particular instance of the problem we are 
facing, some of them behave better than others. Among 
others heuristics [11], evolutionary algorithms (EAs) have 
been successfully applied to solve scheduling problems [17, 
18]. Current trends in evolutionary algorithms make use of  
multiparent [4, 5, 6] and multirecombinative approaches [7, 
8, 9]. The latter we called, multiple-crossovers-on-multiple-

parents (MCMP). Instead of applying crossover once on a 
pair of parents this feature applies n1 crossover operations on 
a set of n2 parents. In order to improve the balance between 
exploration and exploitation in the search process a variant 
called MCMP-SRI [12, 13] recombines a breeding individual 
(stud) by repeatedly mating individuals that randomly 
immigrates to a mating pool. Under this approach the random 
immigrants incorporate exploration and the multi-mating 
operation with the stud incorporates exploitation to the search 
process.  

If we are trying to incorporate knowledge to the blind 
evolutionary search process, the issue here is how to 
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introduce problem-specific knowledge? If optimality 
conditions for the solutions are known in advance we can 
restrict the search operating only on solutions which hold 
these conditions. When optimality conditions are unknown, 
which is the case, the answer is to provide information which 
is gathered by the evolution process itself and resides in the 
elitist individual, or to import this knowledge from solutions 
that come out from heuristics specifically designed for the 
problem under consideration. Both kinds of knowledge-based 
intermediate solutions contain some of the features, which 
are present in the best (optimal or quasi-optimal) solution at 
the end of the evolutionary process. 

Consequently, MCMP-SRSI, a latest variant, considers the 
inclusion of a stud-breeding individual in a pool of random 
and seed-immigrant parents. Here, the seeds generated by 
conventional heuristics or by the evolutionary process itself, 
introduce the problem-specific knowledge. Next sections 
describe the average tardiness-scheduling problem, 
alternative ways to insert problem-specific knowledge and 
discuss the results obtained. 

1. THE AVERAGE TARDINESS SCHEDULING 

PROBLEM 

The problem [15] can be stated as follows: n jobs are to be 
processed without interruption on a single machine that can 
handle no more than one job at a time. Job j (j=1,...,n)
becomes available for processing at time zero, requires an 
uninterrupted positive  processing time pj on the machine, and 
has a due date dj by which it should ideally be finished.  For a 
given processing order of the jobs, the earliest completion 
time Cj and the tardiness Tj = max{Cj -dj,0} of job j can 
readily be computed. The problem is to find a processing 
order of the jobs with minimum average tardiness 

n

j

jT
n

1

1

The problem has received considerable attention by different 
researchers. For many years its computational complexity 
remained open until established as NP-Hard in 1989 [15]. 

2. CONVENTIONAL APPROACHES TO THE 

AVERAGE TARDINESS PROBLEM 

Dispatching heuristics assign a priority index to every job in 
a waiting queue and the one with the highest priority is 
selected to be processed next. There are different heuristics 
[11] for the Average Tardiness problem whose principal 
property is not only the quality of the results, but also to give 
an ordering of the jobs (schedule) close to the optimal 
sequence. The following dispatching rules and heuristics 
were selected to determine priorities, build schedules and 
contrast their outcomes with those obtained by the 
evolutionary algorithms. 

SPT (Shortest Processing Time first) the job with the shortest 
processing time is selected first and in the final schedule jobs 
are ordered satisfying: p1 p2    … pn .

EDD (Earliest Due Date first) the job with earliest due date is 
selected first and in the final schedule jobs are ordered 
satisfying: d1 d2    … dn .

SLACK (Least slack) he job with smallest difference between 
due date and processing time is selected first and in the final 
schedule jobs are ordered satisfying: d1-p1 d2-p2    dn-pn .

Hodgson Algorithm: This heuristic provides a schedule 
according to the following procedure, 

Step 1: Order the activities in EDD order. 

Step 2: If there are no tardy jobs, stop; this is the optimal 
solution. 

Step 3: Find the first tardy job, say k, in the sequence.  

Step 4: Move the single job j (1  j  k) with the longest 
processing time to the end of the sequence. 

Step 5: Revise the completion times and return to step 2. 

The algorithm is optimal for a related objective (unweighted 
number of tardy jobs) and can behave well for some instances 
of average tardiness. 

Rachamadagu and Morton Heuristic (R&M). This heuristic 
provides a schedule according to the following priority, 

with Sj = [dj – (pj + Ch)] is the slack of job j at time Ch,
where Ch is the total processing time of the jobs already 
scheduled, k is a parameter of the method (usually k =2.0) 
and pav is the average processing time of jobs competing for 
top priority. In the R&M heuristic, also called the Apparent 

Tardiness Cost heuristic, jobs are scheduled one at a time and 
every time a machine becomes free a ranking index is 
computed for each remaining job. The job with the highest-
ranking index, is then selected to be processed next. 

3. MULTIRECOMBINATION OF RANDOM AND 

SEED IMMIGRANTS WITH THE STUD 

Multiple Crossovers per Couple (MCPC) [7, 8] and Multiple 
Crossovers on Multiple Parents (MCMP) [9] are 
multirecombination methods, which improve EAs 
performance by reinforcing and balancing exploration and 
exploitation in the search process. In particular, MCMP is an 
extension of MCPC where the multiparent approach of Eiben 
[4, 5, 6] is included. Results obtained in diverse single and 
multiobjective optimization problems indicated that the 
searching space is efficiently exploited by the multiple 
applications of crossovers and efficiently explored by the 
greater number of samples provided by the multiple parents. 
A further extension of MCMP is known as MCMP-SRI [12, 
13].  

This approach considered the mating of an evolved individual 
(the stud) with random immigrants. The process for creating 
offspring is performed as follows. From the old population, 
the stud is selected by means of proportional selection and 
inserted in the mating pool. The number of n2 parents in the 
mating pool is completed with randomly created individuals 
(random immigrants). The stud mates every other parent, the 
couples undergo partial mapped crossover (PMX) and 2n2

offspring are created. The best of these 2 n2 offspring is 
stored in a temporary children pool. The crossover operation 
is repeated n1 times, for different cut points each time, until 
the children pool is completed. Finally, the best offspring 
created from n2 parents and n1 crossover is inserted in the 
new population. MCMP-SRSI [14, proposes to insert 
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problem-specific-knowledge by recombining potential 
solutions (individuals of the evolving population) with seeds, 
which are solutions provided by other heuristics specifically 
intended to solve the scheduling problem under study. In 
MCMP-SRSI, the process for creating offspring is similar to 
that of MCMP-SRI, except that the mating pool contains also 
seed immigrants. In this way the evolutionary algorithm 
incorporates problem-specific-knowledge supplied by the 
specific heuristic. 

In the present work we propose different versions of the 
MCMP family: 

a) Without knowledge insertion 

MCMP-SRI, it works as above described. 

b) With knowledge insertion, including the following 
MCMP-SRSI variants, 

b1) internal knowledge insertion. Here the knowledge 
acquired during the evolutionary process itself is 
inserted as a seed. 

SRSI-E. After the second generation, the best individual 
found so far (the elitist individual), is inserted in the 
mating pool as a unique seed individual along with the 
stud and random immigrants. 

SRSI-E-N. The mating pool is built as in SRSI-E variant 
but here a neighbourhood operator is added to eliminate 
possible copies of the best individual. After a search for 
copies, this operator replaces each copy by a neighbour 
created by random interchange of allele values. If more 
than one copy exists then, a neighbour created by a 
single interchange replaces the first copy, another 
neighbour created by two interchanges replaces the 
second copy, and so on. The idea is that copies will be 
replaced by individuals that retain certain genetic 
characteristics of the best individual, but differ more and 
more from this best individual as the number of copies 
augments. 

b2) external knowledge insertion. Here, solutions 
provided by other heuristics specifically intended to 
solve the scheduling problem are inserted as seeds 
in the mating pool. 

SRSI-H. Here, only one immigrant seed is inserted in the 
mating pool along with the stud and random immigrants. 
This seed is selected as the schedule built by the best 
heuristic in the corresponding instance. The seed 
belongs to every mating pool. 

b3) internal and external knowledge insertion. Here, 
both the best individual found so far (elitist) and a 
solution provided by the best heuristic, are inserted 
as seeds in the mating pool. 

SRSI-H-E. During the first two generations the schedule 
built by the best heuristic, in the corresponding instance, 
is inserted as a unique seed in the mating pool. In 
successive generations, the elitist individual remains as 
the unique seed. The seed shares the mating pool with 
the stud and random immigrants. 

SRSI-H-E-N. The mating pool is built as in SRSI-H-E 
variant but here a neighbourhood operator is added to 
eliminate possible copies of the best individual. The 
neighbourhood operator works in the same way above 
described. 

4. EXPERIMENTAL TESTS AND RESULTS 

As it is not usual to find published benchmarks for the 
Average Tardiness problem we built our own test suite with 
data (pj ,dj ) extracted from 25 selected instances of the OR-
library benchmarks for the weighted tardiness problem, with 
40-jobs problem size, [1,2]. This data was the input for 
dispatching rules, conventional heuristics and our proposed 
multi-recombined EAs, MCMP-SRI and MCMP-SRSI. 

To evaluate the dispatching rules and the conventional 
heuristics (SPT, EDD, SLACK, Hodgson and R&M) we used 
PARSIFAL [11] which is a software package provided by 
Morton and Pentico, to solve different scheduling problems 
by means of different heuristics. 

The initial phase of the experiments consisted in to establish 
the best results from dispatching rules and conventional 
heuristics to use them as upper bounds for this scheduling 
objective. These results can be observed in table 1, where the 
first column identifies the instance number and the rest 
indicate the Average Tardiness achieved by each approach.  

Inst. SPT LPT EDD SLACK HODG. R&M 

1 40.23 106.68 13.05 19.85 22.18 25.30 

6 94.60 314.38 116.68 132.35 88.55 95.70 

11 214.28 676.25 292.65 350.78 203.08 228.00 

19 542.85 991.68 773.78 808.05 557.45 610.35 

21 525.43 1236.13 879.48 1036.38 805.40 616.03 

26 51.33 97.23 0.40 0.90 0.40 5.58 

31 150.08 427.75 93.95 99.53 100.83 84.95 

36 233.10 617.88 353.78 377.30 199.88 232.63 

41 413.65 980.10 667.68 709.78 400.70 471.83 

46 375.33 1001.25 628.53 748.40 704.88 439.63 

51 121.38 211.35 0.00 0.00 0.00 1.05 

56 107.03 222.58 30.93 40.33 56.50 30.03 

61 241.20 688.00 263.43 292.68 171.33 199.75 

66 455.78 987.53 608.65 631.00 566.78 530.93 

71 469.43 1059.28 670.50 789.10 800.25 538.43 

76 42.38 171.30 0.00 0.00 0.00 0.00 

81 162.88 348.90 4.85 7.10 28.58 7.20 

86 207.70 599.63 127.35 139.23 157.03 128.70 

91 404.28 903.35 558.25 583.23 477.90 383.68 

96 658.40 1210.18 920.70 1009.35 872.85 767.30 

101 76.70 112.45 0.00 0.00 0.00 0.00 

106 180.25 412.40 0.00 0.00 0.00 0.00 

111 397.63 727.25 333.85 350.55 441.70 275.23 

116 325.78 894.18 412.00 457.85 509.23 319.13 

121 598.78 1322.30 904.50 1030.98 941.65 654.80 

Boldfaced values indicate the best (minimum) objective 
value, which will be used as an upper bound. 

Results in Table 1, shows that EDD is the best in 32% of the 
cases (8 instances), then SPT follows being the best in 28% 
of the cases (7 instances). Both best performers are followed 

Table 1. Average Tardiness values found by each heuristic 

111



by Hodgson and R&M which are he best in 20% of the cases 
(5 instances). 

The second phase of the experiments consisted in to establish 
adequate parameter settings for MCMP-SRI and MCMP-
SRSI and then to run a number of experimental series. After a 
series of initial trials the best parameter setting was 
determined under each algorithm, as follows: 

The maximum number of generations was fixed to 500 and 
200 for MCMP-SRI and MCMP-SRSI, respectively. Both 
algorithms run with a population size of 15 individuals, with 
n1 = 20, n2 = 18, and crossover probability fixed at 0.65. 
Mutation probability was set to 0.0 and 0.05 for MCMP-SRI 
and MCMP-SRSI, respectively. Series of ten runs where 
performed for each instance. To compare the algorithms, the 
following relevant performance variables were chosen: 

Ebest = ( (best value - opt_val)/opt_val)100

It is the percentile error of the best-found individual when 
compared with the known, or estimated (upper bound) 
optimum value opt_val. It gives us a measure on how far the 
best individual is from that opt_val.  

Mean Ebest: It is the mean value of Ebest throughout all 
runs.

Best: It is the minimum objective value corresponding to 
some of the best-found individuals throughout all runs. 

Max Best: It is the maximum objective value corresponding 
to some of the best-found individuals throughout all runs. 

Mean Best: It is the mean objective value obtained from the 
best-found individuals throughout all runs. 

Gbest:It is the generation where the best individual was 
found. 

Mean Gbest: It is the mean generation number where the 
best individual was found, throughout all runs. 

Hit Ratio: Denotes the percentage of runs where the 
algorithm reaches the upper bound or improves it. Its value is 
1 (a 100% of success) when the upper bound is reached or 
improved in every run. 

Evals: Is the number of evaluations necessary to obtain the 
best-found individual in a run. 

Mean Evals: Is the mean number of evaluations necessary to 
obtain the best-found individual throughout all runs. 

Values of some of these performance variables, obtained 
under MCMP-SRI, are listed in the following tables. 
Columns one to three indicate the instance number, the upper 
bound and the heuristic providing that upper bound, 
respectively, the remaining columns indicate the performance 
variable values. At the bottom of the tables, average, 
minimum and maximum Hit ratio, Avg Ebest and Avg Evals

values, are indicated. 

Inst Upper 

Bound 

Provided 

by 

Best Max    

Best

Mean

Best

Mean

Gbest 

Hit Ratio Mean 

Ebest

Mean

Evals 

1 13.05 EDD 11.98 11.98 11.98 34.00 1.00 -8.20 174420 

6 88.55 HDS 73.15 74.08 73.34 117.90 1.00 -17.18 604827 

11 203.08 HDS 191.30 192.43 191.56 239.80 1.00 -5.67 1230174 

19 542.85 SPT 509.25 514.07 511.25 377.60 1.00 -5.82 1937088 

21 525.43 SPT 522.50 522.60 522.53 386.60 1.00 -0.55 1983258 

26 0.40 EDD 0.40 0.40 0.40 22.60 1.00 0.00 115938 

31 84.95 RM 71.32 71.88 71.43 230.70 1.00 -15.91 1183491 

36 199.88 HDS 183.18 185.90 184.15 348.50 1.00 -7.87 1787805 

41 400.70 HDS 374.50 378.10 376.76 359.20 1.00 -5.98 1842696 

46 375.33 SPT 369.35 369.58 369.38 397.60 1.00 -1.58 2039688 

51 0.00 EDD 0.00 0.00 0.00 34.10 1.00 0.00 174933 

56 30.03 RM 16.17 17.00 16.28 198.00 1.00 -45.78 1015740 

61 171.33 HDS 150.63 153.95 152.27 380.90 1.00 -11.12 1954017 

66 455.78 SPT 395.90 396.00 395.95 431.90 1.00 -13.13 2215647 

71 469.43 SPT 449.23 449.30 449.24 380.80 1.00 -4.30 1953504 

76 0.00 EDD 0.00 0.00 0.00 5.20 1.00 0.00 26676 

81 4.85 EDD 3.20 3.45 3.27 217.00 1.00 -32.52 1113210 

86 127.35 EDD 82.55 85.07 83.29 388.10 1.00 -34.60 1990953 

91 383.68 RM 329.98 330.63 330.14 407.30 1.00 -13.95 2089449 

96 658.40 SPT 639.65 639.83 639.67 412.90 1.00 -2.84 2118177 

101 0.00 EDD 0.00 0.00 0.00 5.50 1.00 0.00 28215 

106 0.00 EDD 0.00 0.00 0.00 127.80 1.00 0.00 655614 

111 275.23 RM 210.80 213.25 211.69 402.00 1.00 -23.09 2062260 

116 319.13 RM 242.90 244.85 243.85 463.70 1.00 -23.59 2378781 

121 598.78 SPT 576.57 576.68 576.60 448.40 1.00 -3.70 2300292 

    Avg 272.72 1.00 -11.10 1399074 

    Min 5.20 1.00 -45.78 26676 

    Max 463.70 1.00 0.00 2378781 

Table 2. MCMP-SRI. Values of the performance variables for the Average Tardiness problem 
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From table 2 the following observations can be done: 

MCMP-SRI outperforms all other heuristics improving the 
upper bounds except when EDD is optimal (reaching the 
same optimal value), which is the case for instances 26, 51, 
76, 101 and 106. Recall that for this problem EDD provides 
an optimal schedule when the total tardiness is zero (and 
consequently average tardiness is also zero) or when EDD 
produces one tardy job [11]. Mean Ebest ranks from 0.0 to –
45.78% with a global average value of –11.10%. 
Consequently, the Hit Ratio is 1 for each instance. These best 
values are obtained through a number of generations Gbest

that goes from 5 to 474 (273 in average) which requires a 
number of evaluations Mean Evals ranking from 26,676 to 
2,378,781 (1,399,074 in average). 
A similar study was done for each MCMP-SRSI variant. In 
what follows we present tables summarizing results of mean 
Ebest and mean Evals for each method. 

MCMP 

Inst. SRI SRSI-E SRSI-E-N SRSI-H SRSI-H-E SRSI-H-

E-N 

1 -8.20 -8.20 -8.20 -8.20 -8.20 -8.20 

6 -17.18 -16.72 -16.68 -17.09 -16.34 -17.14 

11 -5.67 -5.42 -5.47 -5.74 -5.80 -5.24 

19 -5.82 -5.94 -6.03 -5.74 -6.19 -6.19 

21 -0.55 -0.56 -0.56 -0.56 -0.56 -0.56 

26 0.00 0.00 0.00 0.00 0.00 0.00 

31 -15.91 -15.72 -16.04 -15.98 -15.91 -16.04 

36 -7.87 -8.23 -8.28 -8.08 -8.36 -8.36 

41 -5.98 -5.75 -5.81 -5.81 -6.55 -5.99 

46 -1.58 -1.59 -1.59 -1.59 -1.59 -1.59 

51 0.00 0.00 0.00 0.00 0.00 0.00 

56 -45.78 -37.95 -46.14 -46.05 -46.14 -46.14 

61 -11.12 -11.71 -11.61 -11.83 -12.16 -12.15 

66 -13.13 -13.14 -13.14 -13.08 -13.14 -13.14 

71 -4.30 -4.30 -4.30 -4.30 -4.30 -4.30 

76 0.00 0.00 0.00 0.00 0.00 0.00 

81 -32.52 -34.02 -34.02 -34.02 -34.02 -34.02 

86 -34.60 -35.40 -35.38 -35.03 -35.30 -35.21 

91 -13.95 -14.00 -14.00 -13.78 -14.00 -14.00 

96 -2.84 -2.85 -2.85 -2.85 -2.85 -2.85 

101 0.00 0.00 0.00 0.00 0.00 0.00 

106 0.00 0.00 0.00 0.00 0.00 0.00 

111 -23.09 -23.27 -23.25 -22.73 -23.41 -23.41 

116 -23.59 -23.89 -23.87 -23.41 -23.89 -23.87 

121 -3.70 -3.71 -3.71 -3.71 -3.71 -3.71 

Avg -11.10 -10.89 -11.24 -11.18 -11.30 -11.28 

Min -45.78 -37.95 -46.14 -46.05 -46.14 -46.14 

Max 0.00 0.00 0.00 0.00 0.00 0.00 

Results in table 3 indicate that all MCMP evolutionary 
algorithms outperform conventional heuristics showing 
improvements that range from 0 to 46% and an average value 
of about 11%. Although their performance is similar, SRSI-E 

shows the lower and SRSI-H-E-N the higher performance, 
respectively.

MCMP 

Inst. SRI SRSI-E SRSI- 

E-N 

SRSI-H SRSI-

H-E

SRSI-

H-E-N

1 174420 170829 127737 141588 8208 7695 

6 604827 234954 230337 349353 15903 80028 

11 1230174 574560 451953 540189 26163 47709 

19 1937088 533520 563274 795150 75924 97983 

21 1983258 409887 354996 399627 24111 90801 

26 115938 127224 41040 12312 39501 6669 

31 1183491 349866 339093 370899 62073 32832 

36 1787805 557118 538650 646380 42066 47196 

41 1842696 407835 376542 559683 54378 224694 

46 2039688 477090 418608 451953 28215 83619 

51 174933 212382 180576 5130 5130 5130 

56 1015740 279072 430920 377568 12312 32319 

61 1954017 675108 739746 807975 68742 88236 

66 2215647 552501 573534 903906 71820 88749 

71 1953504 407322 381159 546858 37449 52839 

76 26676 33345 29241 5130 5130 5130 

81 1113210 471447 384237 28728 6669 35397 

86 1990953 630990 601749 698193 84132 251370 

91 2089449 619704 730512 933660 69255 111834 

96 2118177 444258 428355 738720 38988 55404 

101 28215 29241 31806 5130 5130 6156 

106 655614 286767 310365 5130 6669 6669 

111 2062260 441180 505818 938277 44118 97983 

116 2378781 641250 587898 943920 83106 86184 

121 2300292 471447 435024 840294 38475 39501 

Avg 1399074 401556 391727 481830 38147 67285 

Min 26676 29241 29241 5130 5130 5130 

Max 2378781 675108 739746 943920 84132 251370 

Table 4 indicates the mean number of evaluations necessary 
to obtain the results shown in table 3. Here, we can observe 
that MCMP-SRI (without knowledge insertion) is the most 
costly algorithm needing 1,400,000 evaluations in average. 
All other variants including some kind of knowledge reduce 
the number of evaluation in a range that goes from 65.5% 
(SRSI-H) to 97.3% (SRSI-H-E). 

5. CONCLUSIONS 

The scheduling problem of minimizing Average Tardiness in 
a single machine environment is a difficult problem by itself 
and some conventional heuristics were developed to provide 
optimal or quasi-optimal solutions. In this work two of the 
latest multirecombined evolutionary algorithms were 
contrasted against the most common, rapid, and good 
heuristics for the problem. 

Evolutionary algorithms are robust search algorithms in the 
sense that they provide good solutions to a broad class of 
problems which otherwise are computationally intractable. 
To improve EAs performance, multi-recombined EAs allow 
multiple interchange of genetic material among multiple 

Table3: Mean Ebest values

Table4: Mean Eval values
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parents (MCMP). To ameliorate the search process, by means 
of a better balance between exploration and exploitation, the 
concept of the stud and the random immigrants was inserted 
in MCMP-SRI. 

Nevertheless the robustness of EAs has as a drawback the 
kind of search process they perform: a blind search that 
slightly addressed by the relative fitness of the solutions, 
completely ignores the nature of the problem. In order to 
improve their performance we decided to insert problem-
specific-knowledge by recombining internal or external seeds 
in the evolutionary process.  

Results indicate that: 

Both multirecombined EAs produced solutions of 
higher quality (11% in average) than those achieved by 
typical heuristics. 

MCMP-SRSI variants outperform the former MCMP-
SRI. In particular their superiority is strongly related to 
speed of convergence, perceptible in a reduction of the 
number of evaluations that ranges from 65.5% to 
97.3%. 

Further work will be dedicated to find alternative ways to 
guide the evolutionary search for different scheduling 
problems. 
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