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ABSTRACT 

This paper describes a color texture-based image 
segmentation system. The color texture information is 
obtained via modeling with the Multispectral 
Simultaneous Auto Regressive (MSAR) random field 
model. The general color content characterized by ratios of 
sample color means is also used. The image is segmented 
into regions of uniform color texture using an 
unsupervised histogram clustering approach that utilizes 
the combination of MSAR and color features. The 
performance of the system is tested on two databases 
containing synthetic mosaics of natural textures and 
natural scenes, respectively. 
Keywords: Color Texture, Multispectral Random Field 
Models, Color Texture Segmentation 
 

1. INTRODUCTION 
This paper describes a color texture-based segmentation 
system. The approach involves characterizing color texture 
using features derived from a class of multispectral 
random field models and color space. These features are 
then used in an unsupervised histogram clustering-based 
segmentation algorithm to find regions of uniform texture 
in the query image. 
Texture information has been used in the past for the 
characterization of imagery, however the previously 
proposed approaches have either considered only gray 
level textures or pixels based color content and not color 
texture [1]. The utilized segmentation algorithm in some 
approaches has also not been completely unsupervised [2]. 
The contributions of this paper are as follows: 
• Texture characterization by a mix of multispectral 

random field based features and color content 
features. 

• Development of a completely unsupervised color-
texture-based segmentation algorithm and 
demonstration of its effectiveness. 

• Demonstration of the effectiveness of the proposed 
approach on two databases containing 1) synthetic 
mosaics of natural textures and 2) natural scenes. 

 
Related Studies 
The main aspect to this work is segmentation of color 
texture images. Accordingly, some salient previous studies 
related to this topic are reviewed in this section. 
The texture segmentation algorithm in [3] considers 
features extracted with a 2-D moving average (MA) 
approach. The 2-D MA model represents a texture as an 
output of a 2-D finite impulse response (FIR) filter with 
simple input process. The 2-D MA model is used for 
modeling both isotropic and anisotropic textures. The 
maximum likelihood (ML) estimator of the 2-D MA 

model is used as texture features. Supervised and 
unsupervised texture segmentation are considered. The 
texture features extracted by the 2-D MA modeling 
approach from sliding windows are classified with a 
neural network for supervised segmentation, and are 
clustered by a fuzzy clustering algorithm for unsupervised 
texture segmentation. 
Mirmehdi and Petrou in [4] present an approach to 
perceptual segmentation of color image textures. Initial 
segmentation is achieved by applying a clustering 
algorithm to the image at the coarsest level of smoothing. 
The image pixels representing the core clusters are used to 
form 3D color histograms that are then used for 
probabilistic assignment of all other pixels to the core 
clusters to form larger clusters and categorize the rest of 
the image. The process of setting up color histograms and 
probabilistic reassignment of the pixels to the clusters is 
then propagated through finer levels of smoothing until a 
full segmentation is achieved at the highest level of 
resolution. 
Deng and Manjunath [1] also present a new method 
(JSEG) for unsupervised segmentation of color-texture 
regions in images. It consists of two independent steps: 
color quantization and spatial segmentation. In the first 
step, colors in the image are quantized to several 
representative classes that can be used to differentiate 
regions in the image. Applying the criterion to local 
windows in the class-map results in the “J-image,” in 
which high and low values corresponded to possible 
boundaries and interiors of color-texture regions. A region 
growing method is then used to segment the images based 
on the multiscale J-images. This method is still pixel 
based, and we contrast results of image segmentation of 
this algorithm with our approach later in this paper. 
 
2. COLOR TEXTURE CHARACTERIZATION 

WITH MULTISPECTRAL SIMULTANEOUS 
AUTOREGRESSIVE MODEL 

In this work, the texture of the color images is 
characterized using a class of multispectral random field 
image model called the Multispectral Simultaneous 
Autoregressive (MSAR) model [5], [6]. The MSAR model 
has been shown to be effective for color texture synthesis 
and classification [5], [6]. For mathematical simplicity, the 
model is formulated using a toroidal lattice assumption. A 
location within a two-dimensional M x M lattice is 
denoted by s = (i, j), with i, j being integers from the set J 
= {0, 1, …, M-1}. The set of all lattice locations is defined 
as Ω = {s = (i, j) : i, j ∈ J}. The value of an image 
observation at location s is denoted by the vector value 
y(s), and the image observations are assumed to have zero 
mean. The MSAR model relates each lattice position to its 
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neighboring pixels, both within and between image planes, 
according to the following model equation: 
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where: 

yi(s) = Pixel value at location s of the ith plane 
s and r = two dimensional lattices 
P = number of image planes (for color images, P = 3, 
representing: Red, Green, and Blue planes) 
Nij = neighbor set relating pixels in plane i to 
neighbors in plane j (only interplane neighbor sets, i.e. 
Nij, i ≠ j, may include the (0,0) neighbor) 
θij = coefficients which define the dependence of yi(s) 
on the pixels in its neighbor set Nij 
ρi = noise variance of image plane i 
wi(s) = i.i.d. random variables with zero mean and 
unit variance 
⊕ denotes modulo M addition in each index 
 

The parameters associated with the MSAR model are θ 
and ρ vectors which collectively characterize the spatial 
interaction between neighboring pixels within and 
between color planes. These vectors are taken as the 
feature set fT representing the underlying color texture of 
the image. 
A least squares (LS) estimate of the MSAR model 
parameters is obtained by equating the observed pixel 
values of an image to the expected value of the model 
equations [5]. This leads to the following estimates: 
 

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
= ∑∑

∈

−

∈ ΩsΩs
ssqsqsq )(y)()()(θ̂ ii

1

T
iii  

(2) 
 
and 
 

( )∑
∈

−=ρ
Ωs

sqθs
2

i
T
ii2i )(ˆ)(y

M
1ˆ  

(3) 
 
where: 
 

[ ]TT
iP

T
2i

T
1ii θθθθ L=  

(4) 
 

[ ]TT
iP

T
2i

T
1ii )()()()( sysysysq L=  

(5) 
 

{ }ijjij N:)(ycol)( ∈⊕= rrssy  

(6) 
 
This model has been shown to be effective for color 
texture synthesis as well in [6], and the resulting synthetic 
images can be visually compared to the original images, 
and observed to be very similar in appearance to the 
images from which the models were derived. 
 

3. COLOR CONTENT CHARACTERIZATION 
In addition to modeling color texture, the general color 
content of the image is also important. Additional features 
focusing on the color alone are also considered. This is 
done using the sample mean of the pixel values in the red, 
green, and blue (RGB) planes. The defined feature vector 
is: 
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with iµ̂ s being the sample mean of the respective color 
component. The reason for using these specific ratios, 
instead of some of the other ratios formed by the other 
combinations of the color means, is that this same 
relationship was used to form ratios of the ρ parameters of 
the MSAR model used for texture classification in [5] with 
very positive results. Also, the reason for using ratio of 
color means instead of color means themselves is that such 
a ratio is illumination invariant. Assuming that the 
observed value at each pixel is a product of illumination 
and spectral reflectance, the ratios of the color means are 
invariant to uniform changes in illumination intensity (i.e. 
the power of the illumination source changes uniformly 
across the spectrum). This kind of uniform change would 
cause each iµ̂  to change by the same scale factor making 
the defined ratios invariant to illumination changes. This 
property makes the color-content features more robust. In 
the event that the denominator of any of the ratios of the 
color means goes to zero, the color mean with a value of 
zero is changed to a value of one to avoid the 
mathematical exception of dividing by zero. This case; 
however, is very unlikely, since we are dealing with 
textures and natural images that do not tend to have large 
areas (i.e. the feature extraction sliding window to be 
described later) with a solid color extreme. 
The combination of fC and fT features is used to represent 
a color texture region in this work. These features are 
collectively referred to as Color Content, Color Texture 
(C3T) features. 
 
4. UNSUPERVISED IMAGE SEGMENTATION 

WITH A HISTOGRAM-BASED CLUSTERING 
ALGORITHM 

The segmentation algorithm used in this work relies on 
scanning the image with a sliding window and extracting 
C3T features from each window. These features are then 
clustered using an unsupervised histogram-based 
algorithm. Mapping the identified clusters back into the 
image domain results in the desired segmentation. 
 
Feature Extraction with a Sliding Window 
The windowing operation consists of sliding a window 
from left to right and top to bottom across the image as 
illustrated in Fig. 1. M is the size of the image in pixels, W 
is the size of the window in pixels, and D is the size of the 
sliding step in pixels. After extensive experimentation, 
where the value of D is varied from 1 pixel to W pixels, D 
is set to 4 pixels for this work, as this value yielded the 
best results. With D having a value of W pixels, the sliding 
windows are non-overlapping and adjacent to each other. 
To find the optimum window size for each case, the size 
of the window W varies from 4 to 28 pixels in increments 

JCS&T Vol. 4 No. 3                                                                                                                                                                                      October 2004

142



of 4 pixels. The best W is found automatically as 
described in later sections. 
 

M
W
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D

 
 

Fig. 1.  Feature vector extraction with a sliding window 
 
 
As the window size is increased, the overlap between 
areas covered by adjacent windows increases, since D is 
constant, and thus the redundancy of information from 
feature vectors obtained from larger adjacent windows 
increases as W increases. It was decided not to increase D 
for the larger W values, and thus not to reduce the 
spatially adjacent vectors redundancy, because as W 
increases the likelihood of capturing a more heterogeneous 
image area increases as well. Leaving redundancy between 
adjacent vectors helps the cohesion and convergence of 
the clustering process, from a spatial perspective. 
The texture bounded by each window is characterized 
using the C3T features. The neighborhood used for the 
MSAR model is a set that contains neighbors above, 
below, to the left, and to the right of the pixel as illustrated 
in Fig. 2. The same neighbor set is used for both inter and 
intra-planes of the model. 
 

X 

X   O   X 

X 

Fig. 2.  Neighbor set used with the MSAR model 
 
 
This neighbor set results in a 20-dimensional fT. Therefore 
together with the two-dimensional color content feature set, 
a 22-dimensional C3T feature vector, f, is used to 
characterize each window. 
 
Clustering Algorithm 
Once all 22-dimensional f features are extracted from the 
sliding window, they are clustered in the feature space 
using an unsupervised histogram-based peak climbing 
algorithm [7], [8]. The 22-dimensional histogram is 
generated by quantizing each dimension according to the 
following: 
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where: 

N = total number of features (22 in this case) 
CS(k) = length of the kth side of histogram cell 
fmax(k) = maximum value of the kth C3T features 
fmin(k) = minimum value of the kth C3T features 
Q = total number of quantization levels 
dk = kth index for a histogram cell 

 
Since the dynamic range of the vectors in each dimension 
can be quite different, the cell size for each dimension 
would be different. Hence the cells will be hyperboxes. 
Next, the number of feature vectors falling in each 
hyperbox is counted and this count is associated with the 
respective hyperbox creating the required histogram. 
After the histogram is generated in the feature space, a 
peak climbing clustering approach is utilized to group the 
features into distinct clusters. This is done by locating the 
peaks of the histogram. In Fig. 3 this peak climbing 
approach is illustrated for a two-dimensional space 
example. 
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Fig. 3.  Illustration of the Peak Climbing approach for a 
two-dimensional feature space example 
 
 
The number in each cell (hyperbox) represents a 
hypothetical count for the feature vectors captured by that 
cell. By examining the counts of the 8-neighbors of a 
particular cell, a link is established between that cell and 
the closest cell having the largest count in the 
neighborhood. At the end of the link assignment, each cell 
is linked to one parent cell, but can be parent of more than 
one cell. A peak is defined as being a cell with the largest 
density in the neighborhood, i.e. a cell with no parent. A 
peak and all the cells that are linked to it are taken as a 
distinct cluster representing a mode in the histogram. Once 
the clusters are found, the windows associated with 
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features grouped in the same cluster are tagged as 
belonging to the same category. 
A major component of this algorithm is the number of 
quantization levels associated with each dimension. To 
decide this parameter, the total number of non-empty cells 
and the percentage of them capturing only one vector for 
each selection of quantization levels are examined. The 
best number of quantization levels is selected as the largest 
one that maximizes the measure below [16]. 
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where: 

Nci = number of non-empty cells 
Nui = number of cells capturing only one sample 

 
The algorithm also includes a spatial domain cluster 
validation step. This step involves constructing a matrix B 
for each cluster m as: 
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The (i, j) index corresponds to the location of a sliding 
window. A cluster is considered compact if only a very 
small number of its 1-elements have a 0-element neighbor, 
i.e. a cluster is considered valid (compact) if only a very 
small number of its elements have neighboring elements 
that do not belong to that cluster. A cluster that does not 
pass this test is merged with a valid cluster that has the 
closest centroid to it. 
During the segmentation process, the best window size for 
scanning the image is chosen in an unsupervised fashion. 
The optimum window size is obtained by sweeping the 
image with varying window sizes (4 to 28 pixels in steps 
of 4 pixels), and choosing the smallest one out of at least 
two consecutive window sizes that produce the same 
number of clusters. 
 

5. RESULTS 
The performance of the system on two different databases 
is reported in this section. 
 
Test Databases 
Two databases are used to test the performance of the 
proposed approach. These databases are referred to as 
Natural Texture Mosaics Database, and Natural Scenes 
Database. 
 

Natural Textures Mosaics Database: The Natural 
Texture Mosaics Database is a collection of images that 
are mosaics of natural textures constructed from texture 
images available in [9]. This collection includes 200 128 x 
128 images with mosaics put together at random in terms 
of the arrangement and the type of the texture regions used. 
This database is constructed to measure and investigate the 
effectiveness of the algorithm in a controlled environment. 
 

Natural Scenes Database: The Natural Scenes 
Database is a collection of images, which is comprised of 
natural scenes available in [10]. This collection has 400 
images of various sizes that include 120 x 80, 80 x 120, 

128 x 85, and 85 x 128 pixels. This database was 
constructed to test the performance on real imagery. 
 
Segmentation Results 
The performance of the proposed segmentation algorithm 
and the associated features is illustrated in Figs. 4 and 5. 
Fig. 4 shows five images each containing a number of 
different textures. These image mosaics are created from 
texture samples available in [9]. Below each image the 
segmentation result is presented in the form of a gray-level 
image with pixels belonging to the same texture having the 
same gray level. In the next row, the boundaries of the 
segmented regions are shown as superimposed white lines. 
At the top of the figures, the size of the optimal window 
found by the algorithm is shown. Fig. 5 shows the 
segmentation results for several natural scene images. 
These natural scene images are available in [10]. It is 
observed that the proposed algorithm performs quite well 
and is capable of localizing uniform color textures in each 
image. 
In Fig. 4 and Fig. 5, we also compare the results of our 
approach with the image segmentation results achieved 
using the JSEG method described in [1]. The JSEG results 
were obtained from applying the images to the programs 
made available by the JSEG authors at the Internet site 
http://maya.ece.ucsb.edu/JSEG/. The obtained region 
boundaries are superimposed on the original images. The 
JSEG results are displayed in the last rows of Figs. 4 and 5. 
It can be seen that our segmentation results have a better 
match with perceptual boundaries in the images. The 
JSEG method over segments most of the natural scene 
images and misses or mislabels some boundaries in 
mosaic images. However; the approach proposed in this 
work is 3 to 5 times more computationally intensive than 
the JSEG method, e.g. it takes about 15 seconds to 
segment a 128 x 128 pixels image with this method on a 
Pentium II 400MHz processor versus about 5 seconds with 
the JSEG method. 
 

6. CONCLUSIONS 
In this work, a novel color texture-based approach to 
image segmentation is developed. Features derived from 
the Multispectral Autoregressive (MSAR) random field 
model with a 4-neighbor set, and the RGB color space 
represented by the ratios of the true color plane means are 
used to characterize the color texture content of the image. 
These features are extracted from the image using a 
sampling window that slides over the entire image, and are 
used in conjunction with an unsupervised clustering-based 
segmentation algorithm to segment the images into regions 
of uniform color texture. The image regions are obtained 
by mapping back to the spatial domain of the image the 
significant clusters obtained in the 22-dimensional feature 
space during the clustering process. The effectiveness of 
the approach has been demonstrated using two different 
databases containing synthetic mosaics of natural textures 
and natural scenes. Furthermore, applications of this new 
perceptually compatible image segmentation method are 
possible in the areas of video processing and event 
detection, and video database and retrieval systems. 
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Fig. 4.  Segmentation results for four natural texture mosaic images, 1st row: Original image, 2nd row: Segmentation results, 
3rd row: Texture boundaries corresponding to segmentation results, 4th row: Segmentation using JSEG method 
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Fig. 5.  Segmentation results for eight natural scene images, 1st row: Original image, 2nd row: Segmentation results, 3rd row: 
Texture boundaries corresponding to segmentation results, 4th row: Segmentation using JSEG method 
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