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Abstract: It is known that any vertex of a chordal graph has an eccentric vertex which is simplicial. Here we prove
similar properties in related classes of graphs where the simplicial vertices will be replaced by other special types of
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1 BASIC DEFINITIONS

For a graph G, V (G) denotes the set of its vertices and E(G) that of its edges. A complete is a set of
pairwise adjacent vertices. The subgraph induced by A ⊆ V (G), G[A], has A as vertex set and two vertices
are adjacent in G[A] if they are adjacent in G.

Given two vertices v and w of a graph G, the distance between v and w, or d(v, w), is the length of a
shortest path connecting v and w in G. When such a path does not exist it may be said that d(v, w) = ∞.
For a vertex v ∈ V (G), the open neighborhood of v, N(v), is the set of all vertices adjacent to v. The
closed neighborhood of v, N [v], is defined by N [v] = N(v) ∪ {v}. The disk centered at vertex v with
radius k is the set of vertices at distance at most k from v and it is indicated by Nk[v]. The eccentricity of
v is ecc(v) = max{d(v, w), w ∈ V (G)}. A vertex w in G is called eccentric of v if no vertex in V (G) is
further away from v than w, that is, if ecc(v) = d(v, w).

The kth-power, Gk, of a graph G is a graph which has the same vertices as G, being two of them adjacent
in Gk if the distance between them is at most k in G.

A chord of a cycle is an edge joining two nonconsecutive vertices of the cycle. Chordal graphs are
defined as those without chordless cycles of length at least four.

A vertex v is simplicial if N [v] is a complete. A linear ordering v1v2...vn of vertices of a graph G is
called a perfect elimination ordering if, for 1 ≤ i ≤ n, vi is simplicial in Gi = G[{vi, ..., vn}].

One of the most classical characterizations of chordal graphs states that a graph is chordal if and only if
it has a perfect elimination ordering.

A vertex w ∈ N [v] is a maximum neighbor of v if N2[v] ⊆ N [w]. A linear ordering v1...vn of vertices
of G is a maximum neighborhood ordering if, for all 1 ≤ i ≤ n, vi has a maximum neighbor in Gi. Dually
chordal graphs can be defined as those possessing a maximum neighborhood ordering.

2 ECCENTRIC VERTICES

We can see that vertices with a maximum neighbor are as important for dually chordal graphs as simpli-
cial vertices are for chordal graphs. Then, if any vertex of a chordal graph has a simplicial eccentric vertex
the question wether any vertex of a dually chordal graph has an eccentric vertex with a maximum neighbor
arises. The answer is yes, and before proving it we need some previous results.

Lemma 1 [1] If G is a dually chordal graph and A is a subset of V (G) such that any pair of vertices of A
is at a distance not greater than 2, then there is a vertex w with A ⊆ N [w].

Lemma 2 [1] If G is dually chordal then G2 is chordal.

Lemma 3 Let G be a dually chordal graph and v a simplicial vertex in G2. Then v has a maximum neighbor
in G.
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Proof. As v is simplicial in G2 the distance in G between any pair of vertices of N2[v] is at most 2.
Applying Lemma 1 gives a vertex w such that N2[v] ⊆ N [w]. Then w is a maximum neighbor of v. �

Now the major result can be proved. From now on it will be assumed that G is always a connected graph.
Otherwise the proofs are trivial.

Theorem 1 Let G be a dually chordal graph and v a vertex of G. There exists an eccentric vertex of v with
maximum neighbor.

Proof. First suppose that eccG(v) is odd. As G2 is chordal we can choose a vertex w simplicial in G2

which is eccentric of v in G2. Hence, by Lemma 3, w has a maximum neighbor in G. Note first that,
because of the definition of G2, if two vertices are at distance k in G their distance in G2 is k

2 if k is even or
k+1
2 if k is odd. Furthermore any eccentric vertex of v in G will be also eccentric in G2, implying that the

eccentricity of v in G2 equals eccG(v)+1
2 because eccG(v) is odd. By using the definition of G2 again and

that dG2(v, w) = eccG(v)+1
2 , we have two possible values for dG(v, w), namely, eccG(v) or eccG(v) + 1.

The definition of eccentricity implies that d(v, w) = eccG(v) and thus w is the required vertex.
If eccG(v) is even, let G0 be a graph obtained from G by adding a new vertex v0 and making it adjacent

to v. Then G0 is dually chordal. In fact, if v1...vn is a maximum neighborhood ordering for G then v0v1...vn

is a maximum neighborhood ordering of G0. It is valid that eccG0(v0) is odd and by proceeding like in the
previous paragraph there is a vertex u with a maximum neighbor in G0 (and so in G) such that d(v0, u) =
eccG0(v0). It can be easily verified that u is the desired vertex. �

Corollary 1 If G is a nontrivial, i.e., not composed of just one vertex, dually chordal graph then there are
two vertices v1 and v2 with maximum neighbors and such that d(v1, v2) = diam(G).

Proof. Let k = diam(G) and x, y two vertices with d(x, y) = k. Then there exists a vertex v1 with
maximum neighbor and eccentric of x, so d(x, v1) = k. And likewise there is a vertex v2 with a maximum
neighbor and eccentric of v1 and consequently d(v1, v2) = k. �

At this moment it is interesting to determine if similar properties are valid for more specific types of
graphs. The answer is affirmative and we will prove it for power chordal and doubly chordal graphs.

A graph G is said to be power chordal if all of its powers are chordal. It is true that a graph is power
chordal if and only if G and G2 are chordal [1]. A graph is doubly chordal if it is chordal and dually chordal.
Any vertex of it which is simplicial and has a maximum neighbor is called doubly simplicial.

It is known that a power chordal graph is complete or there are two nonadjacent vertices which are
simplicial in both G and G2. The demonstration can be seen in [1]. A similar technique enables to prove
the following result:

Theorem 2 Let G be a power chordal graph. If v ∈ V (G) then there exists a vertex w eccentric of v in G2

which is simplicial in both G and G2.

Proof. The proof is direct if G2 is complete. Assume that G2 is not complete. Since G2 is chordal we
can take a vertex u which is simplicial in G2 and eccentric of v in G2. If u is also simplicial in G there is
nothing else to do and we can set w = u. On the contrary, let x and y be two nonadjacent neighbors of u
and S a minimal xy-separator in G. Then S is a complete because G is chordal [2] and u ∈ S.

Let G[A] and G[B] be the connected components of G−S containing x and y respectively. Without loss
of generality we can assume that v 6∈ A. It holds that G[A∪S] is chordal and since S is a complete minimal
separator (G[A ∪ S])2 = G2[A ∪ S] and thus (G[A ∪ S])2 is also chordal. Then we have two possibilities:
either G[A∪S] is complete or contains two nonadjacent vertices which are both simplicial in G[A∪S] and
G2[A ∪ S] = (G[A ∪ S])2 [1]. Whichever the case we conclude that the set A contains a vertex w which is
simplicial in G[A ∪ S] and G2[A ∪ S]. It is evident that w is simplicial in G. Now it will be demonstrated
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that w is also simplicial in G2. If N2[w] ⊆ A∪S it is obvious. Otherwise, w must be adjacent to a vertex w0

in S. If z ∈ N2[w]∩(A∪S), then z ∈ N2[u] because u ∈ N2[w] (note that w ∈ N [w0] and w0 ∈ N [u]) and
w is simplicial in G2[A∪S]. If z ∈ N2[w]− (A∪S) then again z ∈ N2[u] because any path of length two
joining w and z (vertices which are in different connected components of G−S) must have its intermediate
vertex in S, which could be u or adjacent to it because S is a complete. This makes a path between z and u
of length at most two possible. Therefore N2[w] ⊆ N2[u] and as u is simplicial in G2 so is w.

Since v and w are in different connected components of G − S any path joining them must include a
vertex in S, and so in N [u]. We can conclude that dG(u, v) ≤ dG(v, w) and then dG2(v, w) is maximum
and has the required properties. �

Theorem 3 Let G be a power chordal graph. If v ∈ V (G) then there exists an eccentric vertex of v, in G,
which is simplicial in G and G2.

Proof. The proof is very similar to that of Theorem 1, so we will just give a sketch of it.
We suppose at first that ecc(v) is odd and applying Theorem 2 will give the required vertex.
And if ecc(v) is even the graph G0 is again introduced.

�

Corollary 2 Let G be a doubly chordal graph. If v ∈ V (G) then there exists an eccentric vertex of v which
is doubly simplicial.

Proof. As G is dually chordal G2 is chordal, so the previous theorem can be applied to get a vertex w
simplicial in G and G2 and eccentric of v. Because of Lemma 3 w has a maximum neighbor in G, so it is
doubly simplicial. �

So far it was possible to prove the existence of eccentric vertices with characteristics distinguishing all the
classes related to chordal and dually chordal graphs that have been discussed. One that was not mentioned
yet is that of strongly chordal graphs and fortunately a similar property can be deduced.

A vertex v of a graph G is simple if the set {N [u] : u ∈ N [v]} is totally ordered by inclusion. From this
definition we infer that, particularly, simple vertices are simplicial and have a maximum neighbor. A linear
ordering v1v2...vn of V (G) is called a simple elimination ordering of G if, for 1 ≤ i ≤ n, vi is simple in Gi.
Strongly chordal graphs are just those possessing at least one such ordering. One of the main characteristics
of strongly chordal graphs is that they are hereditary. In fact, being a strongly chordal graph is equivalent to
being a hereditary dually chordal graph.

In connection with eccentric vertices we have the following:

Lemma 4 Let v ∈ V (G) and w be a maximum neighbor of v with ecc(w) > 1 and u such that d(u, v) ≥ 2.
Then d(u, v) = d(u, w) + 1 and any vertex eccentric of w is also eccentric of v and vice versa.

Proof. The property is true if d(u, v) = 2 due to the definition of maximum neighbor, so suppose now that
d(u, v) > 2. By the triangle inequality d(u, v) ≤ d(u, w) + d(w, v), that is, d(u, v) ≤ d(u, w) + 1. Let
vv1v2...u be a shortest path from v to u. Then wv2...u is a path from w to u of length d(u, v)−1. Therefore
d(u, v) − 1 ≥ d(u, w) and hence d(u, v) ≥ d(u, w) + 1. Then the equality d(u, v) = d(u, w) + 1 holds.
This implies that any vertex eccentric of w is at distance greater than or equal to 3 of v and consequently

d(v, u) = ecc(v) ⇔ d(v, u) = max{d(v, x) : x ∈ V (G)} ⇔ d(v, u) = max{d(v, x) : x ∈ V (G), d(v, x) ≥ 3} ⇔

d(w, u)+1 = max{d(w, x)+1 : x ∈ V (G), d(w, x) ≥ 2} ⇔ d(w, u) = max{d(w, x) : x ∈ V (G), d(w, x) ≥ 2}

⇔ d(w, u) = max{d(w, x) : x ∈ V (G)} ⇔ d(w, u) = ecc(w)

�
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Theorem 4 Let G be a strongly chordal graph. If v ∈ V (G) then there exists an eccentric vertex of v which
is simple.

Proof. It will be by induction on n = |V (G)|. The property is obviously valid when n = 1. Suppose now
that it is always valid when n = k, k ≥ 1, and that G is a strongly chordal graph with |V (G)| = k + 1.
Given v, the proof will be divided into cases.

Case 1: G has at least one universal vertex.
Let w be a universal vertex of G. If w is simple then G is complete because simple vertices are simplicial

and thus the existence of an eccentric simple vertex is evident. Otherwise, it is trivial in case that v = w,
so assume now that v 6= w and that w is not simple. Then we consider the strongly chordal graph G − w.
In case that G − w is not connected, any vertex simple in G − w and located in a connected component
different from that of v is an eccentric simple vertex for v in G. If G−w is connected, applying the inductive
hypothesis yields an eccentric simple vertex u for v in G−w. Then again it will be simple and eccentric of
v in G.

Case 2: G has not a universal vertex.
Case 2a: v is simple.
Let v0 be a maximum neighbor of v. G − v is strongly chordal and applying the inductive hypothesis

on this subgraph gives a simple eccentric vertex of v0 in G− v which will be named w. Then it is true that
d(v0, w) ≥ 2 because otherwise v0 would be universal in G. Now, as v0 is a maximum neighbor of v in G,
and so N2[v] ⊆ N [v0], we conclude that d(v, w) ≥ 3 and thus the neighborhoods of vertices in N [w] are
coincident in G and G− v, from what we can deduce that w is simple in G. And because of Lemma 4 w is
also eccentric of v.

Case 2.b: v is not simple and there is a simple vertex which is not adjacent to v.
Let w be a simple vertex not adjacent to v. If it is also eccentric we are done. If not, consider the

strongly chordal graph G−w, which possesses a simple vertex w0 eccentric of v. As removing a simplicial
vertex does not change the distance between the other vertices (simplicial vertices are never intermediate
vertices in shortest paths) w0 is also eccentric in G, so it suffices to prove that w0 is simple in G. If w0 is
not simple in G, there is at least one vertex in N [w0] whose neighborhood is not the same in G and G− w,
implying that w ∈ N2[w0]. Let u be a maximum neighbor of w in G. Then u is adjacent to w0 and therefore
d(v, w0) ≤ d(v, u) + 1, which combined with Lemma 4 implies that d(v, w0) ≤ d(v, w), contradicting that
w was not an eccentric vertex of v. Consequently w0 is necessarily simple.

We claim that all these cases are enough to prove the property for every strongly chordal graph. In fact,
if v is not simple and is adjacent to all the simple vertices it will be proved that diam(G) ≤ 2 and thus G
has a universal vertex by Lemma 1. Let x and y be vertices such that d(x, y) = diam(G). If diam(G) ≥
3 then {x, y} * N [v] so we can assume without loss of generality that x 6∈ N [v]. Since all simple vertices
are simplicial and adjacent to v we conclude that none of them is adjacent to x. Then, by case 2.b, x has a
simple eccentric vertex x0 and thus d(x, x0) = diam(G). By case 2.a we know that x0 has a simple eccentric
vertex x00 so d(x0, x00) = diam(G). But d(x0, x00) ≤ 2, contradicting that diam(G) ≥ 3. �

Corollary 3

• If G is a nontrivial power chordal graph there are two vertices v1 and v2, simplicial both in G and
G2, such that d(v1, v2) = diam(G).

• If G is a nontrivial doubly/strongly chordal graph there are two doubly simplicial/simple vertices v1

and v2 such that d(v1, v2) = diam(G).
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