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ABSTRACT

Public Key Schemes usually generate two pairs of keys
that bear some mathematical relation -- usually, a relation
of the field known as Number Theory. Identifying a key
from another that is given is a problem of great difficulty.
This paper presents a public key scheme in which such
key identification 1s also a great difficulty problem --
however, the mathematical problem does not fall under
Number Theory; rather, it is one of Differential Equations.
The proposed scheme is based on the difficulty of solving
differential equations, the rules of Lie groups being the
best solution. Even using Lie groups, a problem of great
difficulty still remains. The first few examples use Maple
5.0, a symbolic processing program, and are available 1n
an Internet site.
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1. INTRODUCTION

In 1976, Whitfield Diffic and Martin E. Hellman of

Stanford Umversity (Califorma) published New Directions

in Crypiography, which first presented relevant concepts

that enable the use of public key schemes in
cryptosystems. Among these concepts, one stands out: the
use of different keys, one called public because it can be
widely distnibuted, and another one called private, which
must be kept secret [21]. One of them is used to encrypt
the message, and the other to decrypt it. Though calculated
from a common ornigin, calculating these keys from one of
them is prohibitive. In other words, having one of them --
the public one, for instance -- one cannot calculate the
other -- the private one -- in a time such that the
information they hide is still valuable. In fact, the time
needed to effect such calculation 1s estimated as thousand

of years [2][17][22].

The use of this concept solved the problem of key

distribution, since public keys can be presented anywhere

and circulate freely.

The requirements to employ Public Key cryptography are

related to the property of the pair of keys that each user

generates [21][18]:

o IfC=E(M,K,), then M =D (C, Ky, for every M.

e it is computationally impossible to calculate K,
based on K,.

e it is computationally possible to calculate the pair of
keys K, and K, while meeting the requirements
above,

where M is the Message to transmit; C, the operation to

encrypt, and D, the decrypting operation.

This paper presents a public key scheme that 1s not based

on number theory, but rather on differential equations --

thus setting a new paradigm. The new scheme is based on
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Lie groups -- more specifically, translation symmetry on
the complex plane -- instead of discrete Galois groups
[19]. In other words, the attacker's job is focused on the
difficulty of finding out the root of the function that
corresponds to the Private Key of one of the scheme

participants -- 1i.e., solving algebraic or differential
equations -- by applying the corresponding restrictive
conditions, instead of running primality

tests[3][12][14]18], solving discrete logarithms [1][21], or
defining the scalar in elliptic curves [1][8]. Even if the
attacker tries to solve this problem with Lie groups, the
number of symbolic operations required makes the
procedure ineffective due to their processing time[24].
Besides that, even the direct search of private keys by
scanning -- equivalent to trial and error processes on
Number Theory -- becomes considerably more costly
under the new paradigm, since the searched set is a
continuous power, as opposed to the set of prime numbers,
for instance, which is numerable.

The major difficult in solving the inverse problem, e.g.
determinming the complex shifts which performs the
enciphering process lies on the need a contour problem
whose solutions are the enciphered messages. Indeed,
without knowing the differential equation and the
corresponding set of boundary conditions, the task of
finding the complex shifts is unfeasible. Even the
adversary know the differential equations and the
boundary conditions, it is a very hard problem to obtain
the Lie group admitted by the problem. This occurs
because the determining equations [15] -- which
constitutes a set of auxiliary partial differential equations
that must to be solved in order to obtain the respective
infinitesimal generators --, are often much complex than
the original one. Formal features related to this process
can be found in Chari [23] and Olver [16].

Here is a summary of how the paper is organized: section
two presents the new paradigm, presenting continuous
rather than discrete groups: section three describes the
encrypting algorithm, focusing on a ciphering method
based on ftranslational Lie symmetries. Section four
presents results of the application of the method to real
situations. Section five brings the paper to a close by
presenting the main advantages of employing the new
paradigm and the corresponding conclusions based on the
results obtained.

2. A NEW PARADIGM FOR PUBLIC KEY
SCHEMES
The property that the new paradigm is based upon is the
commutability of the differential operators involved in the
ciphering and deciphering processes. This property 1s also
valid on Galois groups, though applied restrictively.
Whereas commutability arises naturally -- in the
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algorithms based on Galois groups -- from the fact that the
elements of the groups used are integers, this property, in
algorithms that use Lie groups, is imposed to a certain
class of differential operators -- which makes the process
more flexible, regarding private key choice. In this case,
the original message can be represented by continuous
functions, or else by differential operators. This work
represents  the message by a linear combination of
infinitely  derivable  functions, whose  numerical
coefficients contain the ASCII codes of the characters in
the original message.

By employing the new paradigm, the user has great
freedom to choose private keys, i.e., there is no need to
generate long mantissa prime numbers.

However, some restricions must be observed, regarding
the form of the function associated to the original
message:

1 - parts cannot be repeated in building the function that
corresponds to the message:

2 - linear combinations of functions already inserted in
building the function that corresponds to the message
cannot be included;

3 - 1t 1s adwvisable to employ whole coeflicients as the
multiplying factors of the employed functions; and

4 - the use of independent terms in the arguments of
exponential functions is not allowed.

It is important to notice that, in schemes based on Galois
groups, participants must necessarily produce their Private
Keys from a Public Key, given the numerical restrictions
involved in the corresponding inverse process. Under the
proposed paradigm, although it is also possible to produce
Private Keys from a Public Key, it is not necessary to do
50, since the set of Private Keys is a continuous power.
This way, participants can arbitrate their Private Keys
independently -- which are both a further safety element
and also a considerable advantage from an operational
point of view.

The next section presents a symbolic scheme based on the
new paradigm. The proposed scheme called Rafaella, uses
translation symmetries on a complex plane -- a specific
case of the use of continuous groups in differential
equations.

3. MODELING THE RAFAELLA SCHEME

The process can be formally described in a similar way to

the models of Brawley and Gao [10], where

¢ the space of Private Key A is the set of complex
numbers z = a + 1b, where a and b are real non-zero
numbers.

¢ the space of messages F is the set of continuous and
infinitely derivable functions on the complex plane.

s the space of Public Keys K is the set of continuous
and infinitely derivable functions on the complex
plane.

e for every z € A, the ciphering operator is given by
the expression Cf(x) = f(x+z).

o forevery ze A, the private keys are z, and z,.

e for every z € A, the ciphering operator is written as
Dfix) fix-z), which corresponds to the inverse
ciphering operator (C™).

e the C and D operators are defined, respectively, as

¢ dJ

L T _ —'_-'a
C=e I,and D=e .

However, unlike the Brawly and Gao models, the
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proposed scheme is not based on the use of one-way
functions, i.e., functions whose process 1is
inefficient. The Rafaella scheme is based on the use of Lie
symmetries, 1.¢., the intrinsic difficulty of the inversion
process is not duc to caleulating f', but only to the
difficulty of identifying the cipher operator 1tself.

inversion

4, CONSIDERATIONS ABOUT PUBLIC KEYS
Under the proposed scheme, the Public Key -- consisting
of a continuous function or a differential operator -- does
not necessarily generate private keys. For example, let one
consider operator A' - used as a Public Key — and
defined as
9| ()

A=|a, 2 +a, 3,.
The exponential of this operator, when applied to an
arbitrary function, produces the following transformation

'l =rx+a,v+a). @

This transformation corresponds to a translation on the
real line or on the complex plane, depending on the nature
of coefficients a, and a,. Under the proposed scheme,
coefficient a; and a; have real and imaginary parts, which
determines a translation operation on the complex plane.
Equation (2), therefore, defines the origin of the private
keys, ie., the process of generating private keys from a
public key. Because the exponentiation of operator A
produces an infinite series of powers of this operator, the
process corresponding to the evaluation of the left-hand
side of (2) is extremely costly, whereas the same effect
obtained through direct translation -- by the use of
complex numbers, corresponding to the nght-hand side of
the same equation -- is a trivial operation.
From an operational point of view, the equivalence of
plugging  differential  operators on  the function
corresponding to the message and translating it verifies
directly through the use o f Taylor series 1n assessing the
offset functions:

F(x+Ax):F(x)+Ax£{ Lo ar
dxf, 20 dx7 |

+(Ax)* d'F o (Ax) atr

ktdx | Kodxt |
This operation corresponds to applying the exponential of
a differential operator over the function corresponding to
the message, since

3)

k=0

C)]

= (Ax)* df ac |
20w e

This way, it 1s possible to offset a function by applying the
exponential of a differential operator of first degree with
constant coefficients, 1.e.,
d
¢ ™ |f(x)=f(x t+a),

k=0

(5)

where a=Ax 1s a real or complex constant.

Although the enciphering scheme being a straightforward
procedure, the inverse problem constitutes a very
expensive task. At first glance, the standard procedures for

! Traditionally, capital letters are used to represent
operators -- or matrices.
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calculating complex roots, for instance, Newton-Bairstow,
steepest descent, Lanczos and conjugate gradients [7], can
be employed in order to determine the shifts in the
complex plane which generates the encrypted messages.
However, because the ligh truncation errors ansing from
the application of these schemes, this task becomes
prohibitive from the numerical point of view. In addition,
the methods based on Lie symmetries are not suitable for
finding the complex shifts, because the starting point of
these procedures is the differential equation satisfied by
the messages, which 1s never known beforehand. Besides,
even knowing the differential equation, the corresponding
boundary conditions must be also a priori known in order
to carry out the attack based on any procedure based on
Lie groups [6][15][16].

5. DESCRIPTION OF THE SCHEME

From a given message, the encrypting process consists of

ten basic steps:

1. Converting the original message to ASCII code,
making up the coeflicients of the function
corresponding to the message -- my;

2. Choosing a real, continuous and "n" times derivable
function, with a number of parts equal to the number
of resulting numerical coefficients -- and all parts
must be distinet from one another -- followed by the
addition of the Public Key of the participant
receiving the message. Production of authentication
arguments, which contain the product of whole
powers of the Public Keys for each participant.

3. The sender's offsetting on the complex plane, with
real and imaginary components;

4.  Sending the ciphered message to the authorized
receiver;

5. The receiver's offseting with real and imaginary
components, and generation of an auxiliary argument
consisting of a continuous function;

6. Sending the mapped message, and the auxihary
argument, to the sender;

7. Application, by the sender, of the inverse change, and
verification of authenticity of receiver's auxiliary
argument by the generation of a new argument --
called verification argument (the new argument is
used to distort the ciphered message in case the
receiver's authenticity is not verified);

8. Sending, to the receiver, the mapped message and the
auxiliary argument generated by the sender:

9. Apphlication of the inverse change by the receiver,

verifying authenticity of auxiliary argument of sender

and extracting receiver's public key:

Recovering original characters -- which are the

coefficients of the original function.

10.

The previous codification of the message consists of
determining the ASCII codes of each character involved,
which will make up the coefficients of function my.
Choosing a continuous function consists in determining a
one-variable f{x) function from the composition of the
basic functions available in conventional programming
languages: sin(x), cos(x), atn(x), In(x), exp(x) and
polynomials,

Function f(x) can be obtained through the linear
combination of two or more functions on the list,
compositions between functions, or both. For example,
function
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ce’+e,senx+ex’ +ox’ tanx+et (6)

-- where ¢l, €2, ¢3 and ¢4 arc numerical coefficients that
represent the ASCII codes of the original message —-
contains compositions and linear combinations applied
alternatively.

The application of the symmetry of offsetting containing
the real and 1maginary parts consists of the following
change of variable

x—>x+a+ib. (M
This change maps function f{x) into function fix + a +1b).
The application of inverse symmetry consists of changing
the variable that works counter wise, 1.e.,

x—=x—a-ib,

which maps f(x) into fix-a-ib).
It must be noted that the private keys of each participant of
the scheme are the real and imaginary components of the
offsetting applied to function f. This way, each participant
arbitrates a4 complex number, which is employed
exclusively to cipher and decipher the function’. The
Public Key of the proposed scheme can consist, on its
turn, of a differential operator, built from the private
keys. For example, private keys a = 190 + 651, and b = 135
- 1021 generate differential operator A, defined as

9° d
256500 — f(x,v) |-10603 — 1 (x,
O(ax‘ S(x,y) ‘(avax S(x,p)

)

.
—6630[ 2 -, y)J ©
dv?

Having got hold of this Public Key, the process of
reconstitution of both private keys is extremely costly. It
must be noticed that operator A, in the given example, was
obtained from a rather simple factored form.

Choosing a key in the form of a differential operator gives
the attacker counter-information, inducing the conclusion
that it is an operator present in the very differential
equation satisfied by {0 -- which 1s not necessarily true.

6. CIPHERING AND DECIPHERING PROCESSES
It 1s important to point out that the use of Lie symmetries
can be effected through the application of differential
operators with constant coefficients on functions, which
makes up the encrypting process proposed here. The
inverse process, i.e., inverting the differential operator,
and its later application on the operated function, makes
up the attacker's message decrypting process.
From a participant’s point of view, the original message M
must be codified in a way such that it can be represented
by a function f. The operation of encrypting the message is
equivalent to applying the operator that transforms
function f'so that

Cf=g, (10)
where g is a function corresponding to the encrypted
message -- whereas the decrypting operation will be noted
by determining f, so that

f=C'g. (11)
The traditional way to discover function f consists,
therefore, of obtaining the solution of equation Cf'= g, by
inverting operator C. However, the process of inverting

? Ciphering a function is to map a real variable f(x)
function into a complex vanable function, which
corresponds to a specific case of translational Lie
symmetry.
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operator C requires high processing time, so the classical
procedure should be avoided.
The alternate procedure consists of employing certain
differential operators to carry out the codification and
decodification of the message. Consider A, the differential
operator that effects translation on the complex plane,
chosen from Alice's private key, and B, the differential
operator that effects the translation on the complex plane,
chosen from Bob's private key, like Alice. The message to
codify must be expressed in the form of a function, f.
Alice proceeds as follows:
g=Af—g =Bgsg=A"g =g =Bg=1.
It can be shown as follows:
g=Af — g =Bg=BAf
g2=A"g, = A'BAF
2 = Blg, = B'A'BAf
Assuming A and B to commute, it can be said that
g;=B'BA'AT ,and
A'TA=B'B=1.
Therefore,
g =1If=1If=f.
So, operators A and B are required to commute with each
other, i.e., AB=BA.

7. THE AUTHENTICATION PROCESS
Under the scheme proposed, the authentication process is
carried out by the calculation of the auxiliary arguments;
the first and the second are continuous functions, and the
third is a complex number. The first, called authentication
argument, 1s a continuous function made up of products
between powers of the public keys of both participants.
The receiver must plug its private key on this function in
order to produce a new function. The sender then uses this
new function to verify that the receiver is authentic, with
the following test of authenticity:
The sender plugs its private key in the function obtained,
and wverifies the resuling complex number, called
verification argument. In case the verification argument
results null, sender's authenticity is verified; otherwise, the
resulting complex number 1s multiplied by the denvative
of the ciphered message at its current state, in order to
change its content. This way, only the authorized receiver
will be able, at the end of the process, to retrieve the
original message. The authorized sender authentication
process is effected likewise. However, the respective
verification argument 1s not used to distort the message by
the receiver, but only to check sender's authenticity.
The process of authentication is described quantitatively
as follows: from authentication arguments -- aa and ab,
respectively defined as
aa=cpa" * cpb” and
ab = cpaf * ¢pb?
where n, m, p and g are integers --, the auxiliary
arguments defined as follows are produced
ga = aa(ch) + aa(x) and
gb = ab(cb) + ab(x).
Verification of participants' authenticity is effected by
calculating the verification arguments of the sender and
receiver, defined as
va = ga(ca) and
vb = gb(ch).
Authentication of each participant is verified if its
respective verification argument returns null.
In the specific case of the receiver, the wverification
argument 1s also used to distort the ciphered message in its
current state. This operation consists of applying the
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following differential operator over the message:

J
V=I+vb 2,
The application of the operator aims at changing the
message in case an attacker attempts to personalize one of
the participants. In such case, argument vb does not result
null, and so operator V does in fact change the message --
if vb is null, V simply becomes the identity operator, thus
preserving the message.

(12)

8. CONSIDERATIONS ABOUT THE INVERSION
PROBLEM

The main difficulties found on the various processes of
differential equation resolution are related to the large
amount of memory, and the long processing time required
to obtain numeric solutions [5][7][9][11]. As for
analytical methods, algebraic manipulation of expressions
involves two basic difficulties:
1 - the exponential growth of the function string®; and
2 - the application of some operators over analytical
expressions (such as iterated integrals).
The first difficulty refers to the inefficiency of expression
simplification algorithms. In any of the symbolic
computation software applications (such as MAPLE,
Mathematica, SimbMath, Derive and others), the
simplification commands are limited to expanding
expressions, often generating functions with a greater
number of characters than the original expression to be
simplified. At present, there are no efficient commercial
systems to recognize patterns and regroup algebraic
expressions.
The second difficulty is due to the fact that applying
certain operators requires solving inverse problems.
From a mathematical viewpoint, the great difficulty found
in solving differential equations is the application of
inverse operators. For example, suppose that the function

. 2 -
F(x, y)y=x.cos(y)+e ™ ¥y (13)
has the following differential operator applied to it
3 2
a.+2a,+a- (14
ot oxt Ox

Therefore results the expression
S3(-2x-3y+2)exp (—x" -3xy+2x-y) H{-2x-3y +.2)3 exp (—x"’-
Sxy+2x-y) -2x cos(v)+2(-3x-1 )"exp(—.rz—.?xy+2x—y) +cos(v).
(15)
It 1s clearly noticeable that a single application of the
operator produces a considerable increase in the size of
the resulting expression. Moreover, in most conventional
analytical methods, operations of this kind are performed
recursively, thus producing excessively long expressions.
In order to 1llustrate the argument, let us say that spectral
methods based on symbolic operation require, in average,
1,000 applications of differential operators similar to the
one shown above, producing final expressions with 5,000
to 150,000 more characters than the original expression.
On the other hand, manipulation rules of the differential
operators obtained through Lie groups for the resolution
of partial differential equations significantly reduce the
number of symbolic operations required to obtain the final
expression, since their direct application is dispensed
with. The solution to avoid recursive application of
differential operators over analytical expressions is based
on the use of what is called Lie symmetries of the specific

‘or expression length



JCS&T Vol. 4 No. 3

solutions of differential equations.

There are basically two arguments that justify the method
as viable: the first one is the high number of symbolic
operations required of an attacker to restore the original
message from the ciphered message. The second argument
refers to the difficulties found in the execution of this
process. In the absence of private keys, the attacker must
proceed as follows in order to decode the message:

I} infer the form of the differential operator present in the
differential equations satisfied by fy(x).

II) find the system of determining equations used to obtain
the variable coefficients present in the infinitesimal
generators of the symmetry groups:

IIT) solve the system obtained by using partial differential
equation mapping and solving libraries;

IV) find a unique solution of the differential equation in
order to start the mapping process;

V) map the unique solution by using the exponential of a
lincar combination of the infinitesimal generators
obtained:

VI) infer and apply the initial conditions of contour -- or
plotting -- that verify the solution as unique;

VII} recover the onginal message, by applying the ASC
command on the ASCII codes of the function obtained.
The construction of the determining equations requires, in
average, 250 symbolic operations for partial two-
dimensional equations of second degree with variable
coefficients. This 1s because 1t 15 necessary to calculate
prolongation® of Second degree of the infinitesimal
generators of the symmetry group and then apply the
criterion of infinitesimal varation [15][16]. It is important
to point out that the number of symbolic operations
required to obtain the determining equations grows
exponentially with the growing order of the prolongation
used -- which 1s the same order of the differential equation
o solve.

The number of symbolic variations required to solve the
system of determining equations essentially depends on
the coupling degree of the system obtained. In general, the
number of symbolic operations required to solve a system
of determining equations produced by partial two-
dimensional equations of Second degree with variable
coefficients 1s around 500, given an average number of ten
determining equations. What happens is that the number
of symbolic operations grows with the square of the
number of equations, which on its turn grows linearly with
the degree of the differential equation to solve.

A umque solution for the differential equation can be
obtained in two ways: by using commands that perform
direct resolution of the equation in special forms, or by
finding the determining equations for the given special
form. In the first case, the solution can be obtained
immediately, with one single command line. In case direct
resolution is not possible, step I) must be taken again, as
well as all stages of the course set for the special form of
the differential equation.

The solution can also be mapped in three ways: by the use
of operator exponential manipulation rules [16], through
the use of expansions of these operators in Taylor series,
or by solving auxiliary differential equations. In case there
are rules available for the manipulation of the exponential
of the infinitesimal generators obtained, the number of

4 Prolongation is the ¢xtended domain composed of
independent variable, unknown functions and their
derivatives.

161

October 2004

resulting operations 1s rather reduced -- often being of the
same order as the number of infinitesimal generators®. The
number of operations required to obtain the expansions of
the Taylor series depends solely on the convergence radius
of the sernies, being proportional to the number of terms
used. As for the resolution of auxiliary equations -- like
the calculation to find the determining equations for the
special form set --, that also requires running the algorithm
fully.

The application of the initial conditions of contour
basically consists of determining arbitrary functions
contained in the mapped solution, through the resolution
of algebraic or differential equations of first order -- thus
having the same problem as in the previous step.

The other steps are essentially numencal and do not
require the use of symbolic operations, but only a large
number of floating point operations.

Even though the exponential growth of the number of
symbolic operations required with the increase of the
order of the differential equation is enough to justify the
method as viable, there are additional difficulties in
running the process presented above, i.e., an attacker's
attempt to break down the ciphenng. First of all, the very
differential equation to be solved is not supplied as a
public key -- so that it becomes necessary to infer its
structure from a trial and error process. Besides, the initial
conditions of contour and plotting are not supplied either.
Under the extremely unlikely hypothesis of the attacker
finding the equation general solution, 1t is still necessary
to choose between several families of surfaces that
represent it, a surface that follows the contour conditions
implicitly applied. This implies running a new trial and
error process, similar to the one applied to determine the
form of the differential equation -- therefore, extremely
costly. Moreover, there 1s not any systematic procedure to
guide the trial and error process in either case presented.
Actually, the solution of auxiliary problems that arise
while performing the steps of the algorithm often require
the recursive reapplication 1if’ the first five steps of the
proposed algorithm. This looping procedure significantly
increases the number of symbolic operations required,
since cach recursive application exponentially folds this
number of operations.

9. CONSIDERATIONS AND CONCLUSIONS
The use of translation symmetries on the complex plane
has three fundamental advantages over algorithms based
on the direct formulation of differential equations: the first
is that the expressions obtained are simples -- requiring
less memory to store --; the second is the high processing
speed -- allowing more efficacy in ciphering and
deciphering, thanks to the extremely low processing time
required to run the corresponding algebraic operations --
and the third and main advantage is the enormous
difficulty of solving the associated inverse problem --1.e.,
the deciphering process. If the attacker does not have the
corresponding  private keys, restoring the message
becomes a computationally impracticable trial and error
process, even when Lie groups are used to solve the
differential equations produced. Besides, if the user tries
to find the real and imaginary components of the private
key direectly, it will necessarily require a sweeping process
on the complex plane without previously knowing the very
limits of the corresponding search region. It should be

3 That is, the dimension of the corresponding group of Lie.
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noticed that, in methods based on groups of Galois,
sweeping would be limited to a subset of integers
consisting of prime numbers -- which is a numerable set.
The set of complex numbers, on its turn, 1s a continuous
power, so that the scanning process would cover a region
of the complex plane with an infinity of elements for each
scanning subinterval. Therefore, it suffices to choose any
two long integers (o represent the real and imaginary parts
of the complex number that makes up the private key in
order to ensure the privacy of the scheme proposed.
The average processing time® required in 40 rounds was
two minutes, and the number of characters required to
store the ciphered message was approximately four times
greater than the original file. In every simulation run, there
was not, up to now, any code breaks via algorithms based
on Lie algebra. The deciphering attempts consist of using
libraries (fiesymm, pdetools e detools) of the Maple 5.0
system, which aims at calculating the coefficients of the
infinitesimal generators of the group of symmetry of
differential equations obtained from translated functions.
The main difficulties of the deciphering process are the
absence of a differential equation to start the process, as
well as the need to use recursive processes that involve the
synthesis of determining equation [15][16], and their
resolution through the use of available symmetries[13].
Some examples are available in hitp://www.sinpro-
rs.org.br/vinicius.gadis.ribeiro, in download area.
The conclusions presented can be summarized as follows:
¢ There 15 a new paradigm that meets the Public Key
requisites.
¢ [t is beyond the traditional domain of schemes that
use number theory, due to the power of the set of
Private Keys involved.
The main advantages of the proposed scheme are the
simplicity of the expressions obtained, the high processing
speed and the difficulty to solve the inverse problem.
To conduct the experiments, it has been used Maple
symbolic processor. One open question to work is floating
point problems, when using some programming language
like C. Performance is another interest point, when using a
programming language. Another one is the data expansion
that occurs during translations.
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