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ABSTRACT

Magnetic Resonance Imaging is one of the most
important medical imaging techniques for the
investigating diseases of the human brain. A novel
method for automatic segmentation Magnetic
resonance brain image framework is proposed in this
paper. This method consists of three-step segmentation
procedures step. The method first uses level set method
for the non-brain structures removal. Second, the bias
correction method is based on computing estimates of
tissue intensity distributions variation. Finally, we
consider a statistical model method based on bayesian
estimation, with prior Markov random filed models, for
Magnetic resonance brain image classification. The
algorithm consists of an energy function, based on the
Potts model, which models the segmentation of an
image. The algorithm was evaluated using simulated
Magnetic resonance Images and real Magnetic
resonance brain images.

Keywords: MRI; Bias correction, level set method,
Markov Random Field, maximum a posteriori,
Segmentation.

1. INTRODUCTION
Magnetic resonance image segmentation has been
proposed for a number of clinical investigations of
varying complexity. Automatic segmentation of MR
scans is very useful for research and clinical study of
much  neurological pathology. The accurate
Segmentation of MR images into different tissue
classes, especially gray matter (GM), white matter
(WM) and cerebrospinal fluid (CSF), is an important
for the diagnosis and prognosis of certain illnesses.
Moreover, regional volume calculations may bring
even more useful diagnostic information. Among them,
the quantization of gray and white matter volumes may
be of major interest in neurodegenerative disorders
such as Alzheimer disease, in movements disorders
such as Parkinson or Parkinson related syndrome, in
white matter metabolic or inflammatory disease, in
congenital brain malformations or perinatal brain
damage, or in post traumatic syndrome.

The automatic segmentation of brain MR images,
however, remains a persistent problem. The major MR
image segmentation problem when MR image is the
corruption with a inhomogeneity bias field. Several
approaches have been proposed to address this
limitation of intensity-based classification. Numerous
MRI segmentation methods have been reported. The
brain atlas can be used as spatial priors for
segmentation  [1,2,3]. The template-moderated
segmentation proposed by Warfield et al. [4] clearly
demonstrates the strength of the use of a spatial prior
sinces regions that overlap in intensity space but are
spatially disjoint can be separated. Brain tissue
segmentation based on fractional voxel properties has
been developed by Shattuck et al. [5]. Motivated by the
need to improved tissue segmentation in the presence
of pathological regional changes.

The aim of this study is to introduce a new MR
image segmentation framework. This framework
combines the level set method, the bias correction
scheme by Wells et al. [1], and the MRF algorithm by
Geman et al. [7]. In contrast to most other brain
segmentation schemes, our new segmentation methods
integrates bias correction, non-parametric classification.
We have developed a three-step segmentation method
for fully automatic segmentation of the brain in 3-D
MR images. The method is an extension and
combination of previous techniques, and consists of the
following processing steps: (1) the introduction of level
set method [6] model to deal with non-brain structures
removal problem. (2) the introduction of spatially
distributed model estimation and classification to deal
with spatially non-uniformity correction problem. (3),
it uses a statistical model including Bayesian
distributions for brain tissues intensities and Markov
random filed (MRF) based spatial contiguity
constraints for tissue classification. This algorithm
consists of an energy function, based on the Potts
model, which models the segmentation of an image.
The energy function provides efficient strategy for MR
Image segmentation. To find the optimal segmentation,
this energy function is minimized using ICM algorithm.
The statistical model accounts for the piecewise
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contiguity of brain regions, in a certain amount, for
intensity non-uniformity without being dependent upon
any specific initialization. Extensive experiments using
MR images generated by the BrainWeb simulator [9]
and real MR data have been used to evaluate the
proposed method. The results show that the proposed
method can produce good segmentation performance.

2. SEGMENTATION FRAMEWORK

We propose the automatic MRI brain image
segmentation framework.. The segmentation algorithm
consists of a sequence of processing steps are shown in
flow diagram form in Fig. 1 and include: (1) Input the
MRI image data; (2) Removal of non-brain tissue (3)
radio frequency (RF) inhomogeneity correction; (4)
MREF brain tissue segmentation.
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Fig.1 The flow chart of the MRI image segmentation

2.1. Removal of non-brain tissue

The Skull-stripping of MR brain image has
important applications in neuroimage analysis as a
preliminary step, for instance, the analysis of spatial
distribution of gray matter and the quantification of the
cortical morphology. In general, the skull-stripping
algorithms can be classified into automated or semi-
automated method according to the degree of user
intervention. In this work, we use level set method to
remove all non-brain tissue from brain image. The
level set method was devised by Osher and Sethian [3],
The main idea in the level set method is to describe a
closed curve I in the image plane as the zero level set

of a higher dimensional function ¢(X,#)in R>.

S ={X e R’ |$(X,1)=0} (1)
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The function ¢ describes a 4D surface defined by
#(X,)=d , where d is traditionally the signed

distance from X to the front S .The evolution rule for
¢ can be expressed as:

o¢

El
where F is a velocity function
depending on local properties of front. The
4D surface ¢ deforms iteratively according to F',
and the position of the 3D front S(f) is
deduced from ¢ at each iteration by the relation

#(X (t),1) =0. The hypersurface ¢’”1 at each n+1 is

+F|Vg[=0 2)

scalar

computed from ¢” at step n using the ralation:

LX) = ¢ (X) - At~F|V¢”(X)|, VXeR (3)
F=P(I)(1- k) @)

where, 0 <g< 1 is a constant, I is the image intensity
and k is the curvature, obtained from divergence of
the gradient of the normal vector to the front, p(/)is
the data consistency term and acts as a stopping
criterion at the location of the desired boundaries; it is
defined according to intensity / of the input image
data. The process can be shown in Fig.2.

Fig. Remove non-brain tissue from brain image
process. (a)Ilnput image (b) initial process (c¢) brain
tissue contour(d) final result.

2.2. Bias Correction

Inhomogeneneity in magnetic fields during image
acquisition and magnetic susceptibility variations in
scanned subjects cause intensity non-uniformities, also
described as bias fields. These artifacts prevent
characterization of voxel tissue content based solely on
image intensity. As a result, segmentation as well as
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quantitative  studies of MR images require
compensation for these non-uniformities. The method
we implement is due to Wells [1].

Let Y be the observed image, X the ideal
image, B the inhomogeneity, and NV the noise present
in the image. The interactions between those fields can
be described as :

Y=XxB+N &)
The noise is considered negligible. Taking the
logarithm of Eq.5 gives:

log(Y) = log(X) +log(B) (6)
Assuming that the pixel intensities of a tissue type are
normally distributed ,the probability for a pixel to
belong to a class, in absence of inhomogeneities, can
be expressed as :

Xp(_l(yi;,uk )
3

1
I xn) =
i/ x) ‘/2 2

T
=Gg, (Vi — )

™)

where V, represents the intensity of image pixel, k

number of a single class, ¢, mean of class k, 0,

represents the standard deviation of class k. In the
presence of inhomogeneities, and according to Eq.6
and Eq.7, the same probability can be expressed as:

P/ %, B;) = G, (x; = w = ;) ®
where [, is the inhomogeneity at this i, pixel
location. To estimate the inhomogeneity, the residual
term R, is computed for each pixel:

Ri= pla/y) it 9)
% Ok

The inhomogeneity at the i, pixel location, [, ,is

the average of the R, in a 3 x3 neighbourhood of
pixel 7.

Fig.3 presents the results of the estimated bias field.
The method consists two steps:
1: Estimation of the tissue type for all the pixel ), of
the image.

2:Estimation of the inhomogeneity
B, =mean(R;) at ecach location I in the image, and

correction according to Eq.7.The method is iterative,
and is initialized with inhomogeneities equal to zero.
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(b)
Fig.3. Illustration of estimation bias field MR slice . (a)
input image(b)estimated bias field

2.3. Image Modeling Using Markov Random
Field

Consider the 3D cubic lattice of the image space as a
set, S, of n voxels indexed in some manner from
i=12,--,n.Letthe observed data y represent one set
of data values on S, a particular realization of a
random vector Y. The value y, denotes the observed
record at position i/ . A segmentation of y will be
represented by a set X, a particular realization of a

random vector X . The values X; denotes the

segmentation value at pixel 7. Let X~ represent the
true segmentation y . We can assume each Y, has the
same known conditional density function, p(y; |x;),
which is dependent only on X,. So the conditional

probability of the observed record ) ,given X ,is
determined by:

0 =]]r0:1x) (10)

i=1

The true segmentation x* is a realization of a
locally dependent MRF with distribution p(x) . A
probability p(x) is a MRF if the following condition
holds:

P(x; [{xpy b = plx; [ xy,) (1mn

where x,; ={x, | k #i}, N, indexes a neighbourhood

system(see Fig.4) around pixel / ,but not including
index i,and xy ={x;[jeN;}.
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Fig.4 First order Neighbourhood system in 3D
Given the assumption that the image can be modeled
by a MRF, the distribution, p(x) , is a Gibbs

distribution with respect to x. That is, the probability
that the system is in a particular state, X, is given by :

—AU(x)
e
12
~ (12)
where [ is a parameter, U/(x) is an energy function

p(x)=

and Z is a normalization factor, or partitioning
function. U(x) is a sum of functions, one of each pixel
in X, which describes the interaction of each pixel
with its neighbours. The normalization factor, Z , is
the summation of e '™ over all possible X, i.e.,

zzze*ﬁ”f@f) (13)

where @ define the set of all possible configurations
of x.We need to find the a posteriori probability, that
is ,the probability given the observed data, y . Let X
be the state that maximizes this probability. According
to Bayes Theorem, maximizing this probability is
equivalent to maximizing:

p(x|y) < p(y]x)p() (14)
The state x is the maximum a posteriori(MAP)
estimate of the true segmentation x” and is the mode

of the posterior distribution of x*. Maximization of the
posterior distribution gives us the maximum a
posteriori estimate. Unfortunately, direct maximization

of the p(x|y) requires unrealistic computational effort.

Therefore. Several algorithms for approximation of
MAP were suggested [7]. We use the iterated
condional models (ICM) algorithm proposed by
Besag|[8] to search for an optimal image labeling.

3. EXPERIMENTAL RESULTS

To evaluate the proposed our method, we performed
two sets of experiments, one on simulated MR and
another on real MR brain data. First, the brain tissue
classification was evaluated using simulated MR
images of the same brain generated by the BrainWeb
simulator [9]. The BrainWeb site offers a large amount
of different phantoms of MR brain images with
different levels of noise and inhomogeneity. Test has
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been done on the T1-weighted images with 7% noise
levels and 20% spatial inhomogeneity. We first
stripped each skull using level set method, then
corrected for inhomogeneity. Finally, classified using
the MRF model. The brain tissue can be classified into
white matter, gray matter, CSF.

The classification of a single plane of the simulated
T1 weighted BrainWeb image is illustrated in Fig.5
and Fig.6. Fig.5- Fig.6 (a) is the original image. Fig.5-
Fig.6(b) is skull-stripped image.Fig.5-Fig.6(c) is
estimated bias field. Fig.5-Fig.6(d)-(f) are CSF,GM
and WM. Fig.8 and Fig.9 show one of Transverse and
Coronal slice of the segmentation results for real T1
weighted MR images using the proposed method. Fig.8
(a) is the original image. Fig.8(b) is skull-stripped
image.Fig.8(c) is the estimated bias field.Fig.8(d)-
Fig.8(f) are CSF,GM and WM.

(d (© ®
Fig.5 Transverse Slice segmentation results (a)original
T1 images (b) skull-stripped image(c) estimated bias
field (d)-(DCSF, GM,WM.

(d (© ®
Fig.6 Coronal Slice segmentation results.(a)original T1
images (b) skull-stripped image(c) estimated bias
field (d)-(f)CSF, GM,WM.
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Fig.10 3D rendering of the white matter(top) and gray
matter(bottom) of a real T1-weighted real
MR image data.

Fig.7 and Fig.10 shows the final constructed 3D
model of brain white matter and grey matter volume by
Fig.7 3D rendering of the white matter(Top) and gray our segmentation method.

matter(bottom) of a T1-weighted simulator The segmentation method can be improved by
MR image data. corrects global MR intensity inhomogeneity. The
method also incorporation of contextual information in
the classification procedure by modeling spatial
interactions between neighboring pixels as Markov
Random Field providing spatial regularization of the
tissue maps which makes the segmentation less
sensitive to noise.

4. CONCLUSIONS

This paper presents a fully automatic method for
segmenting the brain from other tissue in a MR image
of the human head. The method is an extension and
combination of previous techniques. The proposed
2 framework consists of a sequence of skull stripped,
) ©) ) bias corrected and brain tissue classification. The
proposed framework has been tested on both simulated
and real MR image data. In the future, we are also

Fig.8 Real MR data Transverse slice segmentation.
results (a) Original T1 images (b) skull-stripped

image(c) estimated bias field (d)-(DCSF, GM,WM. planning on a large-scale clinical evaluation of this
’ ’ segmentation framework.
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