JCS&T Vol. 5 No. 1

April 2005

Dynamic Discovery of Available Resources in
A Computational GRID Environment

Kevin Curran, Gerard Parr and Alan Bradley

School of Computing and Intelligent Systems
Faculty of Engineering, University of Ulster, Northern Ireland
Email: kj.curran@ulster.ac.uk

ABSTRACT

Corporations such as Boeing are currently using computational
GRIDs to improve their operations. Future GRIDs will allow an
organisation to take advantage of computational GRIDs without
having to develop a custom in-house solution. GRID Resource
Providers (GRP) make resources available on the GRID so that
others may subscribe and use these resources. GRPs will allow
companies to make use of a range of resources such as
processing power or mass storage. However simply providing
resources 1is not enough to ensure the success of a
computational GRID. Access to these resources must be
controlled otherwise computational GRIDs will simply evolve
to become a victim of their own success, unable to offer a
suitable Quality of Service (QoS) to any user. The task of
providing a standard querying mechanism for Computational
GRID Environments (CGE) has already witnessed considerable
work from groups such as the Globus project who have
delivered the Metacomputing Directory Service (MDS) which
provides a means to query devices attached to the GRID. We
present a monitoring component both capable of the dynamic
discovery of available resources in a computing GRID
environment and executing user jobs on the available resource
at a given moment in time. We show that it is possible to
construct a monitor based on the CoG toolkit and MDS
to monitor the available resources attached to a CGE.

Keywords: Computational GRID, Grid Resource Providers

1 INTRODUCTION

Computational GRIDs have emerged as the next phase in
distributed computing. They offer a degree of resource
sharing that will surpass even the World Wide Web
(WWW) as they will not only change the way in which
data is accessed but also how this data is produced,
consumed and stored. GRID computing aims to make all
computing resources available constantly on a 24/7 basis
[Foster00]. Many large corporations such as Boeing are
currently using computational GRIDs to improve their
operations. However future GRIDs will allow an
organisation to take advantage of computational GRIDs
without having to develop a custom in-house solution.
GRPs will allow companies to make use of a range of
resources such as processing power or mass storage.
However simply providing resources is not enough to
ensure the success of a computational GRID. Access to
these resources must be controlled otherwise
computational GRIDs will simply evolve to become a

12

victim of their own success, unable to offer a suitable
Quality of Service (QoS) to any user. If too many users
utilise resources without contributing, then excess burden
is placed on a system and eventually if enough users
abuse the system in this manner the overall performance
for everyone will degrade [Hardin68, Oram01]. The same
situation could easily arise with computational GRIDs if
users were simply to consume resources without
contributing any in return. Some proposals for a ‘points’
based scheme in which users earn points by providing
resources and can hence consume resources based upon
the ‘points’ they have accumulated. This scheme would
be adequate if all points and users on the GRID were
equal and thus capable of providing the same volume of
resources that they need to consume. As every GRP will
have various pricing mechanisms and each will offer
slightly different resources, an organisation will therefore
require an effective means of discovering available GRPs
and constantly monitoring performance so that they can
dynamically change the current GRP when performance
falls below acceptable limits. This research seeks to
develop a system which allows users to discover available
resources on a GRID and then use these resources while
monitoring the performance of the resources over time to
ensure that the required quality of service (QoS) is
delivered. In the event of the QoS falling below
acceptable limits this system will also be capable of
discovering similar services on the GRID that can meet
the desired QoS levels therefore allowing user
applications to dynamically discover the best possible
GRP at the time of execution.

The purpose of this research is to lead to the construction
of GRID environments in which user application can
discover and monitor the performance levels offered by
various GRPs attached to the GRID. Upon discovering
better performance levels at an alternative GPR the user’s
application would dynamically reconfigure itself to run
using the resources which offer better performance levels.
For a system like this to be effective it will require a
front-end that allows the users to define a set of
performance parameters that can be used to check the
performance of each GRP. These parameters may not be a
simple fact of hardware performance levels but will
encompass information relating to pricing so although
better performance maybe available at another GRP it
maybe out of the price limits of the current user and
therefore the application would not make use of those

JCS&T Vol. 5 No. 1

resources. This work focused on the task of discovering
available GRID services and continually monitoring the
performance levels they provide. As GRID awareness
grows so to will the demand for GRID applications and
services however not all organisations will be able to
afford the construction of their own global GRIDs.
Therefore this research seeks to develop a solution that
will allow an organisation to discover what resources are
publicly available on the GRID, it will also ensure a
consistent QoS can be obtained from these services by
monitoring their performance levels and when necessary
recommending an alternative service offering better
performance.

2 GRID SOFTWARE

No matter how powerful the infrastructure behind a
computational GRID is it will be nothing without
software that allows users to take full advantage of the
technology. Typically batch jobs which require a
significant amount of processing will be best suited to
take advantage of the GRIDs resources. Development of
applications capable of running on the GRID will be
required to run in a heterogeneous environment. Previous
experience of distributed applications development has
shown that Application Programming Interfaces (API),
frameworks and middleware have facilitated the rapid
development of distributed applications as they provide a
level of abstraction that allow developers to concentrate
on the application logic without concerning themselves
how the application will use the underlying network. The
successful and rapid development of GRID applications
will require that the developer is afforded the same level
of abstraction. The Globus project [Globus03] is an effort
to build a set of essential GRID services for the
construction of computational GRIDs. These services
cover key aspects such as security, resource location,
resource management and communication. The toolkits
provision of these key services greatly helps in the
development of GRID applications as developers can
make use of existing services and are thus free to
concentrate on the implementation of application specific
logic [Foster00]. The Globus framework is based on a
layered architecture in which high-level services are built
on top of an essential set of core local services. The
Globus Resource Allocation Management (GRAM)
provides the local component for resource management
[Czajkowski98]. GRAM provides a consistent API which
can be used by GRID tools and applications to exchange
requests for the allocation of resources. The Globus
toolkit uses the Nexus communication library [Foster96].
The Nexus libraries define a low-level API that is used to
support a range of higher-level programming models such
as remote procedure call (RPC) and remote 1/0. The
Globus toolkit has been designed to support a wide range
of communication types that will be used within
computational GRIDs. It is equipped with an API that
affords developers with a high degree of control over the
mappings between high-level communication requests

13

April 2005

and the underlying protocol requests. This is the Nexus
API [Foster96]. The Globus Metacomputing Directory
Service (MDS) maintains dynamically updated
information on the underlying communications network,
protocols, network bandwidth and latency. Higher-level
applications and libraries can use this information to
configure the communications system in the manner most
suited to the current application. The Globus
Metacomputing Directory Service (MDS) is a repository
of information relating to the state of the components in
the GRID. This information is updated dynamically and
can therefore be used by applications to adapt their
behaviour to changes in the GRID. MDS provides a set of
tools and APIs for discovering, publishing and accessing
information about the structure and state of a GRID.

With the emergence of the Computing GRID
Environment (CGE) new services are becoming available
which go beyond those on offer in the current Internet.
Although these new services are advantageous they come
with challenges for applications as they may not be
compatible with existing commodity technologies used to
develop distributed applications. To integrate GRID
technologies with existing commodity technologies the
Globus project has developed Commodity GRID (CoG)
kits [COGO3] which allow developers to develop
applications using various technologies and integrate with
emerging GRID technologies. Currently CoG kits have
been developed for a number of programming languages
including Java, Perl and Python, each of these CoG kits
provide interfaces for the appropriate language to
interface with a GCE. Past experience of developing
distributed applications has lead to a number of
technologies such as CORBA [CORBAO2], RMI, JINI
[Arnold99] and DCOM [Rogerson97] which facilitate the
development of distributed applications by providing a
framework that provides common services needed by all
applications. As a result the development of distributed
applications was simplified as developers were able to
make use of frameworks that had already been tried and
tested. Technologies such as those mentioned above have
been classified as commodity computing [LLaszewskiO0].
The distinction between this and GRID computing is
commodity technologies tend to focus on issues of
scalability, component composition, and desktop
presentation, while GRID developers emphasize end-to-
end performance, advanced network services, and support
for unique resources such as supercomputers. The
development of CoG kits has therefore been an effort to
bridge the gap between these two aspects of computing
and allow the wide variety of commodity applications to
take advantage of GRID technologies and services
through appropriate interfaces [LaszewskiO0].

3 DISCOVERY OF GRID SERVICES

Here we examine existing approaches to discovering
GRID services, monitoring their performance levels, and

JCS&T Vol. 5 No. 1

accounting. Currently there has been a number of
proposed solutions and implementations to the problem of
maintaining a consistent QoS in a GRID environment,
however many of these proposals have yet to be fully
implemented. In addition, the problem of discovering
services attached to the GRID will have to be addressed.
In a global GRID consisting of many GRP an
organisation wishing to establish a global GRID based on
the services of others will need a way of discovering the
best possible services available. Likewise each GRP will
then require a means to bill users for using these
resources. The problem of discovering services attached
to a network has always been a concern for network
engineers, in the past solutions included lookup and
naming services and more recently technologies such as
Sun Microsystems JINI have been developed to allow
devices the capability of dynamically discovering the
available services attached to a network. The MDS is
provided by the Information Services component
framework of version 3.0 of the Globus toolkit [MDS03].
The purpose of this framework is to provide information
which can facilitate GRID resource discovery, selection
and optimization. MDS gathers this information using the
GRID Index Information Service (GIIS) and GRID
Resource Information Service (GRIS). GIIS offers a
means to obtain information on the entire collection of
devices attached to the GRID, whereas GRID runs on the
individual devices and allows clients to directly query the
devices.

Monitoring services on offer within a GRID environment
is important for a number of reasons. By conducting an
analysis of the performance the service could be tuned to

April 2005

reservation protocols and charge users a premium for
guaranteed access to resources at the required time. The
second class service is the one we will be concerned with
for this paper, it will not make use of reservation
protocols and will therefore make no guarantees about the
processing time of a user’s job, it will simply relay on
discovering the available resources in a computational
GRID environment. Such a system will require the ability
to communicate with the GRID and request information
about the resources attached to the GRID. It will then
require the ability to take the details regarding an
available resource and uses this information to execute all
or part of a job on that resource. Therefore the system will
require a monitoring component that monitors the GRID
to determine the available resource and also a scheduling
component that will have the responsibility of executing
the jobs on the available resource. The user credentials
are represented using digital certificates. These offer a
secure and reliable means by which a user or organisation
can be identified and therefore offers a plausible method
upon which to build an accounting and billing system.

Hmﬁ

Send job for Qqery grid
execution & using GIS
await results protocol

Resource Monitoring |
Process Scheduler Agent 42 = g E
= /o |
Query table to determine Write updated resource |

improve the performance levels. Also more importantly Gonfiguraion fle

within a GRID environment monitoring of performance

information to table

N

Location Resource Pravider

detailing suitable

run the current job
parameters upon

Charge

levels allows for performance predictions and therefore
allows administrators to ensure their site will be capable
of meeting the current demand. Monitoring will also
allow better decisions to be made by GRID schedulers
responsible for deciding where a job should execute. The
Globus project uses the GRID Resource Allocation
Management (GRAM) protocol for the task of resource
management. The problem of managing resources in a
GRID environment, problems can stem from distributed
users and resources, variable resources states, variable
grouping and connectivity and the lack of a centralized
scheduling policy [GRAMO3]. If GRID computing is to
be successful on a commercial level GRPs will need an
effective means to track usage of resources by individuals
or smaller organisations so that the users of the resources
can be charged and thus allowing GRPs to remain
profitable and continue offering resources to the GRID.

4 SERVICE RESOURCE FRAMEWORK

GRPs in the future are likely charge users for access to
their resources. As a result we feel that two classes of
services will emerge. The first class will make use of

14

|
|
|
\
\
| best location at which to
|
|
|
\
\
L

117.88.1.2 | Processing | CPU's R Us

[782281 | Processing | 1BM Grid UK |0.0005 which to filter

|
I
I
‘ resources
I
I
)

Table of available resources held in memory of the
users workstation

Computing task requiring
resources from a
computational grid

Results from the
computational job

Figure 1: System Architecture

The design of this system adopts techniques from
client/server computing. P2P techniques will be used to
communicate with all centres on the GRID offering
resources so that the availability of these resources can be
determined. Once the client has found a centre that can
execute its job it will initiate a process that will resemble
client/server communications. It will send the job to be
executed to the centre along with additional information
such as user credentials. It will then wait for a response
from the centre indicating if the job has completed or if

JCS&T Vol. 5 No. 1

the job has been suspended to make way for a job with a
higher priority. In the later case the system will then select
an alternative centre to execute the job and wait for a
response from this centre. This process continues until the
job completes its execution.

4.1.1 Process Scheduler

In all but the simplest GRID implementation a scheduler
is responsible for determining what job should run at each
site. The scheduler reacts to the current availability of
resources on the GRID and the priority of each job. The
type of scheduling an application uses could offer a
potential bases for the billing of GRID usage. For
example a large organisation with substantial financial
resources may be prepared to pay a premium rate for
guaranteed access to the necessary resources when they
need them. However a smaller organisation without the
financial power may be happy to have their jobs executed
on a scavenger system where there is no guarantee of
access to the resources but cost is at a minimum. We have
implemented a process scheduler which is responsible for
controlling where the job is executed. This works in a
similar manner to a thread scheduler used in most modern
operating systems and will also have aspects in common
with a scheduler which is used in GRID toolkits such as
those provided by Globus [GridbusO3] and Sun
Microsystems GRID Engine software [Sun03]. The
unique feature of this scheduler will be in how it
determines where the job should be run. As indicated in
Figure 1 a table is held in memory, the scheduler will
therefore query this table to find suitable resources that
match those required by the current job. The process
scheduler will also have to facilitate the process of
identifying the user to the system so that resource usage
can be billed to the appropriate user. In theory this will be
achieved using digital certificates as this will facilitate
integration with existing and proposed implementation for
accounting software on the GRID.

4.1.2 Resource Monitoring Agent

The Resource Monitoring Agent is the key that is required
to facilitate the dynamic discovery of resources and hence
it is central to the development of a system that allows
computational tasks to take advantage of the available
resources without having to use resource reservation
protocols. The agent is intended to use the GIS protocol
included with the Globus toolkit. This is due to the fact
the GIS service already provides a means to query
resources attached to the GRID. Also the Globus toolkit is
open source and therefore freely available to others to
implement in their GRID toolkits. Also the software from
Globus toolkit and Sun Microsystems has the ability to
integrate with each other [Sun03]. Using the GIS protocol
the agent will communicate with the GRID to retrieve the
necessary information relating to each resource. This
information will be filtered using parameters defined by
the users in a configuration file. Examples of parameters
could involve setting a lower and upper limit on the price

15

April 2005

of executing a computer cycle at a GRP. The results of
this filtering will be stored in a table on the clients
machine sorted the best available resource at the top of
the table. This table will then be read by the ‘Process
Scheduler’ so that it can execute all or part of the required
task. If the table is empty it means the agent has been
unable to find any suitable resources and therefore the
‘Process Scheduler’ will not be able to execute any tasks.
The agent process will run at periodic time intervals
updating the table each time it finds new resources or that
existing resources have changed. The goal here is to
produce a lightweight system that can be introduced to
any platform so that users may take advantages of
available resources within a CGE without the added
expense of reserving the resource at a premium. Therefore
the number of class and implementation will be kept to a
minimum. Based on the decision to use the CoG Kkits
provided by the Globus project due to their provision of a
high-level Application Programming Interface (API)
which allows application developers to build applications
which make use of GRID protocols. As a result the choice
of programming languages were limited and from this set
the Java language was chosen due to the fact that it has
already proved itself in the field of distributed systems.
Also the cross platform capabilities offered by Java will
allow the application to be developed so that it can be
used by a wide variety of clients, an important fact in a
heterogeneous environment such as a CGE. XML
[XMLO3] has been chosen as the means to store the
current set of available GRID resources. This is due to the
fact all the necessary XML capabilities are included with
the Java Runtime Environment (JRE). Also Java provides
superb support for XML [JavaO3] in the form of
Document Object MODEL (DOM) [Martin00] and
Simple API for XML (SAX) [SAX03]. Since both the
Monitor and the Scheduler will be using the XML file
there is an issue of contention. In a system such as this it
is felt that the updated information provided by the
Monitor is more important and should therefore have
priority when accessing the file. Hence this ensures the
Scheduler will always be making use of the most up-to-
date information. As a result the Singleton design pattern
has been used to develop the ResourceTable. The
Singleton design pattern is a design pattern that allows
developers to construct classes which are restricted to
having only one instance in the program. The pattern
facilitates a global mechanism that can then be used by
other classes to access this instance [Gamma03]. Here, the
Singleton pattern has been used to construct all the classes
as there should only be one instance of each class in the
system. Also the Scheduler and Monitor will need to
coordinate their effort by using the ResourceTable; this is
achieved by the Singleton pattern which provides a global
method that can be used to access the unique instance of
the class. The overhead of a resource monitoring agent is
balanced by the knowledge that as the global performance
of computers increases, any overhead becomes a lower
and lower percentage of the total resources used by the
application [Khan03].

JCS&T Vol. 5 No. 1

5 SYSTEM IMPLEMENTATION

The GRID monitoring class is a key component of the
system. It is intended that this component will run
continually updating the information of available
resources on the GRID. This is implemented based on the
Java Threads API which allows the process to run
periodically. In order to interact with a computational
GRID the monitor uses the Java CoG kit. In particular to
fulfil the role of querying the GRID resources the classes
in the org.globus.mds package were used; this provided a
means to query both GRIS and GIIS services in a CGE.
The experiments were conducted with Solaris 2.3 multi-
threaded operating system installed on each experimental
test-bed node and each node interconnected by ATM
switches and gigabit ethernet.

Once the monitor has retrieved the results from the MDS
server they have to be made available to the scheduler so
that it can determine the best resource to use in order to
complete the current job. XML has been chosen as the
means of holding the data due to its portability that means
it can be passed easily between other processes for
processing. In the case of this system it is planned that the
retrieved data will be filtered further to ensure that it
meets the limits imposed by users in a configuration file.
However for now translating the data into XML will offer
an effective means to store the retrieved results for later
analysis. As previously stated the Resourcel.ookupTable
class is a wrapper class used to abstract the details
concerned with holding, accessing and using the results
returned from the monitoring class. The ResourceTable
class also makes use of a filter class to filter the
information based upon parameters the user has set in a
property file. As only one instance of the
Resourcel.ookupTable is required by the program the
class has used the Singleton design pattern to ensure this
remains true throughout the execution of the program. As
the Singleton pattern has been used all classes wishing to
use the Resourcel.ookupTable will have to first call the
getInstance() method, this checks if a new instance of the
table has to be created, creates an instance if necessary
and then returns a handle to the Resourcel.ookupTable to
the calling class. As all interaction with the
ResourceL.ookupTable involves first calling the
getInstance method both the monitoring and scheduling
class will be able to operate using the same resource table
and therefore coordination between the two classes will
be possible. As the resources will constantly change due
to the monitor reporting updated details of the utilisation
of resources in the GRID, the current set of resources will
not be stored on disk, but will instead be stored in
memory, thus reducing the overhead of disk I/O. Also
there would be no point in storing these resources as they
will only be valid during the current execution of the
program, therefore any subsequent execution will have to
discover the available resources again for themselves. As

16

April 2005

the data is being collected in XML the
org.w3c.dom.Document object has been used to hold the
details on current resources. This can then be filtered and
sorted so that the first node could be passed to the
scheduler that would then extract the data from the node
and take the necessary steps to execute the current job
using the given resource. The results must be filtered to
ensure that they meet the needs of the current job being
executed. Filtering is carried out by a class which
implements the ResourceFilter interface; this interface
defines the filter method. The reason why an interface
was used is that interfaces allow many different
implementations to be made each of which can be readily
exchanged at runtime since they all share a common
interface, and it is this common interface that a program
interacts with. Therefore in a program such as this,
interfaces would allow users to implement their own
filters whenever appropriate. For the purpose of this
implementation the implementation of the filter uses the
Document Object Model (DOM) facilities included with
JDK 1.4 to remove nodes from the XML document that
do not meet the criteria of the current job. Although SAX
gives better performance than DOM, DOM has been
chosen here due to its higher degree of flexibility. With
this implementation of filter users are able to specify
parameters in a property file which are read by the filter at
runtime and used to filter the XML. The property file
could then be loaded into the program and accessed using
the Properties class included in the java.util package. This
class provides an effective means to access the values of a
property file. The load method of the properties class
loads the file into memory so that the data can be accessed
in a program. A GUI interface was developed which
displays the results on screen as they are obtained from
the CGE. The aim of this was to demonstrate the structure
of the Resourcel.ookupTable that is held in memory. The
displayed results were limited to avoid cluttering the
screen with unnecessary data; however the entire XML
node will be available to the scheduler when it requests a
resource thus providing it will all the necessary
information to use the resource.

6 RESULTS

All the information obtained from the system was
converted into an XML format and passed to the
Resourcel.ookupTable which filtered this information so
only the resources suitable for the current job were
included in the lookup table. Once the implementation
was complete the system was executed using the MDS
server provided by the Globus project. This provided a
live environment in which to test the system and therefore
it is hoped that the obtained results will more accurately
reflect the use of this system. As the system is designed
to periodically query the GRID to determine the state of
the various resources testing the system was simply a
matter of running the application for a period of time so
that a series of results could be obtained for later analysis.
The results were held in the user’s temporary directory as

JCS&T Vol. 5 No. 1

a series of XML files, each stamped with the date and
time to which they correspond. The system was run over a
period of three hours to take the required results. From
examing the XML result files in the user’s temporary
directory we can see that there have been a number of
results obtained from the MDS server and therefore a
means to compare these files was required in order that
analysis could be conducted. Due to the fact that the XML
files held information coming from the same MDS server
and looking at the file size they are all sized between 55
KB and 64 KB, therefore we would expect to find mainly
slight variations in these files. As the files held XML data
that is structured the same in each file, visual file
comparison tools such as that included with Microsoft
Visual Source Safe’ could be used to easily compare the
files as illustrated in Figure 2. By comparing the files it is
possible to easily spot differences from one file to the
next, some of these were the result of variations in the
dates when the resources would be valid, but others were
of more direct interest to the work in this paper. Mainly
changes in the amount of available space as changes such
as this could be used by the system to move the current
job to another resource. Source safe can be used to
compare the files.

[Differences between 10624195807

HIE[E] A #14] 3]

walichle:xml and 1062419659055 avalicble.sml -lofx|

Cipoamentsard 580782_aclie. . Acinistatar|, om Setings{enpl 062419655083 _avelicle am

148 Mds-validfrom>200303011234312¢/¥ds-val idfron> 135 <Mts-valldfm!\>20030“ﬂ,1234312</Mds—va;l
149 ids-Fs-s:zelB>1038728¢/Hds-F3-sizeliEy 137 <Hcs-Fs-3izeliB 1038728 /ids-Fs-sizeliBy
180 Mds-Fs-nowat>/mnt/zlv3</Hds-Fa-rouns > 133 Mes-Fs-neurt s/unt/z1vi< Mde-Fs-nount »
181 «/recordy 133 </rzoord:

4

17® krecord dn='His-Device-nane=/ Hds-Device-Group-nane=files;
7 ¢o7j=ctClass MdsDeviced/objectCless y

iMds-Levice-nane: /< /dds-Devicz-nzne
173 Mds-keeptoy200309011834387: Mds-keeptas

174 iMds-validtor2003090113:4387¢/Hids-validta)

176 Mds-Fs-freeiByBE99¢/tids-Fs-freekB:

176 Mds-validfrom>200303011234382¢/Kds—validfron>
177 iMds-Fs-s:zelB>16413¢Mcs-Fs-sizelBy

178 <Mde-Fe-nouat>/</Mde-Fe-nount>

179 «/recordy

1&0 153
11 153

Figure 2: Comparing the result files

When examing using source safe, any blue resources on
the left represent a resource that has not been included
with the newer set of results. Potentially this means the
device may have gone off line and therefore is no longer
available for use by the application. Once an analysis of
the files had been completed using Visual Source Safe’s
file comparison tool the results of this analysis can be
plotted in a series of graphs which illustrate the observed
patterns and characteristics of the results.

! http://msdn.microsoft.com/ssafe/

17

April 2005

6.1 Available Resources

During tests, files would vary in size. While the majority
of files hold 64K of data a large number hold
considerably less, obviously a result of containing less
information, therefore at that moment in time less results
have been returned from the MDS server. This can be
confirmed by examining the graph in Figure 3 which plots
the number of results returned at a given moment in time.

121

119
117 f =
115 4 1
§ e L —
g 11
& 109
@
o 107 i
S 105
g
Z 103
101
99
97
95
I - S T N R N R A AR)
B ,3;1’ e SIS SN SNSRI ,\v’} ,\v{” T

Time
Figure 3: Available resources over time

Figure 3 illustrates the dynamic nature of a CGE in which
heterogeneous resources will constantly change as they
become over or under utilized, and in which new device
come online while existing devices become unavailable
due to network failures, system crashes or any number of
variables that alter the status of devices.

6.2 Resource Utilization

Alongside simply discovering the available resource
attached to the CGE it is anticipated that using the
discovered information the system will be capable of
making informed decisions upon which resource to use
based on past experience.

5603
5601 1

5599 ‘-L —
5567 1

5595 1

5593 1

Free Space (MB)

5581 1

5589 1

5587 1

5585

Figure 4: Resource usage of a single resource

During the current experiment the type of resource being
queried for was storage therefore tracking the available

JCS&T Vol. 5 No. 1

storage on the device will give insight into potential
tracking utilisation could have in deciding which resource
to use. The breaks in the line (in figure 4) correspond to
period when the resource was not found in the XML file,
in the case of this resource this could be due to a late
response to the query request. From studying the XML
file the resource has 16413 MB of storage to begin with
5601 MB of this is free space therefore this means that
approximately the device has 66% utilization to begin
with. The available free space is reduced to 5590 MB by
the end of the monitoring however the actual percentage
utilization is still approximately 66%.

The current implementation has shown that it is possible
to construct a monitor based on the CoG toolkit and the
MDS service to monitor the available resources attached
to a CGE. This work has built a monitor as a thread that
works with a single MDS server, although a commercial
implementation would require the use of different MDS
servers so that the scheduler is presented with the best
possible set of resources to choose from. It is impossible
to consider providing the application with a list of MDS
servers at compile time as like any resource attached to a
network they can be available or unavailable at certain
times depending on network conditions, therefore the
application will require the ability to dynamically
discover the available MDS servers on the GRID. In this
implementation the actual monitor was developed as a
Java thread as the system was only working with one
MDS server. When the system is made to work with
multiple servers the monitor will have to be modified so
that it becomes an agent and can query multiple MDS
servers at once reporting these results back to the client.

7 CONCLUSION

Although the MDS service of the Globus project does
provide useful information relating to the state of GRID
resources there is a need for more information to be
provided about the device particularly relating to
accounting information such as the price per megabyte of
disc or the price per processing cycle for a processing
resource. Standards are important for this type of
information as it will facilitate the creation of many
different GRID accounting applications all of which
would thus be interoperable with one another. It is clear
that a CGE consists of many heterogeneous devices which
vary in the services they provide and availability. In
addition, the period during which these resources can be
used varies due to clients using GRID reservation
protocols to reserve the device or the resource being used
by a client process. Therefore in an environment client
programs will require a means to find the available
devices and make use of them. An alternative to
reservation protocols is useful in case reservation
protocols that allow the resources to be booked in advance
are priced at a premium rate and thus potentially out of
the reach of smaller organisations. Our system allows
client applications to discover the available resources at

18

April 2005

runtime and make use of them concentrating on the area
of resource discovery within a CGE. It is successful in
discovering information relating to the available devices
in a CGE at any moment in time.

REFERENCES

[Arnold99] K. Arnold, B. Osullivan, R. The Jini Specification.
The Java Technology Series. Addison-Wesley, June 1999.

[CoG03] CoG Kit Home page, August 2003, http://www-
unix.globus.org/cog

[Czajkowski98] Czajkowski, 1. Foster, N. Karonis, C.
Kesselman. A resource management architecture for
metacomputing systems. 4th Workshop on Job Scheduling
Strategies for Paralle] Processing, 1998.

[Foster96] 1. Foster, C. Kesselman and S. Tuecke. The Nexus
approach to integrating multithreading and communication. J.
Parallel and Distributed Computing, 37(1):70-82, 1996.

[Foster0O] Ian Foster and Carl Kesselman. The GRID: a
blueprint for a new infrastructure. Morgan Kaufman, 2000

[Gamma03] E. Gamma, R. Helm, R Johnson, J. Vissides.
Design Patterns. Addison Wesley. Dec 2003

[Globus03] Globus Project. http://www.globus.org, 2003
[Gridbus03] The GRIDbus Project, http://www.GRIDbus.org/

[Hardin68] Hardin, G. The Tragedy of the Commons, Science,
162(1968):1243-1248

[Java03] Java Technology & XML. Sun Microsystems.
http://java.sun.com/xml. 2003

[Khan03] Khan, M. Vaithianathan, S., Sivoncik, K., Boloni, L.
Towards an agent framework for grid computing, International

Scientific journal of Computing. Vol. 2, No. 2, December 2003

[Oram01] A. Oram. P2P - Harnessing the Power of Disruptive
Technologies. O’reilly, March 2001.

[LaszewskiO0O] G. von Laszewski, 1. Foster, J. Gawor, CoG Kits:
A Bridge between Commodity Distributed Computing and
High-Performance GRIDs. ACM Java Grande Conference, pp.
97-106, San Francisco, CA, 3-5 June 2000.

[Martin0OO] Dider Martin et. al. Professional XML, Wrox. 2000

[MDS03] Information Services in the Globus Toolkit 3.0.
http://www.globus.org/MDS/. 2003

[Rogerson97] D. Rogerson. Inside COM - Microsoft’s
Component Object Model. Microsoft Press, 1997.

[SAX03] The SAX project. http://www.saxproject.org

[Sun03] Sun Microsystems, Sun Microsystems GRID
Technology, 2003, http://www.sun.com/GRID

[XMLO3] Extensible Mark-up Language (XML), W3C.
http://fwww.w3.org/xml. 2003

Received: Oct. 2004. Accepted: Dec. 2004.

	r-a4: Received: Oct. 2004. Accepted: Dec. 2004.

