
A Fault Diagnosis Scheme and Its Quality Issue
in Reconfigurable Array Architecture

Yung-Yuan Chen

Department of Computer Science and Information Engineering
Chung-Hua University, Hsin-Chu, Taiwan, R.O.C.

 chenyy@chu.edu.tw

ABSTRACT
In this paper, we propose an efficient diagnosis scheme to
detect and locate the switching network defects/faults in
reconfigurable array architecture. This diagnosis scheme
performs the test of switching network based on the scan
path and fault intersection test methodology to locate the
faults occurring in the switching network. After the
diagnosis of switching network, the processing element
(PE) test can then be initiated through the good switches
and links. Errors in testing that cause a good switch, link
or PE to be considered as a bad one is called “killing
error”. The issue of killing error in testing is addressed
and the probability of killing error for our diagnosis
technique is analyzed and shown to be extremely low. The
significance of this approach is the ability to detect and
locate the multiple faults in switches, links, and PEs with
low testing circuit overhead, and to offer the good test
quality in linear diagnosis time.
Keywords: Fault diagnosis, errors in testing,
reconfigurable arrays, switching network, test quality.

1. INTRODUCTION
Reconfigurable computing systems with reconfigurable
array processors become prevalent for data-parallel and
computation-intensive applications [1], [2]. It is necessary
to build on-chip redundancy and develop efficient
reconfiguration schemes to guarantee a high yield and
high reliability in large area array processors [3-5]. A
complete process flow for reconfigurable array processors
is illustrated in Fig. 1. As can be seen from Fig. 1, before
performing the reconfiguration process, we need to
identify the faulty elements in advance. Therefore, test
plays an important role in reconfigurable array
architectures. Most of the previous literatures in testing of
reconfigurable arrays make the assumption of fault-free
switching network, and only consider the faults located in
the processing elements (PEs) [6-12]. A few authors take
the faults arising from the switching network into account
[13-15]. Since the switching network in reconfigurable
arrays occupies a large portion of area, the approach
oriented to end of production reconfiguration must
consider the faults in switch and link locations in order to
precisely locate the flawed elements. From the industry
point of view, the assumption of fault-free switching
network is too optimistic, and it may result in the testing
quality problem. Consequently, it is imperative to test the
switching network first, and identify the faults in switches
and links. After the diagnosis of switching network, the
part of PE test is then initiated through the good switches
and links. According to this testing flow, the quality of
fault diagnosis can be enhanced to a sound level.
In this study, we propose an effective diagnosis approach
to detect and locate the faults occurring in switching
network and PEs. The scan path and fault intersection test
methodology is employed to locate the faults in switches
and links. A switching network presented in [16] is used

to demonstrate our diagnosis technique.

Reconfigurable Array Chip

Testing, if unreconfigurable
(or critical) faults diagnosed?

Record the locations
of faulty switches,
links and PEs

Reconfiguration Process Reconfiguration
successful ?

Chip
aborted

Good Array

Chip discarded

Yes

No

No

Yes

Fig. 1. A complete flow for reconfigurable array processors.

The problem of errors in testing [17] becomes more
serious when the chips are getting complicated. Little or
no work has been done on the problem of errors in testing
for fault diagnosis scheme in reconfigurable array
architecture. Errors in testing that cause a bad switch, link
and PE to be considered as a good one is called “missing
error”, and a good switch, link and PE to be considered as
a bad one is called “killing error”. The missing error will
result in the test quality problem for customers. The
killing error during test will degrade the test quality, and
may let a reconfigurable array become to be
unreconfigurable. This phenomenon will lead to the yield
loss and the non-return profit loss for the manufacturers.
The issue of killing error in testing is addressed and the
probability of killing error for our diagnosis scheme is
analyzed. The probability of killing error and the
diagnosis time are always contradictory. From the
analysis of the killing error probability and the diagnosis
time for our strategy, our approach provides a good
compromise between the diagnosis time and the killing
error problem.
The paper is organized as follows. In Section 2, switching
network test methodology is proposed, and an example is
used to demonstrate the diagnosis approach. The issue of
PE test is addressed in Section 3. In Section 4, the
probability of killing error is analyzed. The conclusions
are drawn in Section 5.

2. SWITCHING NETWORK TEST
Switching network plays an important role in
reconfigurable VLSI /WSI array systems. The switching
network can be programmed to construct the diagnostic
paths for switch, link and PE test. During the
reconfiguration process, the switching network can be
used to reconfigure the array to tolerate the fabrication

JCS&T Vol. 6 No. 1 April 2006

12

mailto:chenyy@chu.edu.tw

defects and in-service faults. Also, the same switching
network can be exploited to extend the versatility of array
topology for different application problems. Hence, it
should be noticed that the testing, reconfiguration and
restructuring processes in our approach share the overhead
of switching network resource.
In this section, the fault model is described first. Then, a
reconfigurable array and its switching network as shown
in Fig. 2 and 3 [16] are used to demonstrate our test
methodology.

Fault Model
The fault model we consider comprises the stuck-at,
bridging, and short as well as open faults in switches and
links. All multiple switch and link faults are taken into
account here. Each switch has four switch states as shown
in Fig. 2(b). We make the following assumptions for the
switch: (1) both paths are all dead for a failed state; (2) a
failed switch is defined as all states being failed.

Switching Network Architecture
The detailed switching network architecture is illustrated
in Fig. 2 and 3. For the clarity, we now briefly describe the
switching network architecture and the concept of fixed
switch-programming scheme presented in paper [16].
Each switch as shown in Fig. 2(c) comprises a switch state
scan path control circuit, two static D type flip-flops for
storage of switch states, and a switch state decoder plus a
transfer block. The fixed switch-programming scheme is
based on the concept of scan path to scan in the switch
states from I/O pads. When a switch receives its desired
switch state, the switch state decoder will decode the
switch state, and generate the switching type control signal
to transfer block to create the desired path connection as
shown in Fig. 2(b). The fixed switch-programming
technique, each switch uses two-bit shift register as
steering latch.
A Switch state Programming Data (SPD) path can be
obtained by serially connecting the shift registers all over
the switches in the path as shown in Fig. 2(c) and 3(a).
From SPD I/O pads, we can scan switch-programming
data into switch shift registers by clock sequences. When
all programming data are loaded into their right locations,
the decoder enable line is activated. Then the connection
types of all switches in the programming scan path are set
up. Upon finishing the procedure of switch programming,
the desired interconnection paths are physically produced.
The capability of bypassing failed switches during the
switch states scanning in through steering F-F paths can be
accomplished by switch state scan path control circuit as
demonstrated in Fig. 2(c). When a switch is faulty, the
switch state scan path control circuit is used to bypass this
faulty switch and to rebuild the switch state scan path. The
sequence of switch programming consists of two steps.
Step 1: Through switch state scan path programming pads,
scan the switch status as good or faulty into the D
flip-flops of switch state scan path control circuit. Then
the switch state scan paths are formed. Step 2: Through
switch state programming data pads, scan in the switch
states, and create the desired interconnection paths.

Diagnosis Process
The switching network described in Fig. 2(a) can be
partitioned into the horizontal switching network and
vertical switching network as illustrated in Fig. 3(b) and
3(c). They are disjoint and can be tested concurrently. The
diagnosis process consists of four testing phases: (I)

Pretest phase, (II) Switching network fault detecting phase,
(III) Switching network fault locating phase, and (IV) PE
testing phase.

(I) Pretest phase: In this phase, from Fig. 2(c),
we first test the Switch state Scan path Programming paths
(SSPs) by applying the test pattern ‘0m01m+10’ [18] to
detect faults in SSPs, the notation 1m(0m) to represent a
sequence of m 1’s(0’s), m is the number of F-Fs in SSP.
Each SSP contains 6(N+1) switches in horizontal
switching network and 5N+2 switches in vertical
switching network for an N×N array processor. The
testing time for horizontal switching network SSP is
2[6(N+1)]+3 clocks and 2(5N+2)+3 clocks for vertical
switching network SSP [18]. There are faulty elements
existing in SSPs if testing outputs are not our expectations.
In this case, we abort this array chip. Otherwise, we
continue to test the Switch state Programming Data paths
(SPDs).
A SPD path consists of two types of components:
multiplexer (MUX), and steering F-Fs. First, we test the
MUXs in a SPD path by setting the MUXs to form the
path of bypassing all switch steering F-Fs in SPD. Now,
the paths can be tested by the test pattern ‘00110’. If any
faulty results are received, this array chip is discarded.
Secondly, the connections of all MUXs in SPD are
reversed to create the normal switch state programming
data scan path which again can be tested by test pattern
‘0m01m+10’. If erroneous outputs are observed, we
continue to locate the failed steering F-Fs in those faulty
switch state programming data paths. In a faulty SPD path,
the steering F-F part of each switch can be diagnosed one
by one by setting the path connection such that the test
patterns applied only pass the steering F-F of tested switch,
and bypass the steering F-Fs of other switches. In this way,
we can locate the faulty steering F-Fs occurring in
switches.

(II) Switching network fault detecting phase:
From Fig. 2(c), each PE has two operating modes:
switching network testing mode and normal operation
mode. When we enable all PEs into switching network
testing mode, each PE can provide the bypassing paths for
switching network in testing. Then the switching network
can be divided into the horizontal and vertical switching
networks as shown in Fig. 3(b) and (c). In testing of
switching network, we assume that DEMUX circuits are
fault-free.
Although each switch has four states, from switch
architecture and truth table as illustrated in Fig. 2(c), when
‘01’, ‘10’, ‘11’ three states are tested, the ‘00’ state is
implicitly tested. Due to the similarity of horizontal and
vertical switching network fault diagnosis, only the details
of the horizontal switching network fault diagnosis are
presented here. By setting up the appropriate switch states
through the switch programming [16], we can construct
the horizontal, vertical, right-up and right-down diagnostic
paths for switches and links. Based on switch
programming, when all switches of horizontal switching
network are set to state ‘01’, the Horizontal switching
network Horizontal Diagnostic paths (HHD) and
Horizontal switching network Vertical Diagnostic paths
(HVD) are created; similarly, when switch state ‘10’ is
used, the Right-Up Diagnostic paths (HRUD) are formed;
finally, setting the switches to state ‘11’ can produce the
Right-Down Diagnostic paths (HRDD). These types of
diagnostic paths employed to test the horizontal switching
network are shown in Fig. 4.

JCS&T Vol. 6 No. 1 April 2006

13

PEW E

S

N

2-1
MUX

Vertical switching
network diagnostic

path

clock

decoder enable
switch state decoder

transfer block global control signal

Testing pin

Horizontal
switching network

diagnostic path

Switch state Programming Data
path (serially from i/o pad)

(SPD)

Switch state Scan path
Programming path

(SSP) switch state scan path
 control circuit

(Steering F-F)
(static type)

10011011
10100101
01101010
10101000

'33'22'11 ccccccba

(00) (01) (10) (11)

a b

demux

c3
c3'

c2
c2'

D Q
CK

D Q
CK

D Q
CK

c1
c1'

c1
c2

c3

c1
c2

c3

(b) states of a switch

PE PE

PE PE

switch

HI1

HI2

HI3

HI4

HO1

HO2

HO3

HO4

VI1 VI2 VI3 VI4

VO1
VO2 VO3 VO4 VO5 VO6

(a) 2×2 mesh array in association with switching network

W E

S

N

2-1
MUX

switch state decoder

transfer block

switch state scan path
 control circuit

c1
c1'
c2
c2'
c3

ac3' b

c1
c2

c3

c2
c1

c3

D D

D

Q Q

Q

CK CK

CK

one switch architecture one switch architecture

one
switch

architecture

to next
 switch

to next
 switch

truth table of a switch state decoder

(c) architecture of a switch and switch connections

Fig. 2. Reconfigurable mesh array and its switching network.

Fig. 3. Fixed switch-programming scheme and horizontal, vertical switching networks.
From Fig. 4, it is clear to see that there are six diagnostic
paths passing each switch, and three diagnostic paths
passing each link. The principal concept for switching
network fault diagnosis is based on the fault intersection
test methodology to detect and locate the faulty switches

and links. The fault diagnosis process for switching
network mainly consists of two phases: detecting and
locating phases. Detecting phase: in this phase, the
detection results from HHD, HVD, HRUD, and HRDD
diagnostic paths are collected. Locating phase: according

JCS&T Vol. 6 No. 1 April 2006

14

Fig. 4. (a) HHD and HVD, (b) HRUD, (c) HRDD, (d) Switch and link diagnostic paths.

to the testing data provided from detecting phase and the
fault intersection test methodology to identify the faulty
switches and links.
The basic idea of fault intersection test methodology is to
utilize the testing data of six diagnostic paths passing each
switch and three diagnostic paths passing each link to
locate the faulty switches and links. It should be noted that
in accordance with the fault model described in Section 2,
the six diagnostic paths passing a faulty switch must all
respond the erroneous testing outputs. The fault detection
algorithm of horizontal switching network is depicted as
follows.
Detection Algorithm:

Step 1: Set all switches to switch state ‘01’ to create HHD
and HVD paths. Then apply the test patterns
‘00110’ from the left side and topside to HHD and
HVD paths concurrently.

Step 2: Testing outputs are observed from right and bottom
sides of HHD and HVD paths. We record the
results of the HHD testing outputs in Horizontal
Diagnostic Matrix (HDM) and HVD testing
outputs in Vertical Diagnostic Matrix (VDM). An
element in the matrix represents either a switch or
a link testing result. In HDM or VDM, values of
the elements passed by the faulty HHD or HVD
paths are all set to ‘1’, and passed by the workable
HHD or HVD paths are set to ‘0’.

Step 3: Program all switch steering F-Fs with ‘10’ state,
then input ‘00110’ test patterns to all HRUD paths
from left and bottom sides. Record the testing
outputs from top and right sides in Right-Up

Diagnostic Matrix (RUDM).
Step 4: Program all steering F-Fs with ‘11’ state. Apply

‘00110’ to all HRDD paths from top and left sides,
and record the testing results from right and bottom
sides in Right-Down Diagnostic Matrix (RDDM).

The algorithms of creating the diagnostic matrixes in
detection algorithm are quite similar. Consequently, only
algorithm of creation of RUDM is presented here.

RUDM Creation Algorithm:

Given an N×N mesh, the size of RUDM is (4N+1) ×
(6N+7), where the size of matrix can be derived easily from
Fig. 2(a).
Step 1: Initialize the RUDM

for i=1 to 4N+1 step 2
for j=1 to 6N+7 step 2
RUDM (i, j)← ‘u’
/* ‘u’ = the unused sign which is employed to

assist the location of faults. */
endfor
The rest of RUDM are assigned the initial value of
zero.

Step 2: for each testing output
if (the testing output is not correct)
then (In RUDM, we add one to those elements

passed by this diagnostic path)

(III) Switching network fault locating phase: For
any one switch, there are six diagnostic paths passing it.
Hence, if a switch fails, then testing outputs of the six
diagnostic paths passing it are all erroneous. Similarly,
there are three diagnostic paths passing each link. Thus, if a

JCS&T Vol. 6 No. 1 April 2006

15

link fails, then the testing outputs of these three diagnostic
paths passing it are incorrect. The summation of HDM,
VDM, RUDM and RDDM is then performed to obtain the
Diagnostic Sum Matrix (DSM). Based on the characteristic
indicated above, the faulty switches and links in horizontal
switching network can be easily located from the
information of DSM. In DSM, if any element’s value is six,
then a faulty switch is identified in the corresponding
location of switching network. If any element’s value is
three and it is between two ‘u’ elements then the
corresponding location in switching network represents a
faulty link. As can be seen, each switch has four adjacent
links and each link has two adjacent switches. Therefore,
each switch element in DSM has four surrounding
numerical data that represent the diagnostic results of links,
and each link element in DSM has two ‘u’ elements either
located in its top and bottom or in its left and right. It
should be noticed that the values of some of switch
elements in DSM might be equal to three. In location of
faulty links, to avoid misjudging a switch element as a
faulty link, a faulty link is identified as its value is three
and it is between two ‘u’ elements in DSM. The detailed
fault location algorithm is listed below.

Location Algorithm:

for i=1 to 4N+1
for j=1 to 6N+7
DSM(i,j)←HDM(i,j)+VDM(i,j)+RUDM(i,j)+RDDM(i,j)

/* in above summation, if all adding items are ‘u’ elements
then the result is still ‘u’; otherwise, ignore the ‘u’ elements
if any, and add only the items, which are numeral. */
endfor
for i=1 to 4N+1

for j=1 to 6N+7
if (DSM(i,j)=6) then corresponding location (i,j) in
horizontal switching network represents a faulty switch.
else if (DSM(i,j)=3)

then if [(DSM(i-1,j)= ‘u’ and DSM(i+1,j)= ‘u’) or
(DSM(i,j-1)= ‘u’ and DSM(i,j+1)= ‘u’)]

then corresponding location (i,j) in horizontal
switching network represents a faulty link.

endif
endfor

(IV) PE testing phase: After the diagnosis of
switching network, the PE testing is then initiated through
the good switches and links. The PEs now are changed to
the normal operation mode. The details of PE test are
presented in Section 3.

Example Demonstration
Given a 2×2 mesh as displayed in Fig. 2(a), its horizontal
switching network with faulty switches and links is shown
in Fig. 5(a). The ‘X’ represents the faulty elements. The
size of diagnostic matrix is 9×19. ‘u’ represents the unused
sign in the matrix. In DSM, the location of ‘u’ is used to
assist the identification of faulty links. It is clear to see that
the concept of fault location is based on the fault diagnosis
accumulation for faulty switches and links. The DSM
records the total fault diagnosis accumulation. So, value six
in DSM represents a faulty switch, and value three may
represent a faulty link depending on its two side elements.
All diagnostic matrixes for this example are given in Fig.
5(b)-(f).
Comparing the faulty switches and links located from DSM
in Fig. 5(f) with original faults in Fig. 5(a), some
discrepancies are observed. These differences are caused

due to the problem of killing error on switches and links.

Fig. 5. (a) Example (b) HDM (c) VDM (d) RUDM (e)

RDDM (f) DSM (g) Killing errors.

Definition 1: Error in testing that causes a good PE, switch
and link to be considered as a bad one is called ‘killing
error’.
In our diagnosis approach, the killing error can be
categorized into the pseudo and true killing errors.
Definition 2: The good switches and links are killed due to
the errors in testing, but those switches and links won’t
have any chance to be utilized in the reconfiguration
process at all, even though they are tested as good. This
kind of killing error is called the pseudo killing error. The
pseudo killing error won’t affect the quality of test and
reconfiguration process.
Definition 3: The good switches and links are killed due to
the errors in testing, and originally these good switches and
links are the useful resources for the reconfiguration
process. This kind of killing error is called the true killing
error. The true killing errors will affect the quality of test
and reconfiguration process.
The phenomena of pseudo and true killing errors can be
explained in Fig. 5(g). The good links adjacent to a faulty
switch are diagnosed as faulty using our mechanism. In
this situation, this is killing error for links, but the four
links associated with a faulty switch are all useless during
the reconfiguration process even though they are good

JCS&T Vol. 6 No. 1 April 2006

16

actually. So this kind of killing error is called the pseudo
killing error and it would not affect the quality of test and
reconfiguration process. The killing errors not within the
type of pseudo killing error are named true killing error as
shown in Fig. 5(g). The analysis of killing error for our
approach is conducted in Section 4.

Test Time Analysis
The horizontal switching network and vertical switching
network can be tested concurrently. The chips may have
different faulty patterns. Therefore, for some chips, they are
aborted in pretest phase, and the other chips may go
through SSP test, SPD ‘MUX’ test, and SPD steering F-Fs
detection and location, switching network detecting and
locating phases. We omit the detailed derivation and only
show the result here: Tsw-n= 144N+171 clocks. So the test
time of switching network is linear, where N is the
dimension of mesh array.

3. PE TESTING SCHEME
For the sake of simplicity of presentation, we here assume
that the links are fault-free and only consider the switch
faults in switching network in testing of PEs. The
controllability and observability in PE test can be achieved
through the programming of switching network. Through
the switch programming, the desired testing paths for PEs
can be created. The test patterns are then applied to the PEs
and the testing results are observed all through the testing
paths currently created. Previously, most of the papers
address the issue of PE test by the assumption of fault-free
switching network. This assumption, however, may give
quite misleading results and degrade the quality of PE test.
The philosophy of our PE test is briefly depicted as follows.
We partition the PEs into several groups based on the
resources of switching network and status of switches. If a
switch is faulty, it cannot be exploited in PE test. The
limited numbers of input/output and the capability of
switching network decide the maximum number of PEs that
can be tested concurrently. A group is formed to contain
the PEs, which can be tested at the same time. Therefore, if
the PEs are partitioned into n groups and the groups are
tested one by one sequentially, the procedure of PE test
consists of n testing phases. A testing phase is defined as
the time to completely test a single group.
Property 1: For an N×N mesh array, Fig. 6 shows the
ability of switching network for horizontal part and vertical
part individually. The numbers of input/output ports for
horizontal switching network and vertical switching
network are 2N/2N and 2N/3N respectively. Under the
condition of fault-free switching network, the maximum
number of PEs that can be tested in parallel is 2N-1. In
other words, a single testing phase can test 2N-1 PEs at
most.
The explanation is described as follows. It is obvious to see
that the capability of horizontal switching network supports
2N-1 input and 2N-1 output ports at most that can be
exploited in a single testing phase. And, 2N input and 2N
output ports could be utilized for vertical switching
network in a single testing phase. So, due to the constraint
of horizontal switching network, a single PE group can
contain 2N-1 PEs at most. As a result, the minimum

number of testing phases required in PE test is 1
2
+

N and

2
)1(+N for N being even and odd respectively.

PE PE PE PE

PE PE PE PE

PE PE PE

PE PE PE PE

VI1 VI2 VI3 VI4 VI5 VI6 VI7 VI8

VO1 VO2VO3 VO4 VO5 VO6 VO7 VO8 VO9 VO11VO10 VO12

HI1

HI2

HI3

HI4

HI5

HI6

HI7

HI8

HO1

HO2

HO3

HO4

HO5

HO6

HO7

HO8

section 1

section 2

section 3

section 4

(a)

PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE

VI1 VI2 VI3 VI4 VI5 VI6 VI7 VI8

VO1 VO2VO3 VO4VO5 VO6 VO7 VO8 VO9 VO11VO10 VO12

HI1

HI2

HI3

HI4

HI5

HI6

HI7

HI8

HO1

HO2

HO3

HO4

HO5

HO6

HO7

HO8PE

(b)

Fig. 6. Capability of switching network: (a) horizontal part,
(b) vertical part.

The Approach of PE Test without Switch Faults
The PEs in an N×N mesh array are indexed from (1, 1) to
(N, N). G(i) is a set of PEs for group i, where

1
2

1 +≤≤
Ni for N being even, and

2
11 +

≤≤
Ni for N

being odd. Since the test approaches for N being even and
odd are similar, the following discussion only focuses on
the even size array. The group partitioning algorithm is
presented below.
Group Partition Algorithm: N is even

G(i)←Φ, for 1
2

1 +≤≤
Ni

for i = 1,…,
2
N do

begin
for j = 1,…, N do
G(i)←G(i)∪ {PE(j, i)} {PE(j, N-i+1)} ∪

G(i) ←G(i)−{PE(N, N-i+1)} /*to satisfy the Property 1*/

end /*Group i contains 2N-1 PEs for
2

1 Ni ≤≤ */

for j = 1,…,
2
N do /*Group 1

2
+

N contains
2
N PEs*/

G(1
2
+

N)←G(1
2
+

N) ∪ {PE(jNN +
2

,)}

JCS&T Vol. 6 No. 1 April 2006

17

Example: We use Fig. 7 to demonstrate the methodologies
of group partition. Fig. 7(a) is 4×4 mesh. Based on Group
Partition Algorithm, the PEs are partitioned into three
groups that are listed below.

G(1) = {(1,1), (2,1), (3,1), (4,1), (1,4), (2,4), (3,4)}

G(2) = {(1,2), (2,2), (3,2), (4,2), (1,3), (2,3), (3,3)}

G(3) = {(4,3), (4,4)}

Fig. 7(b) is 5×5 mesh. The PEs are partitioned into three
groups, which are shown as follows.

G(1) = {(1,1), (2,1), (3,1), (4,1), (5,1), (1,5), (2,5), (3,5),
(4,5)}

G(2) = {(1,2), (2,2), (3,2), (4,2), (5,2), (1,4), (2,4), (3,4),
(4,4)}

G(3) = {(1,3), (2,3), (3,3), (4,3), (5,3) (5,4), (5,5)} �

1,1 1,2

2,2 2,3

3,2 3,3

4,2 4,3 4,4

3,4

2,4 2,1

3,1

4,1

1,3 1,4

G(1)

G(1)

G(2)

G(3)

(a)

1,1 1,2

2,2 2,3

3,2 3,3

4,2 4,3 4,4

3,4

2,4 2,1

3,1

4,1

1,3 1,4

G(1) G(1)

G(2)

G(3)5,5 5,4

4,5

3,5

2,5

1,5

5,35,2 5,1

(b)

Fig. 7. Examples of PE group partition: (a) 4×4 mesh, (b)
5×5 mesh.

The approach of PE test under the assumption of fault-free
switching network is presented next. Then, the effect of
switch faults on PE test will be addressed and the technique
of PE test with switch faults will be developed by the
modification of the approach of PE test without switch
faults.
PE Test Algorithm: with the assumption of fault-free
switching network;

for i = 1,…, 1
2
+

N do

begin
Group partition: use Group Partition Algorithm to form
group G(i);
Routing: through the switching network, establish the
testing paths for each PE in G(i) from input/output ports in
mesh array.
PE test: apply the complete set of PE test patterns one by

one to each PE in G(i) and observe the testing results.
end
The Approach of PE Test with Switch Faults
The impacts of switch faults on PE test and the method to
cope with the impacts are described as follows:

 No impact: A switch fault is not located in the
switches of testing paths;

 Path-length impact: A switch fault results in the
testing path longer than the path length of no switch
faults;

 Routing-critical impact: As can be seen from Fig. 8,
switch faults occur in the routing-critical points such
that some of testing paths of the PEs in group G(i)
can not be established during the testing phase of G(i).
As a consequence of this impact, not all PEs in G(i)
can be tested concurrently. This situation is caused
due to the resource constraint of the switching
network. The untested PEs will be postponed to the
later testing phases. This phenomenon may induce
the extra testing phases. To minimize the effect of
this phenomenon, we will try to allocate the PEs from
the adjacent untested group to replace the PEs that
can not be tested in the testing phase of group G(i) if
possible.

 Key-point impact: A switch fault is called a key-point
fault of PE if the fault falls on any one of PE
associated four I/O switches as shown in Fig. 8.
Under the circumstances, the PE is untestable forever,
and we will try to find a PE from the adjacent
untested group to substitute it if possible. A PE
associated with the key-point switch faults cannot be
utilized during the reconfiguration process no matter
what the status of this PE. Therefore, we do not need
to test this kind of PEs in PE testing procedure.

Test Time Calculation
The horizontal and vertical test paths of a PE as shown in
Fig. 6 each consists of three segments described as follows.
The first segment is from input ports of array to the input
pins of PE; the second part is PE itself and the last section
is from the output pins of PE to the output ports of array. A
test pattern is applied to the PE and the test results are
observed all through the test paths. The delay time of a PE
test pattern is the propagation delay through the test paths.
The delays of the first segment and the last segment require
the consideration of the effect of switch delays and the
length of the links. However, in our analysis, for simplicity
of demonstration, we do not count the length of switching
network channel in the test path. We assume that the length
of PE edge dominates the delay among the interconnection
line of the test path. The following notations are used in the
derivation of the PE test time expressions.

 Dsw: delay associated with a switch;
 Dud: Propagation delay of a signal along a

unit-distance wire where a unit-distance is defined as
the length of PE edge by the assumption of PE as
square type;

 DPE: delay time associated with a PE;
 M: number of test patterns for a PE;
 K: number of test phases;
 Ai: number of unit-distance passed in the longest test

path of the ith test phase, where Ki ≤≤1 .
 Bi: number of switches passed in the longest test path

of the ith test phase, where Ki ≤≤1 .

JCS&T Vol. 6 No. 1 April 2006

18

The delay time of a test pattern in the ith test phase can be
evaluated by

)()(iswiudPE BDADD ×+×+

Therefore, the test time required for the ith test phase can be
written as

))()((iswiudPE BDADDM ×+×+× (1)

As a consequence of (1), the total PE test time for a mesh
array can be expressed as

))......(
)......((

1

1

Kisw

KiudPE

BBBD
AAADKDM

++++×
+++++×+××

 (2)

In the expression (2), the parameters of M, DPE, Dud and
Dsw are design-related data, which can be acquired during
the design process; for other parameters K, Ai and Bi, for

 in above expression, the simulation approach is
employed to obtain those data. The simulation results are
offered and explained next.

Ki ≤≤1

Simulation Results
The simulation tool is based on the Monte Carlo simulation
to generate a huge number of switch fault patterns to obtain
the numbers of test phases K and Ai, Bi for . Table
1 illustrates the simulation results for several sizes of mesh
array and various switch yields Y

Ki ≤≤1

sw. The notations AT and
BT used in Table 1 represent the terms of

Ki AAA ++++1 and in
expression (2), respectively. P is the probability of the
number of test phases K demanded in PE test. The results
of the simulation show that our approach performs quite
well and no extra test phase is needed if a switch yield is
higher than or equal to 0.999 for the size of mesh array
from 4×4 to 16×16. When the yield of a switch is lower
than 0.999, our scheme may need extra testing phases. The
simulation results indicate that one extra testing phase is
required at most and even in poor yield of a switch at 0.993,
the occurring probability of an extra testing phase is still
less than 35%. Clearly, the test time increases as the switch
yield decreases.

Ki BBB ++++1

PE PE

PE PE PE
2 ,1

PE PE PE

PE PE

PE

PE

PE PE PE

V I1 V I2 V I3 V I4 V I5 V I6 V I7 V I8

V O 1 V O 2 V O 3 V O 4 V O 5 V O 6 V O 7 V O 8 V O 9
V O 11 V O 10 V O 12

H I1

H I2

H I3

H I4

H I5

H I6

H I7

H I8

H O 1

H O 2

H O 3

H O 4

H O 5

H O 6

H O 7

H O 8PE
4 ,1

used to substitu te PE (4 ,1) at
the curren t testing phase

used to rep lace PE (2 ,1) at
the curren t testing phase

R outing-critical fau lt

K ey-po in t fau lt

postponed to the
later testing phase

Fig. 8. The impacts of switch faults in PE test.

 Ysw=1.0 Ysw=0.9994 Ysw=0.999 Ysw=0.996 Ysw=0.993

4×4 mesh K=3
AT=23
BT=53

K=3
AT=23.5~24
BT=55~56

K=3
AT=24~24.5
BT=57~58

K=3
AT=26~26.5
BT=63~64

K=3, P=97%
K=4, P=3%

AT=28~28.5, BT=70~71

8×8 mesh K=5
AT=89

BT=186

K=5
AT=89~89.5

BT=189

K=5
AT=90~90.5

BT=192

K=5
AT=92.5
BT=198

K=5, P=83%
K=6, P=17%

AT=98~98.5, BT=210

12×12 mesh K=7
AT=199.5
BT=396

K=7
AT=200.5
BT=399

K=7
AT=202
BT=403

K=7, P=69%
K=8, P=31%

AT=213, BT=438

K=7, P=68.6%
K=8, P=31.4%

AT=214.5, BT=441

16×16 mesh K=9
AT=351.5
BT=680

K=9
AT=352.5
BT=685

K=9
AT=354
BT=691

K=9, P=66%
K=10, P=34%

AT=369.5, BT=745

K=9, P=65.9%
K=10, P=34.1%
AT=371, BT=751

Table 1: Simulation results.

JCS&T Vol. 6 No. 1 April 2006

19

4. THE ANALYSIS OF KILLING ERROR
We first explain in what conditions that the switches and
links will be killed during our diagnosis process. First of
all, a switch s or link l is good and secondly, the six
diagnostic paths passing switch s or the three diagnostic
paths passing link l are all diagnosed as faulty. In other
words, the six diagnostic paths passing switch s or the
three diagnostic paths passing link l all have at least one
faulty element occurring in each of diagnostic paths
respectively. One thing should be pointed out that the
probabilities of true killing error of switch and link vary
with the locations of switch and link in switching network.
For switches or links in different locations, they may have
various numbers of switch and link components in their
diagnostic paths. Obviously, a diagnostic path, which
comprises a more number of switches and links, has a
higher probability for at least one faulty element arising in
this diagnostic path. The worst probabilities of switch and
link true killing errors are derived to show that the
probability of killing error for our scheme is quite low.
Clearly, the probability of killing error is the summation of
the probability of true killing error and the probability of
pseudo killing error.

Lemma 1: The approximated worst probability of link true
killing error Pltk can be written as

lpklkltk PPP −=
243

ln
2333

ln
132

ln)1)(1)((++++ −−= N
k

N
sw

N
k

N
swswklk YYYYYYP

() +−−+−=)1()1()1[(ln
2

ln
3
2

3
ln

2
ln swkkkswklpk YYYYYYP

()])1()1()1(33
ln

22
lnln

3
2 swkswkk YYYYY −+−−

where Plk is the probability of link killing error, and Plpk is
the probability of link pseudo killing error; Ysw and Ylnk are
the yield of a switch and a link respectively; N is the
dimension of mesh array.

Lemma 2: The approximated worst probability or upper
bound of switch true killing error Pstk can be expressed as

spkskstk PPP −=
433

ln
1323

ln
312

ln
32)1)(1)(1(+++−− −−−= N

k
N

sw
N
k

N
sw

N
k

N
swswsk YYYYYYYP

() ()4
3ln

3
ln

4
3

4
ln

4])1()1[({ +−+−= kkkswswspk YYYYYP

()
() ()

()
})1(

)1(])1(2)1(5

)1()1[()1(]

)1(3)1()1[()1(

4

34
3

3
lnln

2
ln

2
ln

ln
3

ln
4
3

4
ln

224
2

2
ln

2
lnln

3
ln

4
3

4
ln

3

sw

swswkkkk

kkkswswk

kkkkswsw

Y

YYYYYY

YYYYYY

YYYYYY

−

+−+−+−

+−+−−+

−+−+−−

where Psk is the probability of switch killing error, and Pspk
is the probability of switch pseudo killing error.

Lemma 3: The worst probability of PE true killing error
Ppetk can be calculated by

() ()∑ ∑ −−=
= =

−−4

0p

4

0q

4
ln

444
ppetk))1((][)())1(([{P q

lkkq
p

stk
p

sksw PYPPY

pelkksksw
q

ltk YPYPYP ×−−− }))1(())1((])(4
ln

4
where Ype is the yield of a PE.

Fig. 9 illustrates the Pltk, Pstk and Ppetk for 16×16 and 20×20
mesh arrays. It should be emphasized that the probabilities
of true killing error shown are the worst probability for
switch, link and PE. From Fig. 9, we can see that for larger
arrays with lower link and switch yield, the Pltk, Pstk and
Ppetk increase rapidly. Interestingly, while Ype increases, the
Ppetk rises too. The reason is that under the same Ysw and

Ylnk, more number of good PEs will be truly killed for
higher Ype of arrays than the lower Ype of arrays. Therefore,
on the average, when Ype increases, each PE has a higher
probability to be truly killed during the diagnosis process.
This indicates that while Ype increases, we also require
raising the Ysw and Ylnk to guarantee the test quality. Table 2
lists the number of switches and PEs that are truly killed for
various probabilities of switch yield, where Ylnk = 0.9995
and Ype = 0.8. According to Fig. 9 and Table 2, we observe
that the probability of true killing error is quite sensitive to
switch yield. To obtain a good test quality, we must pay
attention in the design of switching network.
As can be seen from Fig. 9, the Pltk, Pstk and Ppetk are very
low while Ysw is 0.999 or higher. The numbers of switches
and PEs that are truly killed also approach to zero as shown
in Table 2 when Ysw is 0.999. It is evident that the
probability of killing error in our diagnosis scheme is quite
low while Ysw ≥ 0.999.

 Ysw= 0.991 Ysw= 0.995 Ysw= 0.999
16×16 (switch) 5 0.3 0
20×20 (switch) 21 1.5 0

16×16 (PE) 30 8 0.2
20×20 (PE) 75 22 0.7

Table 2: Number of switches and PEs truly killed for
various switch yields.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.999 0.9991 0.9992 0.9993 0.9994 0.9995 0.9996 0.9997 0.9998 0.9999

Ylnk

Pltk

N=16 Ysw=0.991

N=16 Ysw=0.995

N=16 Ysw=0.999

N=20 Ysw=0.991

N=20 Ysw=0.995

N=20 Ysw=0.999

 (a)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999

Ysw

P stk

N=16 Ylnk=0.999

N=16 Ylnk=0.9995

N=20 Ylnk=0.999

N=20 Ylnk=0.9995

 (b)

JCS&T Vol. 6 No. 1 April 2006

20

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ype

Ppetk

N=16, Ysw=0.999,
Ylnk=0.9995

N=16, Ysw=0.995,
Ylnk=0.9995

N=16, Ysw=0.991,
Ylnk=0.9995

N=20, Ysw=0.999,
Ylnk=0.9995

N=20, Ysw=0.995,
Ylnk=0.9995

N=20, Ysw=0.991,
Ylnk=0.9995

 (c)
Fig. 9. The probability of true killing error: (a) link, (b)

switch, (c) PE.

5. CONCLUSIONS
An effective fault diagnosis approach for reconfigurable
VLSI/WSI array processors is presented. The issue of
killing error in testing is addressed and the probability of
killing error for our diagnosis scheme is analyzed and
shown to be extremely low. The significance of this
approach is the ability to detect and locate the multiple
faults in switches, links, and PEs with low testing circuit
overhead, and to offer the good test quality in less
diagnosis time. It should be noted that our diagnosis
approach can be applied to other types of switching
networks easily. Moreover, the diagnosis concept presented
here can be extended with no difficulty to cope with a more
general fault model for the switch, which allows for
partially failed in a switch. In this paper, for the simplicity
of presentation, we employed the fault model described in
Section 2 to demonstrate our diagnosis idea.
Previously, most of the reconfiguration techniques assume
that the test has been performed and the faulty elements
have been identified exactly. The assumption of perfect
testing process is unrealistic. Errors in testing inevitably
exist and will affect the accuracy of predicted yield for
reconfigurable large area arrays. Hence, we need to
consider the effect of errors in testing on reconfiguration
process and final estimated yield. The phenomenon of
errors in testing will degrade the test quality and cause the
yield loss and the non-return profit for the manufacturers.
Therefore, it is imperative that we need to guarantee the
test quality of the diagnosis scheme developed. As can be
seen from the previous analysis, our diagnosis approach
can achieve the good quality of test with low-test time. The
proposed methodology can be applied to the reconfigurable
computing systems with reconfigurable array processors or
FPGA-based reconfigurable systems to enhance the system
yield and reliability.

6. REFERENCES
[1] H. Singh et al., “MorphoSys: An Integrated

Reconfigurable System for Data-Parallel and
Computation-Intensive Applications,” IEEE Trans.
On Computers, vol. 49, no. 5, pp. 465-481, May
2000.

[2] K. Bondalapati and V. K. Prasanna,
“Reconfigurable Computing Systems,” Proceedings

of the IEEE, vol. 90, no. 7, pp1201-1217, July 2002.
[3] R. Negrini, M. G. Sami and R. Stefanelli.

Fault-Tolerance through Reconfiguration of VLSI
and WSI Arrays. The MIT Press, 1989.

[4] L. E. LaForge, “Configuration of Locally Spared
Arrays in the Presence of Multiple Fault Types,”
IEEE Trans. on Computers, vol. 48, no. 4, pp.
398-416, Apr. 1999.

[5] M. Fukushi and S. Horiguchi, “A
Self-Reconfigurable Hardware Architecture for
Mesh Arrays Using Single/Double Vertical Track
Switches,” IEEE Trans. on Instrumentation and
Measurement, vol. 53, no. 2, pp. 357-367, April
2004.

[6] Y. H. Su, M Cutler and M. Wang, “Self-Diagnosis
of Failures in VLSI Tree Array Processors,” IEEE
Trans. On Computers, vol. 40, no. 11, pp.
1252-1257, Nov. 1991.

[7] D. M. Blough and A. Pelc, “Diagnosis and Repair
in Multiprocessor Systems,” IEEE Trans. on
Computers, vol. 42, no. 2, pp. 205-217, Feb. 1993.

[8] J. Salinas and F. Lombardi, “Diagnosis of
Reconfigurable Two-Dimensional arrays Using a
Scan Approach,” 6th annual IEEE Int’l Conf. on
Wafer Scale Integration, pp. 179-187, 1994.

[9] K. C. Wang and J. W. Lin, “Integrated Diagnosis
and Reconfiguration Process for Defect Tolerant
WSI Processor arrays,” 6th annual IEEE Int’l Conf.
on Wafer Scale Integration, pp. 198-207, 1994.

[10] S. Goldberg and S. J. Upadhyaya, “Utilizing Spares
in Multichip Modules for the Dual function of Fault
Coverage and Fault Diagnosis,” IEEE Int’l
Workshop on Defect and Fault Tolerance in VLSI
Systems, pp. 234-242, 1995.

[11] F. J. Meyer, F. Lombardi and J. Zhao, “Good
Processor Identification in Two-Dimensional
Grids,” IEEE Int’l Symposium on Defect and Fault
Tolerance in VLSI Systems, pp. 348-356, 1999.

[12] S. Goldberg, S. J. Upadhyaya and W. K. Fuchs,
“Recovery Schemes for Mesh Arrays Utilizing
Dedicated Spares,” IEEE Trans. on Reliability, vol.
53, no. 4, pp. 445-451, Dec. 2004.

[13] S. Y. Kuo, K. C. Wang, “Fault Diagnosis in
Reconfigurable VLSI and WSI Processor Arrays,”
Journal of VLSI Signal Processing 2, pp. 173-187,
1990.

[14] A. Jain, B. Mandava, J. Rajski and N. C. Rumin, “A
Fault-Tolerant Array Processor Designed for
Testability and Self-Reconfiguration,” IEEE
Journal of Solid-State Circuits, vol. 26, no. 5, May
1991.

[15] S. Rangarajan, D. Fussell, M. Malek, “Efficient
Fault Diagnosis of Switches in Wafer Arrays,” 4th
annual IEEE Int’l Conf. on Wafer Scale Integration,
pp. 341-351, 1992.

[16] Y. Y. Chen, C. H. Cheng and Y. C. Chou, “An
Effective Reconfiguration Process for
Fault-Tolerant VLSI/WSI Array Processors,”
EDCC-1, pp. 421-438, Oct. 1994.

[17] R. H. Williams, C. F. Hawkins, “Errors in Testing,”
Int’l Test Conf., pp. 1018-1027, 1990.

[18] K.J. Lee, M.A. Breuer, “A Universal Test Sequence
for CMOS Scan Registers,” IEEE Custom
Integrated Circuit Conf., pp. 28.5.1-28.5.4, 1990.

JCS&T Vol. 6 No. 1 April 2006

21

	r-a2: Received: Nov 2005. Accepted: Feb. 2006.

