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ABSTRACT 
Study deals with implementations of fixed-point division 
modules based on different algorithms on basis of Xilinx 
FPGAs. We show that our implementation of the non-
restoring algorithm is significantly faster and smaller than 
the 32-bit IP Core “Pipelined Divider” from Xilinx. For 
example, the speed of the 32-bit designed module is al-
most 245 MHz vs. 193 MHz from Xilinx divider. More-
over, high-speed parameterized modules are designed to 
provide arbitrary precision of the fixed-point division, for 
example, with 64-bit or 128-bit operands and large fixed-
point result. 
 
Keywords: high-precision computations, fixed-point divi-
sion, modular design, programmable logic, FPGA  

 
1. INTRODUCTION 

 
Nowadays Field Programmable Gate Arrays (FPGAs) are 
frequently used for complex System-on-Chip (SoC) de-
signs. They are oriented for the automotive control, on-
line data processing and a wide range of computational 
tasks. Division operation is used in these tasks very often, 
e.g., for computing the coordinates of an object or a point 
on a grid in real-time scale. Because the result of the divi-
sion operation in many cases is an approximate value, this 
can influence the solution and lead to the subsequent fault 
results. 
  
 Fixed-point arithmetic is often used for the com-
putations because of the cost reasons – floating point cal-
culations significantly increase the size of the design and 
make it more complex. But the existing solutions for the 
fixed-point division are bounded, e.g. the input and output 
widths of the modules are limited. Among the solutions in 
this field the Xilinx IP Core Divider is presented. This 
core has 32-bit input operands and can produce at most 
32-bit fractional remainder. These widths of the operands 
are not practical in many applications, which require 
higher precision during the calculations. Another problem 
of the standard Xilinx solution is that the divider module 
occupies a big area on the chip and is not a high-speed 
design. 

 
This paper focuses on implementation of high-

speed fixed-point division modules for FPGA. Implemen-
tations of different algorithms on Xilinx FPGA are inves-
tigated. Results for different precision of the implemented 
modules are analyzed and compared with the standard 
division core from Xilinx.  

 
This paper is organized as follows. Section 2 

gives the introduction into some standard division algo-
rithms and optimization techniques. Section 3 describes 
the implementation of the algorithms on Xilinx FPGA 
base. The results and discussion are presented in Sections 
3 and 4.  
 

2. FIXED-POINT DIVISION METHODS 
 

Division algorithms 
 
The task of the division is to compute the quotient 

0≥Ζ∈Q  and the remainder 0≥Ζ∈S  after division 

0≥∈ ZY  by 0>∈ ZD  such that Q=int(Y/D) and 

DQYS ⋅−= under the condition DS < . The division 
is a series of subtractions of the divisor from the dividend 
and from the partial remainder values.  

As it is widely known, the standard fixed-point 
algorithm follows a “paper-and-pencil” technique: every 
iteration it produces the fixed number of quotient bits. 
This involves the addition, multiplication and shift opera-
tions. Normally, the dividend is a 2n-bit integer value 
(e.g., denoted by )0 1 ... 22 12( yynynyY −− ) and divisor, 

quotient and remainder are n-bit values with 0>∈ Zn  
accordingly. In this study, positive (unsigned) values of 
the operands are assumed, which is not a considerable 
restriction for the results of this work. 

The most popular division algorithm is called a 
restoring algorithm described in, e.g., [1,6]. After each 
iteration the algorithm subtracts the divisor from the par-
tial remainder, and if the result is less than 0, the previous 
value must be restored. This leads to the restoring of the 
partial remainder on the different steps and is a drawback 
of this algorithm.  

The division operation in the restoring algorithm 
is done in n iterations and formally is written as follows: 
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After n iterations we have  
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The quotient after the division of 2n-bit number 
by an n-bit number can have more than n-bits. In this case 

the overflow occurs and the condition DnY 2<  must be 
checked before the division. 

The non-restoring algorithm is more practical: it 
avoids the restoration of the remainder allowing some 
extra computations in each iteration. This is done as fol-
lows: 
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Speed-up of the division operation 
 
Optimization of the division algorithms to speed-up the 
division operation is a laborious process. Nevertheless, 
some ways for this optimization exist. They are: 
1. replacement of the divisor by its inverse value and 

following multiplication by the divider; 
2. reducing the computation time of the partial remain-

der values speeding up the addition operations; 
3. decreasing the number of addition operations during 

the computation of the partial remainder; 
4. computing the quotient in residual number system 

(RNS). 
Except the first one, the above approaches are in fact the 
modifications of the traditional restoring and non-restoring 
division algorithms. 
 One can significantly quicken the computation 
of the division if it will be changed to the fast multiplica-
tion: replace the divisor by its inverse value and multiply 
the dividend by 1/D. Thus, the problem reduces to the 
effective determination of the value 1/D. Commonly, this 
task is solved by one of three methods: using Taylor's 
series, Newton-Raffson approximation or using the prop-
erties of the odd numbers [2,3]. The application of the 
inverse method is typical for floating-point implementa-
tion of the division and is commonly used in the micro-
processors. 
 A speed-up of the division operation is achieved 
by optimizing the computation of the partial remainder 
values. This is done using special constructions for the fast 
addition and carry propagation [2,4], e.g. matrix schemes 
that have a regular structure and are suitable for the im-
plementation in programmable logic. 
 The most popular methods for the speed-up of 
the division operation are the modifications of the tradi-
tional restoring and non-restoring algorithms. Among 
these modifications, the SRT algorithm is the most widely 
used [5-7]. The main idea of this method is to use limited 
comparisons to speed-up the selection of the quotient. 
Typically, the hardware implementations of the different 
forms of the SRT algorithm present the lowest area re-
quirements but, at the same time, the high latency is a 
drawback of these designs.  
 The i-th iteration in the SRT algorithm is ex-
pressed as 
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In Equations (4) and (5) the quotient and re-
mainder are presented in the non-binary number system; in 
this situation the values are {-1, 0, 1}. After all iterations 
if the remainder is negative, the remainder and the quo-
tient have to be corrected. The last step in the algorithm is 
the conversion of the result to the binary system {0,1}, 
which can be done on the fly. It is necessary to mention 

that the computations in the residual number systems have 
a higher efficiency, e.g., as for the Booth multiplication 
algorithm [2,4]. At the same time, utilization of such tech-
nique leads to the complex design of the division modules: 
in particular, the logic that determines the operation type 
in each iteration. For this purpose different memories and 
look-up tables are used. Anyway, the speed-up has a 
higher priority and that is one of the main reasons why this 
technique is frequently used.  
 
Fixed-point division core from Xilinx 
 
Xilinx produces one of the standard solutions of the fixed-
point dividers. It is a parameterized IP Core “Pipelined 
Divider” with the following features [8]: 
- drop-in module for all Virtex, Virtex-II, Virtex-II 

Pro, Spartan-3, Virtex-4 etc. FPGAs; 
- the dividend value can range from 1 to 32 bits; 
- the divisor value can range from 3 to 32 bits; 
- produces the quotient with integer or fractional re-

mainder; 
- the remainder value in fractional mode can range 

from 3 to 32 bits. 
Main properties of this IP Core are given in Ta-

ble 1. They are summarized from the implementations of 
the 32-bit IP Core on the Virtex-II Pro Xilinx FPGA. This 
core has obvious advantages like fully pipelined architec-
ture, 32-bit operand widths. Nevertheless, it has some 
drawbacks: a large area occupied by the design and the 
limited widths of the operands and the fixed-point result of 
the division. The latter reduces the module’s application 
field, i.e. if there is a need to increase the precision of the 
result one has to find some ways to apply different scaling 
techniques for the operands. This makes the utilization of 
the standard IP Core not universal for all tasks. 
 
Table 1 Properties of the 32-bit “Pipelined Divider v.3.0” 
IP Core from Xilinx 

Number of bits in remainder
Property 

8 16 32 
Number of slices 2247 2742 3843 
Number of Flip-Flops 4020 4904 6864 
Number of look-up tables  1400 1680 2240 

Fmax, MHz 204,3 201,6 193,1 
 
Related work 
 
Studies of efficient implementations of the integer division 
algorithms in the hardware are carried out for a long time. 
Works in field of semi-custom VLSI designs are presented 
in [1,6]. Complete correctness proofs of the RNS division 
algorithms are given in [1], whereas the first implementa-
tion in that study cannot be utilized for the computations 
of the high number of remainder bits and second imple-
mentation uses the weighted fractional numbers that re-
duces the overall performance. Another solution of the on-
line integer divider is given in [9], and the implementation 
of the SRT algorithm is given in [5]. Nevertheless, some 
place for the improvement of the special-purpose division 
hardware is still left, e.g., implementing the division with-
out additional pre-scaling as in [9]. In opposite to the pre-
vious work the current study is directed for fast computa-
tion of the high-precision integer division (for big remain-
ders with 64, 128 or more bits) and possible optimization 
of the logic resources of the FPGAs.    
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3. IMPLEMENTATION OF HIGH-SPEED  
DIVISION MODULES 

 
Fixed-point division modules on FPGA 
 
The restoring, non-restoring and SRT division algorithms 
were selected for the implementation on the FPGA basis. 
All algorithms were analyzed in order to define the com-
putational structure and were coded in VHDL. This coding 
was done in such a way that no special internal construc-
tions of Xilinx FPGAs like adders, multipliers, look-up 
tables etc. were utilized explicitly. Such type of designs 
can be used in non-Xilinx programmable logic devices 
like Altera.  
 All designs have the same interface including 
input busses of the n-bit wide divided and m-bit wide divi-
sor, output r-bit wide quotient and q-bit wide remainder 
busses and a control bus. Signals on the control bus are 
“load”, “start”, “done” and “error”. The designs are fully 
synchronous and parameterized: all widths are declared as 
generic parameters of the VHDL modules. This parame-
terization allows selecting an arbitrary large bit-widths and 
an arbitrary precision of the division result, respectively. 
In addition, the number of clock cycles required to com-
pute the remainder is directly proportional to the number 
of desired bits plus number of initialization cycles. 
 In fact, the implementation of the modules is 
direct coding of the algorithms in VHDL. Much attention 
was paid to the analysis of all algorithms in order to define 
the effective computational structures and to pipeline these 
structures. In each module the increase of the precision 
(number of remainder bits) was achieved not by the ex-
pansion of the dividend width but using the certain num-
ber of iterations of the division algorithm. This approach 
has an advantage over the increasing sizes of the registers, 
adders and multipliers.  
 Besides the pipelining, big improvement in 
speed of the designs was achieved using the Xilinx soft-
ware-specific timing and area constraints. Detailed selec-
tion of the internal nets for the application of timing con-
straints had significant impact on the design speed. The 
same was with the area constraints: all designs were under 
“hand-based” optimization. All division modules were 
implemented on Virtex-II Pro FPGAs using the Xilinx ISE 
6.3i software packet. All steps, e.g. XST synthesis, place-
and-route, were executed with the highest optimization 
settings, that had significant impact on the design speed 
when the precision of the remainder was more than 64 
bits. 

Verification of the implemented division mod-
ules was done using the ModelSIM XE 5.8 software. Each 
design was simulated using the prepared test-bench with 
more than several hundreds different test combinations of 
the input operands. Results of the each division operation 
were saved to intermediate file and checked using script 
with the predefined test data. These simulations were car-
ried out after XST synthesis in order to check the logic, 
and after the place-and-route operation in order to check 
the delays and correctness of the routed design.      
  
Implementation results  
 
The main aim of the study was to implement the fixed-
point division modules with an arbitrary (unbounded) 
remainder precision in FPGA, to optimize and to test 
them. Moreover, the precision must exceed the precision 
of the standard IP Core “Pipelined Divider” from Xilinx. 

The parameterized designs were implemented on Virtex-II 
Pro Xilinx FPGAs with output remainder widths from q=8 
to q=128 bits for different widths of the input operands. 
The complete set of statistical information was gathered 
for detailed analyses. The following parameters of the 
designs were selected: the maximum design frequency, the 
number of utilized slices, the number of look-up tables, 
the number of flip-flops, input-output ports etc. All these 
data was gathered for different combinations (n,m,r,q) of 
input and output widths of the operands. 
 The results for the 32-bit input operands of the 
division modules compared to the 32-bit IP Core “Pipe-
lined Divider” from Xilinx are presented in Figures 1-3. 
The implementation of non-restoring algorithm signifi-
cantly exceeds the Xilinx division core in speed and has 
noticeably smaller size.   

 
Figure 1. Frequency of the design vs. remainder widths. 
All inputs are 32-bit wide. 

 

 
Figure 2. Number of utilized slices vs. remainder width. 
All inputs are 32-bit wide. 

 

 
Figure 3. Number of utilized Flip-Flops vs. remainder 
width. All inputs are 32-bit wide. 
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The experimental results for the high-precision 
designs are combined in Tables 2 – 4. The frequency of 
each module is presented for different sizes of the input 
operands and the precision of the result. Also the time of 
computation is given for each case. For the IP Core from 
Xilinx number of cycles for the division is equal to the 

3++= qnN , whereas for designs in this study equal to 
1++≤ qnN for all algorithms, because number of cy-

cles, required for the division depends on the input num-
bers (it is faster for the numbers that can be expressed with 
the number of bits smaller than n and m).  

The presented results clearly show the superior-
ity of the non-restoring algorithm for the high-speed 
applications that require the precise division results. It has 
to be mentioned, that the design frequency is changed 
slightly with the increase of the widths n and m of the 
input operands.  
 
Table 2 Frequency (in MHz) / Time of computation (in ns) 
of different division modules with 32-bit wide input oper-
ands 
Design \ 
Remain-
der, bits 

8 16 32 64 128 

Xilinx IP 
Core 

204,3 
/ 211 

201,6 
/ 253 

193,1  
/ 350 - - 

SRT 
algorithm 

78,1   
/ 525 

77,2   
/ 635 

76,1    
/ 854 

72,4   
/ 1340 

64,3   
/ 2504 

Restoring 
algorithm 

126,6 
/ 324 

120,9 
/ 405 

108,8 
/ 597 

89,1 / 
1089 

81,2   
/ 1983 

Non-
restoring 
algorithm 

248,6 
/ 165 

247,4 
/ 198 

244,9  
/ 265 

193,1 
/ 502 

180,3 
/ 893 

 

Table 3 Frequency (in MHz) / Time of computation (in ns) 
of different division modules with 64-bit wide input oper-
ands 

Design \ Remainder, bits 32 64 128 
Xilinx IP Core - - - 
SRT algorithm 62,5    

/ 1552 
61,8    

/ 2087 
60,5    

/ 3190 
Restoring algorithm 75,3    

/ 1288 
57,8    

/ 2232 
48,4    

/ 3988 
Non-restoring algorithm 173,6  

/ 559 
160,3  
/ 805 

157,6    
/ 1225 

 

Table 4 Frequency (in MHz) / Time of computation (in ns) 
of different division modules with 128-bit wide input op-
erands 

Design \ Remainder, bits 32 64 128 
Xilinx IP Core - - - 
SRT algorithm 47,9    

/ 3361 
47,1    

/ 4098 
46,2    

/ 5563 
Restoring algorithm 42,8    

/ 3762 
38,9    

/ 4961 
36,6    

/ 7022 
Non-restoring algorithm 92,2    

/ 1746 
89,9    

/ 2147 
86,5    

/ 2971 
 

4. CONCLUSION 
 
A lot of computational tasks implemented in programma-
ble logic use the fixed-point division operation, whose 
preciseness often has to be extended. The standard IP Core 
“Pipelined Divider” from Xilinx has a limitation – the 
widths of the operands and precision of the result can be at 
most 32 bits. The detailed study of different division algo-
rithms has shown the advantages of the implementation of 
the non-restoring algorithm versus other ones. Moreover, 
our design is completely parameterized and there are no 
restrictions for the widths of the input operands and the 
result of division. For the 32-bit wide dividend, divider, 
quotient and remainder the division module with non-
restoring algorithm has the clock frequency 245 MHz vs. 
193 MHz of IP Core from Xilinx on Virtex-II Pro FPGA. 
Our fixed-point division modules were tested for the large 
widths of input operands, e.g. 64-and 128-bit, and for the 
different precision values of the result.   
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