

Implementation of high-speed fixed-point dividers on FPGA

Nikolay Sorokin
nus@mail.khstu.ru

Pacific National University,
Tikhookeanskaya str., 136, Khabarovsk, 680035, Russia

ABSTRACT
Study deals with implementations of fixed-point division
modules based on different algorithms on basis of Xilinx
FPGAs. We show that our implementation of the non-
restoring algorithm is significantly faster and smaller than
the 32-bit IP Core “Pipelined Divider” from Xilinx. For
example, the speed of the 32-bit designed module is al-
most 245 MHz vs. 193 MHz from Xilinx divider. More-
over, high-speed parameterized modules are designed to
provide arbitrary precision of the fixed-point division, for
example, with 64-bit or 128-bit operands and large fixed-
point result.

Keywords: high-precision computations, fixed-point divi-
sion, modular design, programmable logic, FPGA

1. INTRODUCTION

Nowadays Field Programmable Gate Arrays (FPGAs) are
frequently used for complex System-on-Chip (SoC) de-
signs. They are oriented for the automotive control, on-
line data processing and a wide range of computational
tasks. Division operation is used in these tasks very often,
e.g., for computing the coordinates of an object or a point
on a grid in real-time scale. Because the result of the divi-
sion operation in many cases is an approximate value, this
can influence the solution and lead to the subsequent fault
results.

 Fixed-point arithmetic is often used for the com-
putations because of the cost reasons – floating point cal-
culations significantly increase the size of the design and
make it more complex. But the existing solutions for the
fixed-point division are bounded, e.g. the input and output
widths of the modules are limited. Among the solutions in
this field the Xilinx IP Core Divider is presented. This
core has 32-bit input operands and can produce at most
32-bit fractional remainder. These widths of the operands
are not practical in many applications, which require
higher precision during the calculations. Another problem
of the standard Xilinx solution is that the divider module
occupies a big area on the chip and is not a high-speed
design.

This paper focuses on implementation of high-

speed fixed-point division modules for FPGA. Implemen-
tations of different algorithms on Xilinx FPGA are inves-
tigated. Results for different precision of the implemented
modules are analyzed and compared with the standard
division core from Xilinx.

This paper is organized as follows. Section 2

gives the introduction into some standard division algo-
rithms and optimization techniques. Section 3 describes
the implementation of the algorithms on Xilinx FPGA
base. The results and discussion are presented in Sections
3 and 4.

2. FIXED-POINT DIVISION METHODS

Division algorithms

The task of the division is to compute the quotient

0≥Ζ∈Q and the remainder 0≥Ζ∈S after division

0≥∈ ZY by 0>∈ ZD such that Q=int(Y/D) and

DQYS ⋅−= under the condition DS < . The division
is a series of subtractions of the divisor from the dividend
and from the partial remainder values.

As it is widely known, the standard fixed-point
algorithm follows a “paper-and-pencil” technique: every
iteration it produces the fixed number of quotient bits.
This involves the addition, multiplication and shift opera-
tions. Normally, the dividend is a 2n-bit integer value
(e.g., denoted by)0 1 ... 22 12(yynynyY −−) and divisor,

quotient and remainder are n-bit values with 0>∈ Zn
accordingly. In this study, positive (unsigned) values of
the operands are assumed, which is not a considerable
restriction for the results of this work.

The most popular division algorithm is called a
restoring algorithm described in, e.g., [1,6]. After each
iteration the algorithm subtracts the divisor from the par-
tial remainder, and if the result is less than 0, the previous
value must be restored. This leads to the restoring of the
partial remainder on the different steps and is a drawback
of this algorithm.

The division operation in the restoring algorithm
is done in n iterations and formally is written as follows:

)2()1(2)(Dn
inqiSiS −−

−
= , (1)

with YS =
)0(, SnnS 2)(

=

and
⎪⎩

⎪
⎨
⎧

<

≥
=−

0212 if ,0

0212 if ,1

D)n-)(i-S(

D)n-)(i-S(
inq .

After n iterations we have

.2)]([2

)2()0(2)(

SnDQYn
DnQSnnS

=×−

=−=
 (2)

The quotient after the division of 2n-bit number
by an n-bit number can have more than n-bits. In this case

the overflow occurs and the condition DnY 2< must be
checked before the division.

The non-restoring algorithm is more practical: it
avoids the restoration of the remainder allowing some
extra computations in each iteration. This is done as fol-
lows:

⎪⎩

⎪
⎨
⎧

<−+
−

≥−−
−

=
012if ,)2()1(2

012if),2()1(2)(
)(i-S Dn

inqiS

)(i-S Dn
inqiSiS , (3)

JCS&T Vol. 6 No. 1 April 2006

8

with YS =
)0(, SnnS 2)(

=

and
⎪⎩

⎪
⎨
⎧

<

≥
=−

01)-(i2S if ,0

01)-(i2S if ,1
inq .

Speed-up of the division operation

Optimization of the division algorithms to speed-up the
division operation is a laborious process. Nevertheless,
some ways for this optimization exist. They are:
1. replacement of the divisor by its inverse value and

following multiplication by the divider;
2. reducing the computation time of the partial remain-

der values speeding up the addition operations;
3. decreasing the number of addition operations during

the computation of the partial remainder;
4. computing the quotient in residual number system

(RNS).
Except the first one, the above approaches are in fact the
modifications of the traditional restoring and non-restoring
division algorithms.
 One can significantly quicken the computation
of the division if it will be changed to the fast multiplica-
tion: replace the divisor by its inverse value and multiply
the dividend by 1/D. Thus, the problem reduces to the
effective determination of the value 1/D. Commonly, this
task is solved by one of three methods: using Taylor's
series, Newton-Raffson approximation or using the prop-
erties of the odd numbers [2,3]. The application of the
inverse method is typical for floating-point implementa-
tion of the division and is commonly used in the micro-
processors.
 A speed-up of the division operation is achieved
by optimizing the computation of the partial remainder
values. This is done using special constructions for the fast
addition and carry propagation [2,4], e.g. matrix schemes
that have a regular structure and are suitable for the im-
plementation in programmable logic.
 The most popular methods for the speed-up of
the division operation are the modifications of the tradi-
tional restoring and non-restoring algorithms. Among
these modifications, the SRT algorithm is the most widely
used [5-7]. The main idea of this method is to use limited
comparisons to speed-up the selection of the quotient.
Typically, the hardware implementations of the different
forms of the SRT algorithm present the lowest area re-
quirements but, at the same time, the high latency is a
drawback of these designs.
 The i-th iteration in the SRT algorithm is ex-
pressed as

⎪
⎪
⎩

⎪⎪
⎨

⎧

−<
−

−

<
−

≤−

≥
−

=

DiS

DiSD

DiS

iq

)1(2if ,1

)1(2if ,0

)1(2if,1

 (4)

DiqiSiS −
−

=
)1(2)(. (5)

In Equations (4) and (5) the quotient and re-
mainder are presented in the non-binary number system; in
this situation the values are {-1, 0, 1}. After all iterations
if the remainder is negative, the remainder and the quo-
tient have to be corrected. The last step in the algorithm is
the conversion of the result to the binary system {0,1},
which can be done on the fly. It is necessary to mention

that the computations in the residual number systems have
a higher efficiency, e.g., as for the Booth multiplication
algorithm [2,4]. At the same time, utilization of such tech-
nique leads to the complex design of the division modules:
in particular, the logic that determines the operation type
in each iteration. For this purpose different memories and
look-up tables are used. Anyway, the speed-up has a
higher priority and that is one of the main reasons why this
technique is frequently used.

Fixed-point division core from Xilinx

Xilinx produces one of the standard solutions of the fixed-
point dividers. It is a parameterized IP Core “Pipelined
Divider” with the following features [8]:
- drop-in module for all Virtex, Virtex-II, Virtex-II

Pro, Spartan-3, Virtex-4 etc. FPGAs;
- the dividend value can range from 1 to 32 bits;
- the divisor value can range from 3 to 32 bits;
- produces the quotient with integer or fractional re-

mainder;
- the remainder value in fractional mode can range

from 3 to 32 bits.
Main properties of this IP Core are given in Ta-

ble 1. They are summarized from the implementations of
the 32-bit IP Core on the Virtex-II Pro Xilinx FPGA. This
core has obvious advantages like fully pipelined architec-
ture, 32-bit operand widths. Nevertheless, it has some
drawbacks: a large area occupied by the design and the
limited widths of the operands and the fixed-point result of
the division. The latter reduces the module’s application
field, i.e. if there is a need to increase the precision of the
result one has to find some ways to apply different scaling
techniques for the operands. This makes the utilization of
the standard IP Core not universal for all tasks.

Table 1 Properties of the 32-bit “Pipelined Divider v.3.0”
IP Core from Xilinx

Number of bits in remainder
Property

8 16 32
Number of slices 2247 2742 3843
Number of Flip-Flops 4020 4904 6864
Number of look-up tables 1400 1680 2240

Fmax, MHz 204,3 201,6 193,1

Related work

Studies of efficient implementations of the integer division
algorithms in the hardware are carried out for a long time.
Works in field of semi-custom VLSI designs are presented
in [1,6]. Complete correctness proofs of the RNS division
algorithms are given in [1], whereas the first implementa-
tion in that study cannot be utilized for the computations
of the high number of remainder bits and second imple-
mentation uses the weighted fractional numbers that re-
duces the overall performance. Another solution of the on-
line integer divider is given in [9], and the implementation
of the SRT algorithm is given in [5]. Nevertheless, some
place for the improvement of the special-purpose division
hardware is still left, e.g., implementing the division with-
out additional pre-scaling as in [9]. In opposite to the pre-
vious work the current study is directed for fast computa-
tion of the high-precision integer division (for big remain-
ders with 64, 128 or more bits) and possible optimization
of the logic resources of the FPGAs.

JCS&T Vol. 6 No. 1 April 2006

9

3. IMPLEMENTATION OF HIGH-SPEED
DIVISION MODULES

Fixed-point division modules on FPGA

The restoring, non-restoring and SRT division algorithms
were selected for the implementation on the FPGA basis.
All algorithms were analyzed in order to define the com-
putational structure and were coded in VHDL. This coding
was done in such a way that no special internal construc-
tions of Xilinx FPGAs like adders, multipliers, look-up
tables etc. were utilized explicitly. Such type of designs
can be used in non-Xilinx programmable logic devices
like Altera.
 All designs have the same interface including
input busses of the n-bit wide divided and m-bit wide divi-
sor, output r-bit wide quotient and q-bit wide remainder
busses and a control bus. Signals on the control bus are
“load”, “start”, “done” and “error”. The designs are fully
synchronous and parameterized: all widths are declared as
generic parameters of the VHDL modules. This parame-
terization allows selecting an arbitrary large bit-widths and
an arbitrary precision of the division result, respectively.
In addition, the number of clock cycles required to com-
pute the remainder is directly proportional to the number
of desired bits plus number of initialization cycles.
 In fact, the implementation of the modules is
direct coding of the algorithms in VHDL. Much attention
was paid to the analysis of all algorithms in order to define
the effective computational structures and to pipeline these
structures. In each module the increase of the precision
(number of remainder bits) was achieved not by the ex-
pansion of the dividend width but using the certain num-
ber of iterations of the division algorithm. This approach
has an advantage over the increasing sizes of the registers,
adders and multipliers.
 Besides the pipelining, big improvement in
speed of the designs was achieved using the Xilinx soft-
ware-specific timing and area constraints. Detailed selec-
tion of the internal nets for the application of timing con-
straints had significant impact on the design speed. The
same was with the area constraints: all designs were under
“hand-based” optimization. All division modules were
implemented on Virtex-II Pro FPGAs using the Xilinx ISE
6.3i software packet. All steps, e.g. XST synthesis, place-
and-route, were executed with the highest optimization
settings, that had significant impact on the design speed
when the precision of the remainder was more than 64
bits.

Verification of the implemented division mod-
ules was done using the ModelSIM XE 5.8 software. Each
design was simulated using the prepared test-bench with
more than several hundreds different test combinations of
the input operands. Results of the each division operation
were saved to intermediate file and checked using script
with the predefined test data. These simulations were car-
ried out after XST synthesis in order to check the logic,
and after the place-and-route operation in order to check
the delays and correctness of the routed design.

Implementation results

The main aim of the study was to implement the fixed-
point division modules with an arbitrary (unbounded)
remainder precision in FPGA, to optimize and to test
them. Moreover, the precision must exceed the precision
of the standard IP Core “Pipelined Divider” from Xilinx.

The parameterized designs were implemented on Virtex-II
Pro Xilinx FPGAs with output remainder widths from q=8
to q=128 bits for different widths of the input operands.
The complete set of statistical information was gathered
for detailed analyses. The following parameters of the
designs were selected: the maximum design frequency, the
number of utilized slices, the number of look-up tables,
the number of flip-flops, input-output ports etc. All these
data was gathered for different combinations (n,m,r,q) of
input and output widths of the operands.
 The results for the 32-bit input operands of the
division modules compared to the 32-bit IP Core “Pipe-
lined Divider” from Xilinx are presented in Figures 1-3.
The implementation of non-restoring algorithm signifi-
cantly exceeds the Xilinx division core in speed and has
noticeably smaller size.

Figure 1. Frequency of the design vs. remainder widths.
All inputs are 32-bit wide.

Figure 2. Number of utilized slices vs. remainder width.
All inputs are 32-bit wide.

Figure 3. Number of utilized Flip-Flops vs. remainder
width. All inputs are 32-bit wide.

JCS&T Vol. 6 No. 1 April 2006

10

The experimental results for the high-precision
designs are combined in Tables 2 – 4. The frequency of
each module is presented for different sizes of the input
operands and the precision of the result. Also the time of
computation is given for each case. For the IP Core from
Xilinx number of cycles for the division is equal to the

3++= qnN , whereas for designs in this study equal to
1++≤ qnN for all algorithms, because number of cy-

cles, required for the division depends on the input num-
bers (it is faster for the numbers that can be expressed with
the number of bits smaller than n and m).

The presented results clearly show the superior-
ity of the non-restoring algorithm for the high-speed
applications that require the precise division results. It has
to be mentioned, that the design frequency is changed
slightly with the increase of the widths n and m of the
input operands.

Table 2 Frequency (in MHz) / Time of computation (in ns)
of different division modules with 32-bit wide input oper-
ands
Design \
Remain-
der, bits

8 16 32 64 128

Xilinx IP
Core

204,3
/ 211

201,6
/ 253

193,1
/ 350 - -

SRT
algorithm

78,1
/ 525

77,2
/ 635

76,1
/ 854

72,4
/ 1340

64,3
/ 2504

Restoring
algorithm

126,6
/ 324

120,9
/ 405

108,8
/ 597

89,1 /
1089

81,2
/ 1983

Non-
restoring
algorithm

248,6
/ 165

247,4
/ 198

244,9
/ 265

193,1
/ 502

180,3
/ 893

Table 3 Frequency (in MHz) / Time of computation (in ns)
of different division modules with 64-bit wide input oper-
ands

Design \ Remainder, bits 32 64 128
Xilinx IP Core - - -
SRT algorithm 62,5

/ 1552
61,8

/ 2087
60,5

/ 3190
Restoring algorithm 75,3

/ 1288
57,8

/ 2232
48,4

/ 3988
Non-restoring algorithm 173,6

/ 559
160,3
/ 805

157,6
/ 1225

Table 4 Frequency (in MHz) / Time of computation (in ns)
of different division modules with 128-bit wide input op-
erands

Design \ Remainder, bits 32 64 128
Xilinx IP Core - - -
SRT algorithm 47,9

/ 3361
47,1

/ 4098
46,2

/ 5563
Restoring algorithm 42,8

/ 3762
38,9

/ 4961
36,6

/ 7022
Non-restoring algorithm 92,2

/ 1746
89,9

/ 2147
86,5

/ 2971

4. CONCLUSION

A lot of computational tasks implemented in programma-
ble logic use the fixed-point division operation, whose
preciseness often has to be extended. The standard IP Core
“Pipelined Divider” from Xilinx has a limitation – the
widths of the operands and precision of the result can be at
most 32 bits. The detailed study of different division algo-
rithms has shown the advantages of the implementation of
the non-restoring algorithm versus other ones. Moreover,
our design is completely parameterized and there are no
restrictions for the widths of the input operands and the
result of division. For the 32-bit wide dividend, divider,
quotient and remainder the division module with non-
restoring algorithm has the clock frequency 245 MHz vs.
193 MHz of IP Core from Xilinx on Virtex-II Pro FPGA.
Our fixed-point division modules were tested for the large
widths of input operands, e.g. 64-and 128-bit, and for the
different precision values of the result.

5. REFERENCES

1. A.A. Hiasat, H.S. Abdel-Aty-Zohdy, “Semi-Custom

VLSI Design and Implementation of a New Efficient
RNS Division Algorithm”, The Computer Journal,
Vol. 42, No. 3, 1999, pp. 232-240.

2. S.M. Mueller, W.J. Paul, Computer Architecture
Complexity and Correctness: Springer-Verlag, 2000.

3. Parhami Behrooz, Computer Arithmetic: Algorithms
and Hardware Designs, Oxford University Press:
New York, 2000.

4. W.J. Paul, P.-M. Seidel, “To Booth or not to Booth”,
Integration, the VLSI journal, Vol. 32, No. 1-3, 2002,
pp. 5-40.

5. D.L. Harris, S.F. Oberman, M.A. Horowitz, “SRT
Division Architectures and Implementations”, Pro-
ceedings of 13th IEEE International Symposium on
Computer Arithmetic, 1997, pp. 18-25.

6. M.D. Ercegovac, T. Lang, Division and Square-Root
Algorithms: Digit-Recurrence Algorithms and Im-
plementations. – Norwell, MA: Kluwer Academic
Publishers, 1994.

7. S.F. Oberman, M. Flynn, “Division algorithms and
implementations”, IEEE Transactions on Computers.
Vol. 46, No. 8, 1997. pp. 833–854.

8. Xilinx Inc. Pipelined Divider V3. Product Specifica-
tion. 2004.

9. A.F. Tenca, M.D. Ercegovac, “On the Design of
High-Radix On-Line Division for Long Precision”,
Proceedings of the 14th IEEE Symposium on Com-
puter Arithmetic, 1999, pp. 44-51.

JCS&T Vol. 6 No. 1 April 2006

11

	r-a2: Received: Nov 2005. Accepted: Feb. 2006.

