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Abstract

The Ant Colony Optimization (ACO) metaheuristic
is a bio-inspired approach for hard combinatorial op-
timization problems for stationary and non-stationary
environments. In the ACO metaheuristic, a colony of
artificial ants cooperate for finding high quality solu-
tions in a reasonable time. An interesting example of
a non-stationary combinatorial optimization problem
is the Multiple Elevators Problem (MEP) which con-
sists in finding a sequence of movements for each ele-
vator to perform in a building so that to minimize, for
instance, the users waiting average time. Events like
the arrival of one new user to the elevator queue or
the fault of one elevator dynamically produce changes
of state in this problem. A subclass of MEP is the
the so called Single Elevator Problem (SEP). In this
work, we propose the design of an ACO model for
the SEP that can be implemented as an Ant Colony
System (ACS).Keywords:Ant Colony Optimization,
Single Elevator Problem, Non-stationary Problems,
Ant Colony System design.

1 Introduction

The Ant Colony Optimization metaheuristic
(Dorigo et al. [7]) is a bio-inspired approach for hard
combinatorial optimization problems for stationary
and non-stationary environments. ACO algorithms,
that is, algorithms that are designed according to
the principles of the ACO metaheuristic are essen-
tially approximation algorithms which are capable
of reaching good quality solution (some time the
optimal one) at a very low computational cost. The
design of ACO algorithms is in general inspired by
the behavior of some ant colonies species which are

able to find the shortest path from the nest to the food
source. Some of these ant colonies make use of an
indirect communication approach, calledstigmergy
consisting in laying a pheromone trail on the ground.
More specifically, ant algorithms involve a colony
of artifical ants (or agents) working cooperatively
and depositing artificial pheromone trail in order
to share the search experience with the rest of the
colony. The artificial ants are independent processes
the stochastically and iteratively construct solutions
for the problem at hand regarding: (i) heuristic
information about the problem, if available, and (ii)
the pheromone trail, which changes dynamically
according to the search experience of the whole
colony.

The Multiple Elevators Problem (MEP) is a non-
stationary combinatorial optimization problem which
consists in finding a sequences of movements for a
set of elevators in a particular building in order to
minimize the Users Average Waiting Time. It is non-
stationary since the search space changes as the al-
gorithm is processing toward the optimum. Typical
events in this kind of environment, e.g., arrival of a
new user or an elevator broken produce changes that
modify the problem instance as can be found in many
non-stationary problems. The study of MEP is par-
ticularly interesting when considering some similar
problems of the real world, e.g., industrial processes
involving sensors to detect changes in the environ-
ment. These changes force a continuous adaptation
of the used algorithms for solving non-stationary pro-
blems.

In this work we present an ACO model for the
Single Elevator Problem (SEP). The ACO model pro-
posed is represented by an ACS, a particular instance
of the class of ACO algorithms. A solution for SEP
is a sequence of visits that the elevator must follow
in order to minimize the Average Waiting Time of the
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users waiting for service at any floor of the building.

The formulation for SEP is based on the work of
Torres [8] which applies an evolutionary approach
and considers a static configuration when designing
the simulation model of the elevator.

2 The Multiple Elevators Prob-
lem

The general formulation of the MEP can be stated as
follows: a system with multiple elevators consists of
m elevators in a building ofn floors where the users,
i.e., people that need to travel from one floor to any
other of the building, call for the elevators at differ-
ent times. An elevator call can be generated at any
floor of the building as well as from the elevator it-
self, e.g., go to a particular floor, open the door, stop
the elevator, etc. Therefore, each elevator should exe-
cute an efficient sequence of movements (of lengthk)
that minimizes, for instance, the users average waiting
time, the users average traveling time, or the number
of users transported during a given elapsed time.

Clearly, this is a dynamic problem, since after a
period of time different changes in the environment
could be observed: number of user calls, number of
working elevators, changes on the priorities for vis-
iting certain floors, etc. Therefore, some changes
should be applied in the sequence of visits to each
floor performed by each elevator.

Previous works on MEP have focused, for instan-
ce, on the construction of the controller itself, dif-
ferent parameters for an elevator system, and re-
optimization. For example, the construction of con-
trollers itself, Ho et al. [5] propose a combination
of Petri Nets with Neural Networks to learn the best
possible scheduling policy, Kojima et al. [12] apply
ADN-Computation to minimize the waiting times.
More recently, some evolutionary approaches have
been proposed, e.g., Markon et al. [2] developed a
Genetic Network Programming to evolve a controler
for a multiple elevator system. Other approaches ap-
ply fuzzy controllers, expert systems, neural networks
and several combinations of them [1, 4, 5, 6]. With
respect to the techniques towards to the optimization
of certain parameters for a controller, it is assumed
that a control unit takes into account a number of pa-
rameter values to make the more appropriate decision
about which elevator should be assigned when the ele-
vators are called. Accordingly, the objective in this
context is determine the best parameter values in or-
der to optimize a number of criteria, e.g., minimiza-
tion of waiting times, reduction of the crowding fac-
tor, minimization of the riding time, etc. In this di-
rection, Fujino et al. [11, 3] show the application of
genetic algorithms to find the best parameter setting
used in the controller for a multiple elevator system.

In the re-optimization approach, Friese et al. [10]
shows a set of re-optimization algorithms for a con-
strained elevator system where two models, one sta-
tionary and other non-stationary, are tested under dif-
ferent assignation and scheduling policies.

2.1 The Single Elevator Problem

The Single Elevator Problem (SEP) is a subclass of
the multiple elevators problem. In this case, we have a
building withn floors and only one elevator (m = 1),
where the objective is to minimize the users average
waiting time. The elevator in the system must follow
a sequence of moves. On each visited floor, the eleva-
tor should process as many as possible requirements
while minimizing the users waiting time.

In this work we adopt the model for a single eleva-
tor problem proposed in Torres [8]: (i) the sequence of
visits involves a sequence a integer number represen-
ting one of the possible floors of the building, (ii) the
elevator stop for service in each floor in which exists
a user that made a call to the same elevator destina-
tion floor, (iii) a static configuration is considered for
the calls to the elevator. In addition, only one tempo-
ral list of calls exists in order to produce the respective
sequence of visits to the building floors. The last com-
ponent of the model is (iv), the objective function to
evaluate the sequence of visits proposed.

a. Problem Formulation

In the SEP, the elevator must visit the different
building floors by following a sequence of visits
s =< p1, p2, · · · , pk > of lengthk which can be con-
sidered as a list of integer numbers representing one
of then possible floors where two consecutive num-
bers must be different (avoid to go to the same cur-
rent floor in the next visit). The first number of the
sequence,p1, correspond to the initial floor, i.e., the
floor where the elevator will start to execute the se-
quence of visits given by a particular solution. During
the trip from on floor to the next one as indicated in
the sequence, the elevator will stop in all intermediate
floors to service those users going to the destination
floor as the elevator capacity is under the maximum
allowed (Cmax).

For example, Figure 1 shows a possible sequence
of visits of lengthk = 8. The elevator starts its ride
from the second floor, then execute the first move to-
wards to the third floor. Later it continues to the5th

and6th floors until completing the whole trip by mak-
ing k−1 = 7 moves to finally arrive to the10th floor.

2 3 5 6 4 3 6 10

1 2 3 4 5 6 7 8

Figure 1: A sequence of visits of lengthk = 8, i.e.,
k − 1 = 7 moves.
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To find the sequence of visits which minimizes the
users average waiting time, the following information
about the problem is used: (i)µi(s) , the accumulated
users waiting time at floori; (ii) µij(s), the average
waiting time of userj at floorj, and (iii) γi, the num-
ber of users making a call on floori.

Then, the problem formulation is equivalent to
find the sequence which minimizes the following ob-
jective function:

f(s) =
1

n

n∑

i=1

µi(s) (1)

where:

µi(s) =
1

γi

γi∑

j=1

µij(s) (2)

b. Instances of the SEP as a combinatorial problem

As a combinatorial optimization problem, the SEP
can be defined as:

π = (S, f, Ω) (3)

whereS is the set of all candidates solutions, i.e.,
possible sequences of visits of lengthk; f is the ob-
jective function which assigns a valuef(s) to each
solutions ∈ S, and finally,Ω, the set of the problem
constrains. For the SEP, the only constraint consists
in not allowing the same floor number in contiguous
positions of the sequence. The maximum capacity of
the elevator (Cmax) is not part of the problem con-
straints since the sequence remains valid whenCmax
is reached during the simulation of the sequence.

The candidate solutions̃S ⊆ S satisfying the prob-
lem constraintsΩ are calledfeasible solutions. Our
aim is to find a global optimal solutions∗ ∈ S̃.

2.2 An ACO Model for the SEP

In an ACO algorithm the artificial ants build solutions
incrementally by adding the respective problem com-
ponents one by one. Thus, the SEP problem can be
solved by an ACO algorithm, according to the algo-
rithm proposal (Dorigo et al. [7]) if it can be conve-
niently represented in the way that the ants can exe-
cute a constructive procedure on a construction graph
to obtain a feasible solution to the problem at hand.

The SEP formulated asπ = (S, f, Ω) is conse-
quently transformed to a problem that can be cha-
racterized by the following items:

• A set of componentsP = {p1, p2, ..., pn}, i.e.,
the building floors, wheren is the number of
problem components.

• The possible problem states are de-
fined in terms of finite sequences
x =< a, pj , . . . , ph, . . . , pq > on elements
from P . The set of all possible states is denoted
as χ. The maximum length of a particular
sequence is bounded by a positive constant
k < ∞, wherek is the length of the sequence
representing a solution to the problem;

• The set of candidate solution isS ⊂ χ.

• The set of feasible states̃χ, with χ̃ ⊆ χ, the set
of sequencesx satisfying theΩ constraints. For
the SEP, these are the solutions of lengthk with-
out contiguous positions having the same floor
number.

• A non empty set of optimal solutionsS∗ ⊆ S,
i.e, the set of sequences with the minimum ob-
jective value.

• A cost g(s) for each candidate solutions ∈ S.
For the SEP,g(s) ≡ f(s), ∀s ∈ S̃.

According to the above formulation for the SEP,
the artificial ants should build a solution by walking
the a construction graphG defined in the following.

a. Definition of the Construction Graph

The graphG = (P, L) represents the construction
graph used by the artificial ant to build solutions to
the SEP, whereP is the set of nodes, i.e., the building
floors (as defined in Section 2.2) andL is the set of
edges representing the existing connections between
the nodes. A direct connection between two nodes
represents the possibility of the elevator to move from
one floors towards to another one. From the perspec-
tive of artificial ants’ behavior, this means that a par-
ticular ant can walk from one node to another one in
order to incrementally build a solution. However, a
solution for the SEP is not a permutation of integers
as in the Traveling Salesperson Problem (TSP). In-
stead, a solution can be represented as an integer vec-
tor since one ant can visit the same floor at different
times (i.e., during the elevator trip). To cope with this
situation, we propose a partially connected construc-
tion graph withn × (k − 1) nodes labeled by (floor
number, move number) which indicates that the ele-
vator will visit the floorfloor numberat the stepmove
number, and a set of edges representing the possible
moves between two different floors.

Figure 2, shows the proposed partially connected
graph where:

• a ∈ {1 . . . n} is the initial floor which can be
reached by0 moves.

• Pk ∈ {1, . . . , n}−{a} is any floor different from
floor a,
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(P ,k−2)
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Figure 2:Partially connected graph.

• each “column” of nodes corresponds to the floors
that can be visited by making the same number
of moves, i.e.,M1, M2,. . . ,Mk−1. It can be ob-
served that there is no direct connection between
two nodes where“floor number” is the same.

If the sequence of floors ontained is of lengthk,
then the number of moves isk − 1. For example (see
Figure 2),a cannot be chosen at moveM1 since(a, 1)
is not reachable from(a, 0). Consequently onlyn−1
nodes can be chosen as the first move. Similarly, if
P = {1, 2, 3, 4, 5}, k = 4, n = 5, a = 3, P1 = 1,
P2 = 2, P3 = 4, P4 = 5, then the possible sequences
of lengthk can be seen as the path connecting the
respective nodes that match withfloor number(Figure
3).

(2,1)

(1,1)

(4,1)

(5,1)

M 1

Initial Floor

(3,0)

(4,3)

(5,3)

(2,3)

(1,3)

(3,3)

(4,2)

(5,2)

(2,2)

(1,2)

(3,2)

M 2 M 3

Figure 3: Partially connected graph forP =
{1, 2, 3, 4, 5}, k = 4, a = 3.

Before presenting the specific ACO algorithm for
SEP, it is important to remark that some components
of the generic ACO model correspond to the Ant
Colony System, which is indeed the ant algorithm to
be considered here for implementation.

b. Pheromone trail representation (τ structure)

The pheromone matrixτ , as described by Dorigo
et al. [7], is a data structure maintaining a set of
real values that represent the accumulated amount
of pheromone trail that the ants deposit during the
walking. According the construction graph described
above, the pheromone structureτ for the SEP is repre-
sented by a set ofk − 1 substructuresτM1

. . . τMk−1
,

each of one corresponding respectively to each pos-
sible elevator move when following a particular se-
quence. In the case of the first move, the dimension
of τM1

is n−1 because are only considered the moves
from the initial floor a to any other floor. For the
remaining moves, the dimension of each pheromone
structure isτMj

is n × n.

c. Pheromone update

The Ant Colony System (ACS) is an improved ver-
sion of the Ant System (AS). The ACS aims at ex-
ploiting in a different way the information about the
search experience in order to efficiently guide the ex-
ploration of the search space. There exist two mech-
anism to do that. The first one uses an elitist strategy
to update the pheromone trail, while the second one,
adopts an alternative selection method applied in the
process of a solution construction. With respect to the
pheromone update, two different rules are applied:lo-
cal andglobalupdate rules (Eq. (4) and (5)).

Local update rule: when an anth selects floorj
at the movexth and the elevator is at floori, the
pheromone levels atτMx

[i, j] are modified by adding
a constant valueτ0 (a parameter of the algorithm).

Global update rule: after each ant had built a so-
lution, the best one is selected (i.e., an anth∗ which
represents the solution with the minimum objective
value). The global update on eachτMx

is carried out
by taking into account∆τMx

[i, j]h
∗

value as follows:

∆τMx
[i, j]h

∗

=






TME
TT

if ant h∗

uses edge
((i, x − 1), (j, x))

0 otherwise

(4)

Then, the pheromone matrixτMx
is modified ac-

cording to:

τMx
[i, j] = ρ × τMx

[i, j] + ∆τMx
[i, j]h

∗

(5)

where,

• ρ ∈ [0, 1] is the parameter that controls the
reduction of the pheromone trail (evaporation
rate),

• ∆τMx
[i, j]h

∗

the amount of change according to
the solution given by anth∗,
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• TME is the users average waiting time according
to the solution given by anth∗.

• TT is the total service time of the elevator.

d. Floor selection rule.

The floor to be visited by anth in the next move is
obtained by applying apseudo-random-proportional
rule. If anth is situated at floori, then the probability
of choosing floorj ∈ χ̃ as the next move is:

with rnd < q0

j = arg max
j∈χ̃

{τMx
[i, j][ηij ]

β} (6)

wherernd is a random number from interval[0, 1].
Otherwise, the next component is chosen according
to the following equation:

ph
ijx =

τMx
[i, j][ηij ]

β

∑
l∈Nh

i
τMx

[i, l][ηil]β
(7)

whereN h
i = P −{i} represents the set of candidates

floors, ηij is the heuristic information andβ is the
parameter determining the influence of the heuristic
information. In this model we propose the following
heuristic information with respect to floorj: (a) the
distance between floori andj, (b) the queue length of
users, (c) the average waiting time, and (d) the num-
ber of users currently in the elevator going to floorj.
Therefore, we define:

ηij = α1

(
1

dij

)
+ α2Qj + α3AQj + α4Rj(8)

where

(a) dij is the distance from floori to j.

(b) Qj =
#users waiting at floorj

Total #users waiting in the whole building

(c) AQj =
Average waiting time at floorj

Total average waiting time

(d) Rj = #calls at floorj
Total #calls in the whole building

According to Eq. (8), the influence of each term
in the heuristic value is determined by the weights
α1 . . . α4. For example, whenα1 = α2 = α3 = α4

all the heuristic values have the same relative impor-
tance, i.e., the more likely floor is that which is lo-
cated within a short distance, with the large number
of user waiting for the elevator, waiting for a longer
time, and having the larger number of users leaving at
that floor.

e. An ACO algorithm of the SEP

In this section we present the algorithm, called
ACS-elevator(Algorithm 1), which is an ACS based
on the model proposed above. The ACS, as men-
tioned before, increase the exploitation of the infor-
mation collected by the colony in order to efficiently
guide the exploration in the search space. To do that,
the mechanisms involve the use of an elitist strategy
for updating the pheromone trail and the application
on thepseudo-random proportional ruledescribed in
Eqs. (6) and (7).

Whenq0 = 1, the ACS is highly greedy. In this
case, the more promising floor are those the have the
maximum value obtained as a combination of high
levels of pheromone trial and large heuristic values.
On the other hand, whenq0 = 0, the ACS adopts
the behavior of the classical Ant System. Therefore,
the value for parameterq0 determines the tradeoff be-
tween a greedy and probabilistic components selec-
tion. In addition, the ACS applies two rules for up-
dating the pheromone trail on the respective graph
connections:local andglobal updating rules as de-
scribed in itemc of this section. AlgorithmACS-

proc ACS − elevator

begin
initialize();
for (t=1 . . . T) do

for (h=1 . . . m) do
seq[1] = initial f loor;
for (i=2 . . . k) do

seq[i] = select f loor();
move elevator();
Update T imes();
Local Update();

od
if (f(seq) < f(Opt seq))

Opt seq= seq;
fi

od
Global Update();

od
end

end

Algorithm 1: ACS for the SEP.

elevatorworks as follows: at each iteration, an ant
h generates a sequence of visits calledseq. Each
component ofseq is obtained throughselectfloor()
function, except the first component in the sequence
(seq[1]) which corresponds to the initial floor. Af-
ter selecting the next floor, must be simulated the el-
evator trip to the selected floor and considering all
the leaving and incoming users to the elevator. This
action is represented by calling tomoveelevator()
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which could modify at the involved floors the respec-
tive queue states, number of served users, and waiting
times. Consequently, it is necessary to apply a spe-
cial function calledUpdateTimes()to handle that. At
the same time, the best sequence of the whole search
process is maintained inOpt Seq. Other components
of the ACS are: initialize(), handles the input pa-
rameters and data structures initialization, and func-
tionsLocal Update()andGlobal Update()which are
in charge of the pheromone trial updating as describe
before.

3 Experimental study

The experimental study presented here aims at find-
ing an acceptable combination of parameter values
for the ACS-elevatorin order to obtain a sequence
of visits of lengthk which minimizes the users av-
erage waiting timeµ. To do that, we considered
a static configuration of the SEP, i.e., a fixed ran-
domly generated sequence of elevator calls are used
during the whole algorithm execution. LetL =
〈(t1, p1

c , p
1
d), . . . , (t

l, pl
c, p

l
d)〉 be the sequence of calls

of lengthl where:ti is the time at which the call oc-
curs satisfying∀i = 1 . . . l − 1, ti < ti+1 (pi

c is the
calling floor andpi

d is the destination floor). We con-
sider two different instances of the SEP in this work.
The time, in seconds, between calls is given by a uni-
form distribution from interval[10, 60] (Instance1)
and[10, 300] (Instance2). For both instances we con-
sidered a sequenceL of calls of lengthl = 1000.

The parameters considered in the experimental
study are:a, initial position of the elevator;Cmax,
maximum capacity of the elevator,n, number of
floors in the building;k, length of the sequence of
visits (or solution);T , maximum number of the algo-
rithm iteration,ta trip elevator time between two con-
secutive floors; and the otherACS-elevatorparame-
ters, i.e.,q0, β, τ0, ρ, α1, α2, α3, andα4 (Eqs. (4),(5),
and (6)).

For each parameter setting, given below,30 runs
were performed by using different random seeds.
Thus the values displayed here correspond to aver-
age waiting timesf (i)(s∗) = 1

30

∑30
j=1 fj(s

∗), for
i = 1, 2 (the two instances considered).

We performed two experimental studies with the
following common parameter setting:T = 100, m =
10, a = 0, Cmax = 8, n = 10, k = 1000, ta = 2. For
the first experimental study (ExpStd1) we took into
account the parameter values reported in Molina et
al. [9], i.e., q0 = 0.8, β = 0.5, τ0 = 0.8, ρ = 0.5,
α1 = 0.05, α2 = 0.7, α3 = 0.5, α4 = 0.3. However,
some parameters were varied to observe the impact
on the solutions quality. Those parameters are:q0,
β, andτ0 (see Table 1). The results for ExpStd1are
showed in Table 2.

It can be observed from ExpStd1 that the best per-
formance was achieved in experimentE12 where all

ExpStd1 q0 β τ0

E11 0.8 0.2 0.8
E12 0.8 0.8 0.8
E13 0.2 0.5 0.8
E14 0.7 0.5 0.8
E15 0.8 0.5 0.05
E16 0.8 0.5 0.5

Table 1: Parameters setting for the first experimen-
tal study (ExpStd1). E1j stands for experimentj of
ExpStd1.

parameters considered are set to a large value. That
is,ACS-elevatorinvolves a highly greedy components
selection, a large importance to the heuristic informa-
tion, and adding an important amount of pheromone
trail when applying the local update rule. In addi-
tion, a one-way statistical ANOVA test (at a confi-
dence level of95%) indicated that all mean values
differed statistically. More precisely, experimentE12

achieved the best performance giving a mean value
that differed statistically from the remaining data ex-
periments according to the Tukey’s method.

Experiments f(1) f(2)

E11 147.93 601.92
E12 118.81 471.16
E13 179.43 729.88
E14 133.95 537.34
E15 125.78 501.35
E16 127.09 508.14

Table 2: ExpStd1: average waiting timesf (1) and
f (2) for the respective two considered instances.

In the second experimental study (ExpStd2) we
performed3 additional experiments (E2j , j = 1, 2, 3)
with the same parameter setting as inE12 except the
setting ofτ0 = 0.05, 0.2, and0.5 (see Table 3) to see
the influence of this parameter. The respective results
for ExpStd2 are showed in Table 4. Although we can
observe a lower value for the objective function when
comparingE21 againstE12, they did not differ sta-
tistically according the the ANOVA test. In fact, the
values for the second experimental study, i.e.,E2j , for
j = 1, 2, 3, and the values fromE12 (the best behav-
ior from experiment one) were statistically insignifi-
cant. Clearly, these results showed thatq0 andβ are
among the most important parameters regarding the
performance of our algorithmACS-elevator.

ExpStd2 q0 β τ0

E21 0.8 0.8 0.05
E22 0.8 0.8 0.2
E23 0.8 0.8 0.5

Table 3: ExpStd2 is based onE12 with three different
values forτ0.
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Experiments f(1) f(2)

E21 117.66 467.22
E22 118.00 468.35
E23 118.65 470.96

Table 4: ExpStd2: average waiting timesf (1) and
f (2) for the respective two considered instances.

4 Conclusions

In this work we presented an ACO model and a
possible ACO algorithm, theACS-elevator, for solv-
ing the Single Elevator Problem. The ACO model in-
volves a partially connected construction graph used
by the artificial ants to construct the solutions for
the SEP. For the experimental study we considered
two instances of SEP (a static version) in order to
study the influence of some parameters of the pro-
posed ACO algorithm which can be considered an in-
teresting starting point to go further in the research
of a more complex version of SEP and the possibility
of the application of ACO algorithms for the general
version of the SEP, i.e., the Multiple Elevators Prob-
lem.
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