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ABSTRACT

The recognition of handwritten numerals has
many important applications, such as automatic
lecture of zip codes in post offices, and automatic
lecture of numbers in checknotes. In this paper we
present a preprocessing method for handwritten
numerals recognition, based on a directional two
dimensional continuous wavelet transform. The
wavelet chosen is the Mexican hat. It is given a
principal orientation by stretching one of its axes,
and adding a rotation angle. The resulting trans-
form has 4 parameters: scale, angle (orientation),
and position (x,y) in the image. By fixing some of
its parameters we obtain wavelet descriptors that
form a feature vector for each digit image. We
use these for the recognition of the handwritten
numerals in the Concordia University data base.
We input the preprocessed samples into a multi-
layer feed forward neural network, trained with
backpropagation. Our results are promising.

Keywords: Neural Networks, Continuous
Wavelet Transform, Pattern Recognition.

1. INTRODUCTION

Optical character recognition is one of the most
traditional topics in the context of Pattern Recog-
nition and includes as a key issue the recognition
of handwritten characters and digits. One of the
main difficulties lies in the fact that the intra-
class variance is high, due to the different forms
associated to the same pattern, because of the
particular writing style of each individual. No
mathematical model is presently available being
capable to give account of such pattern variations
[1]. Many models have been proposed to deal
with this problem, but none of them has suc-
ceeded in obtaining levels of response compara-
ble to human ones. The use of neural networks
has provided good results in handwritten charac-
ter and numeral recognition. Most of the existing
literature on this matter applies classical meth-
ods for pattern recognition, such as feed-forward

networks (multilayer perceptrons) trained with
the backpropagation algorithm. This architec-
ture has been acknowledged as a powerful tool
for solving the problem of pattern classification,
given its capacity to discriminate and to learn and
represent implicit knowledge. The performance of
a character recognition system strongly depends
on how the features that represent each pattern
are defined. Kirsch masks [2] have been used as
directional feature extractors by several authors
[3] [4], as they allow local detection of line seg-
ments. On the other hand, the suitability has
been explored of a change of representation base
by means of principal component analysis [5][6]
enabling, without loss of information, to quantify
the resolution at which input is represented (with
respect to the variance of the projections over the
components).
Wavelet transforms have proved to be a use-
ful tool for many image–processing applications.
They have given good results for edge detection
[7] and texture identification [8]. As a preprocess-
ing step for digit recognition, a one-dimensional
discrete orthogonal dyadic wavelet has been ap-
plied onto the previously extracted contour of the
digit, which is represented with 2 vectors x and
y [1]. A one-dimendional discrete multiwavelet
transform has also been applied to the previously
extracted contour in [9].
The Discrete Wavelet Transform (DWT) provides
a decomposition of an image into details having
different resolutions and orientations; it is a bi-
jection from the image space onto the space of
its coefficients [10], [11]. It has been mainly used
for image compression [12]. It is not, however,
translation invariant.
On the other hand, the Continous Wavelet Trans-
form (CWT), which is translation invariant, pro-
vides a redundant representation of an image. It
is mainly used for image analysis. The 2 dimen-
sional CWT has been extended to construct di-
rectional wavelet transforms [13], by giving one
principal orientation to the wavelet, via stretch-
ing one of its axes, and adding a rotational angle
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as a parameter. The resulting transform has 4 pa-
rameters: scale, angle (orientation), and position
(x,y) in the image.
This two–dimensional directional CWT has been
applied for pattern recognition in images [14]. In
[15] it was used for pose estimation of targets
in Synthetic Aperture Radar (SAR) image clips
containing regions where the target was previ-
ously detected, and experiments over the MSTAR
database confirmed the superior robustness of
this approach when compared to principle com-
ponent analysis (PCA). In our preliminary work
[16] we have applied it with satisfactory results.
In this work we apply the directional CWT as a
preprocessing step for recognition of hand written
numerals.
Our experiments were performed on the hand-
written numeral database from the Centre for
Pattern Recognition and Machine Intelligence
at Concordia University (CENPARMI), Canada.
This database contains 6000 unconstrained hand-
written numerals originally collected from dead
letter envelopes by the U.S. Postal Service at dif-
ferent locations in the United States. The numer-
als in the database were digitized in bilevel on a
64 x 224 grid of 0.153 mm square elements, given
a resolution of approximately 166 ppi. The digits
taken from the database presents many different
writing styles as well as different sizes and stroke
widths. Some of the numerals are very difficult to
recognize even with human eyes. Since the data
set was prepared by thorough preprocessing, each
digit is scaled to fit in a 16 x 16 bounding box
such that the aspect ratio of the image is pre-
served. Then we apply a directional 2D continu-
ous wavelet transform on each image. We imple-
ment the recognition system using a feed-forward
neural network trained with the stochastic back-
propagation algorithm with adaptive learning pa-
rameter. The training and test sets contain 4000
and 2000 numerals from the database (400 / 200
by digit) respectively. Figure 1 shows samples
from both sets.
This work is organized as follows: in section 2
the bidimensional CWT is explained, and we give
details of our implementation. In section 3 we
give the network architecture used in our tests, we
give results in section 4 and concluding remarks
in section 5.

2. THE TWO–DIMENSIONAL
CONTINUOUS WAVELET

TRANSFORM

The wavelet transform has given good results in
different image processing applications. Its excel-
lent spatial localization and good frequency lo-
calization properties makes it an efficient tool for
image analysis. The most currently used DWT is

(a) Training set

(b) Test set

Figure 1: Handwritten digits from CENPARMI
database, normalized in size.

calculated via filtering the image with both low-
pass and highpass filters, followed by subsampling
by 2, i.e. omitting one value out of 2. This is car-
ried out on the rows and columns. The subsam-
pling operation, also called decimation, causes the
DWT not to be traslation invariant. By this we
mean that if we calculate the DWT of an image,
shift the same image and calculate the DWT of
the shifted image, the values of the 2 DWTs will
differ. Since we aim at using the wavelet trans-
form as a preprocessing step for recognition of
digits, we want to have the same values for a digit
as well as for a shifted copy of the same digit.
This is why we turn to a continous wavelet trans-
form, which is translation invariant.
The directional two-dimensional CWT is the in-
ner product of an image s with a scaled, rotated
and translated version of an anisotropic wavelet
function ψ.
Let s be a real–valued square–integrable function
of 2 variables, i.e. s ∈ L2(<2). S(b, a, θ), the
directional CWT of s with respect to a wavelet
function ψ : <2 → <, is defined ([13, 14]) in the
following way:

S(b, a, θ) = a−1

∫
<2
ψ(a−1 r−θ(b− x)) s(x) dx,

(1)
where b = (bx, by) ∈ <2 is translation vector, a ∈
< is a scale (a > 0), θ is an angle, 0 ≤ θ ≤ 2π,
and rθ(x) is a rotation of angle θ, acting upon a
vector x = (x1, x2) ∈ <2 as follows:

rθ(x) = (x1 cos θ − x2 sin θ, x1 sin θ + x2 cos θ).
(2)

In this approach there is no multiresolution prop-
erty, as with the DWT. In order to be able to
reconstruct the image s from its wavelet trans-
form S, function ψ must be admissible, this is
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equivalent to the zero mean condition:∫ +∞

−∞

∫ +∞

−∞
ψ(x)dx = 0. (3)

For our wavelet, we have chosen the Mexican Hat,
defined as

ψmh(x, y) = (2− (x2 +
y2

ε
)) e−

(x2+ y2
ε

)
2 . (4)

(a) Isotropic wavelet

(b) Anisotropic wavelet

Figure 2: (a) Mexican Hat (a = 1, θ = 0◦, ε = 1),
(b) Directional Mexican Hat (a = 0.8, θ = 135◦,
ε = 5).

Note that when ε = 1, we have the usual Mex-
ican Hat wavelet, which is isotropic. For ε 6= 1,
we have an anisotropic Mexican Hat wavelet. By
giving it a special orientation, we have the direc-
tional Mexican Hat wavelet ψ(r−θ(x)). In figures
2 and 3 we have the 3d plot and level curves of
ψ(a−1 r−θ(b−x)) for different values of a, b, andθ.
The 2–dimensional directional CWT provides a
redundant representation of an image in a space
of scale, position and orientation. To reduce the
complexity of this representation, we work with

the so-called “Position Representation”, in which
the angle and the scale have been fixed:

Saθ(bx, by) = S(bx, by, a, θ) a, θ fixed.
(5)

(There are other possible representations, ob-
tained by fixing other parameters, such as the
scale–angle representation).
Through observation that the most common slant
is of 135◦ (we consider the angle formed with the
negative x axis, clockwise), we have fixed angle
θ = 135. Experiments revealed the convenience
of setting the scale to a = 0.8.

(a) Isotropic wavelet

(b) Anisotropic wavelet

Figure 3: Level curves for (a) Mexican Hat (a =
1, θ = 0◦, ε = 1), (b) Directional Mexican Hat
(a = 0.8, θ = 135◦, ε = 5).

Our sample digits are binary 16x16 images. For
bx, 16 regularly spaced values were chosen in in-
terval [−32, 32]. The same was done for by. This
gives a transform that is a real 16x16 image. To
obtain a binary image, the transform was thresh-
olded. In images 5 to 8 we show examples of the
preprocessing step to a few digit samples.

3. RECOGNITION SYSTEM

Multilayer feed-forward networks have been used
in optical character recognition systems for many
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years. These networks can be treated as feature
extractors and classifiers. Figure 4 shows an ex-
ample of architecture for this kind of network.
Each node in a layer has full connections from
the nodes in the previous layer and the proceed-
ing layer. There are several layers of neurons: the
input layer, hidden layers and the output layer.
During the training phase, connection weights are
learned. The output at a node is a function of the
weighted sum of the connected nodes at the pre-
vious layer.

INPUT

OUTPUT

Figure 4: Example of feedforward multilayer net-
work architecture.

We use a two-layer feed-forward neural network
in our experiments. The number of nodes in each
layer is given by 160 x 10. The input layer de-
pends on the input feature size (preprocessed im-
ages of 16x16), so the number of neurons is 256.
Each output node is associated with a different
class or digit. Each numeral presented at the in-
put layer feeds into the network until the compu-
tation of the network output is performed.
For each iteration or time step t, we define:

• wij weight that connects ith unit from mth
layer with jth unit from m− 1th layer

• hi =
∑

j∈J wijVj net input to ith unit, J
includes all neurons from preceding layer

• Vi = g(hi) output from ith unit; g is the
activation function of the unit. If Vi is in
the input layer, then its value equals the ith
component of the input pattern.

• ςi desired (target) output of ith unit.

• Oi actual output of ith unit in the output
layer

• E(t) = 1
2

∑
i∈C(ςi − Oi)2 where C includes

all neurons from the output layer; it defines
error at iteration t.

We define the cost function by

(a) (b)

Figure 5: (a) An original sample digit 0. (b) Same
digit after CWT– preprocessing.

(a) (b)

Figure 6: (a) An original sample digit 2. (b) Same
digit after CWT– preprocessing.

• E(w) = 1
N

∑
µ∈P,i∈C(ςµi −O

µ
i )2 where C in-

cludes all the neurons in the output layer and
P includes all training patterns.

The network was trained with the stochastic
back-propagation algorithm with momentum and
adaptive learning parameter [17] [18]. The al-
gorithm gives a prescription for changing the
weights w to learn a training set of input-output
pairs. The basis is gradient descent; it allows min-
imizing the cost function, which measures the sys-
tem’s performance error as a differentiable func-
tion of the weights. The stochastic approach
allows wider exploration of the cost surface: a
pattern chosen in random order is presented at
the input layer and then all weights are updated
before the next pattern is considered. This de-
creases the cost function (for small enough learn-
ing parameter) at each step, and lets successive
steps adapt to the local gradient. The back-
propagation update rule for input pattern at the
iteration t has the form

• wij(t+ 1) = wij(t) + ∆wij(t)

• ∆wij(t) = −η ∂E(t)
∂wij(t)

+ α∆wij(t− 1)

where η is the learning parameter, and α is the
momentum parameter (it allows larger effective
learning rate without divergent oscillations occur-
ring). Values 0.01 and 0.9 as initial learning rate
and momentum parameter respectively were used
in our experiments. We train the neural network
up to 3500 ephocs.
The logistic function defined by

g(h) =
1

1 + e−h
(6)
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(a) (b)

Figure 7: (a) An original sample digit 5. (b) Same
digit after CWT– preprocessing.

(a) (b)

Figure 8: (a) An original sample digit 8. (b) Same
digit after CWT– preprocessing.

was used as activation function associated with
neurons from hidden and output layers.

4. RESULTS

In this section we show the results obtained after
the preprocessed digits were classified with the
neural network described in section 3.
These results are listed in tables 1 and 2. For
both tables, in the first column we have the digit,
in the second column we give the fraction of in-
correctly classified samples, in the third column
the fraction of correctly classified samples, and in
the last column we give the recognition percent-
age for that digit.
In the last row we list the totals over the whole
set.
The percentage of correctly classified patterns
was 99.17% and 90.20% for the training set and
the test set, respectively. This result is promising,
as it improves over the percentages obtained with
the same nework architecture with no preprocess-
ing stage (87.1% of test patterns recognized).
The performance obtained in this work is compa-
rable to to other results reported in the literature
for the same data set [9] [1].

6. CONCLUSIONS

We have presented a preprocessing stage based
on the directional CWT in 2 dimensions, prior
to the training of a feedforward multilayer neural
network for handwritten numeral classification.
With our choice for the parameters of the direc-
tional CWT, we obtained an efficient wavelet de-
scriptor for the handwritten numerals. The di-
rectional CWT is translation invariant. Because

Miss Correctly Recogn.
Digit Classified Classified %

0 5/400 395/400 98.75
1 1/400 399/400 99.75
2 4/400 396/400 99.00
3 4/400 396/400 99.00
4 4/400 396/400 99.00
5 1/400 399/400 99.75
6 4/400 396/400 99.00
7 6/400 394/400 98.50
8 2/400 398/400 99.50
9 2/400 398/400 99.50

Total 33/4000 3967/4000 99.17

Table 1: Results obtained over the training set.

Miss Correctly Recogn.
Digit Classified Classified %

0 20/200 180/200 90.00
1 6/200 194/200 97.00
2 18/200 182/200 91.00
3 32/200 168/200 84.00
4 7/200 193/200 96.50
5 30/200 170/200 85.00
6 17/200 183/200 91.50
7 15/200 185/200 92.50
8 36/200 164/200 82.00
9 15/200 185/200 92.50

Total 196/2000 1804/2000 90.20

Table 2: Results obtained over the test set.

we chose the Mexican hat wavelet, the trans-
formed and thresholded patterns had a smoother
contour. By setting the angle of the directional
CWT to the most common slant, we obtained
digits with a wider stroke. By taking a = 0.8,
the size of the digit was reduced, adding a black
frame around the bounding box. All these prop-
erties added up to the posterior identification of
the digit with a neural network.
Our method was tested on the database of the
Concordia University, Canada. Our results are
comparable to other proposed techniques [9] [1],
which are also based on a wavelet–transform pre-
processing step, and also train a feedforward neu-
ral network for pattern classification. These men-
tioned works employ a wavelet or multiwavelet
transform in one dimension, and require the iden-
tification of the contour of the digit, which is not
necessary in our case.
For future work we plan to exploit the invariance
properties of the directional CWT more fully, in
order to improve our classifier.
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