
CISNE-P: A Global Scheduling Oriented to NOW Environments∗

M. Torchinsky, M. Hanzich, P. Hernández, E. Luque
Dept. Computer Architecture & Operating Systems

University Autonoma of Barcelona, Spain
{matias, mauricio}@aomail.uab.es, {porfidio.hernandez, emilio.luque}@uab.es

and
F. Giné, F. Solsona, J.L. Lérida

Dept. Computer Science
University of Lleida, Spain

{sisco,francesc,jlerida}@diei.udl.es

Abstract

In this work, we present an integral scheduling system
for non-dedicated clusters, termed CISNE-P, which en-
sures the performance required by the local applications,
while simultaneously allocating cluster resources to pa-
rallel jobs. Our approach solves the problem efficiently
by using a social contract technique. This kind of tech-
nique is based on reserving computational resources,
preserving a predetermined response time to local users.

CISNE-P is a middleware which includes both a pre-
viously developed space-sharing job scheduler and a
dynamic coscheduling system, a time sharing schedul-
ing component. The experimentation performed in a
Linux cluster shows that these two scheduler compo-
nents are complementary and a good coordination im-
proves global performance significantly. We also com-
pare two different CISNE-P implementations: one de-
veloped inside the kernel, and the other entirely imple-
mented in the user space.

Keywords: space and time sharing scheduling,
coscheduling, social contract.

1 Introduction

The use of non-dedicated systems for parallel com-
putation is based on various studies that prove the effec-
tiveness of making good use of the idle CPU cycles by
executing distributed applications. [1] showed the low
utilization of resources in environments such as an open
laboratory in a university. The main motivation of using
these resources is the low cost at which it is possible to
do parallel computation.

In this article, we present a new system named
CISNE-P. Our system combines space sharing and time

∗This work was supported by the MEyC under contract TIN 2004-
03388.

sharing scheduling techniques in order to take advan-
tage of the idle computer resources available across the
cluster by executing parallel jobs without damaging the
local users excessively. CISNE-P is made up basically
of a dynamic coscheduling technique and a job sched-
uler.

The parallel job scheduler of CISNE-P is named Lo-
RaS (Long Range Scheduler). It is responsible for dis-
tributing the parallel workload among the cluster nodes.
When a parallel job is submitted to the LoRaS, the job
waits in a queue until it is scheduled and executed. Thus,
LoRaS must deal with theJob Selectionprocess from a
waiting queue, together with the problem of selecting
the best set of nodes for executing a job (Node Selection
policies). This is performed by taking into account the
state of the cluster system together with the characteris-
tics of the local and parallel workload.

The dynamic coscheduling system, termed CCS [5],
is the time sharing scheduling component. Traditional
dynamic coscheduling techniques [2] rely on the com-
munication behavior of an application to schedule the
communicating processes of a job simultaneously. Un-
like those techniques, CCS takes its scheduling deci-
sions from the occurrence of local events, such as: Com-
munication, Memory, Input/Output and CPU, together
with foreign events received from remote nodes. This
allows CCS to provide a social contract [3] based on re-
serving a percentage of CPU and memory resources in
order to assure the progress of parallel jobs without dis-
turbing the local users, while coscheduling of commu-
nicating tasks is assured. Besides, the CCS algorithm
uses status information from the cooperating nodes to
re-balance the resources throughout the cluster when
necessary.

CCS was firstly implemented in the Linux kernel [6].
In this article, we present the modifications that allow
CCS to be incorporated into an integral cluster schedul-
ing system, such as CISNE-P; a middleware entirely lo-
cated in the user space. The new user level approach
is more flexible than the previous one (implemented

JCS&T Vol. 7 No. 1 April 2007

72

in the Linux kernel). This allows more efficient and
portable scheduling extensions on top of the existing op-
erating systems. With this aim, we compared the perfor-
mance of both implementations in a Linux cluster. Like-
wise, we evaluated the interaction between space and
time sharing techniques, showing the need to combine
coscheduling techniques simultaneously together with
space-sharing scheduling policies.

The remainder of this paper is as follows: in Sec-
tion 2, CISNE-P system is presented. The efficiency
measurements of CISNE-P are performed in Section 3.
Finally, the main conclusions and future work are ex-
plained in Section 4.

2 CISNE-P: A portable and in-
tegrated scheduler for non-
dedicated environments

In order to provide a system oriented to executing para-
llel jobs over non-dedicated environments, we have de-
veloped a system called CISNE-P. This is an space and
time sharing scheduling system, which is based on a so-
cial contract to preserve the assignment of resources to
local users.

CISNE-P is a middleware entirely developed in the
user space. CISNE-P includes 2 main components, Lo-
RaS and CCS. LoRaS solves the space scheduling prob-
lem. It is responsible for distributing parallel applica-
tions throughout the cluster using information about the
system state, the applications to be launched and the
characteristics of CCS as a dynamic time sharing sched-
uler. CCS uses a time-slicing technique to exploit the
unused computing capacity of a non-dedicated cluster
without disturbing local jobs excessively. With this aim,
CCS limits the CPU and Memory resources assigned to
parallel tasks by applying a social contract. CCS tries
to exploit the rest of the resources of the NOW for pa-
rallel execution by means of combining balancing of
computational resources and coscheduling between pa-
rallel jobs. In doing so, each CCS node assigns its re-
sources dynamically based on a combination of runtime
information, provided by its own o.s. and its coopera-
ting nodes, together with architecture information and
system-wide information. Thus, local decisions are co-
ordinated across the NOW.

Figure 1 shows the integration of both systems. This
figure also illustrates the distribution of the system with
a server node and several other nodes that execute para-
llel and local applications.

Next, we explain the main features of LoRaS and
CCS, respectively. For efficiency reasons, CCS was
firstly implemented in the kernel space. Successive ver-
sions of CCS have migrated progressively to the user
space. Nowadays, CCS is entirely implemented in the

Figure 1: CISNE-P Architecture

user space. We analyze the main advantages and differ-
ences of both implementations, and how the CCS com-
ponents interact with each other.

2.1 LoRaS (Long Range Scheduler) Sys-
tem

LoRaS implements a Job Scheduler in the user space,
which provides an Space-Sharing scheduling mecha-
nism.

The LoRaS system has a master-slave architecture
and consequently there are two kinds of node, master
and slave. The jobs are delivered to the system from the
client nodes. The clients request work from servers by
sending them a Job Execution Request (JER). The ad-
mittance of new JERs for execution is performed by the
server node.

Among the LoRaS responsibilities we consider (see
Figure 1):

• The admittance of new jobs to be executed: this is
done by theServermodule, located in the server
node. It is responsible for admitting new jobs into
the system, sent by a parallel user using theclient
module,located in the slave nodes.

• The management of queued jobs: the LoRaS sys-
tem has to schedule and then dispatch every queued
job using some scheduling policy. The scheduling
is performed by theJob Scheduler, located in the
server node. TheJob Schedulerallows the execu-
tion of a JER in a specific cluster and state in the
amount of resources requested in the JER accord-
ing to the job scheduling policy specified in this
module. If there is no possibility of executing the
job on arrival, then the JER is placed in theWaiting
Queue, waiting to be scheduled.

The Job Dispatcherformats the jobs accordingly
by setting the parameters and the environment vari-

JCS&T Vol. 7 No. 1 April 2007

73

ables and then it dispatches the job by launching it
in the cluster nodes specified by theJob Scheduler.
Both PVM and MPI jobs are supported.

• Job Execution Controland System state gathering:
the Node Controlmodule (located in the slaves)
monitors the execution control of every job and
takes care of the state of every cluster node. It also
informs theJob Schedulerso that it can take better
scheduling decisions.

The next section explains the job scheduling policies ap-
plied by LoRaS.

2.1.1 Job Scheduling in LoRaS

Job scheduling is determined by theJob Ordering, Job
SelectionandNode Selectionpolicies.

The parallel jobs, when entering in the system are
placed in theWaiting Queueaccording to one of the fo-
llowing job ordering policies: FCFS (First Come First
Serve), SJF (Shortest Job First) and SNPF (Smallest
Number of Processors First).

Next, the jobs are selected from theWaiting Queue
according to one of the followingJob Selectionpolicies:
Best Fit, First Fit and Just First.

Finally, the best set of nodes to map a given job and
the current cluster state is obtained. This is done accord-
ing to two differentNode Selectionpolicies:

• Uniform. This policy merges communication and
computation bound applications in the same node
and tasks making up a pair of jobs are mapped
in the same set of nodes, balancing the workload
across the cluster.

• Normal. Unlike the uniform policy, it merges
the parallel jobs independently of their communi-
cation/computation characteristics and placement
over the cluster.

Uniform and Normal policies limit the resources used
by the parallel applications across the cluster. Both poli-
cies launch an application on any set of nodes where the
fact of executing it does not mean exceeding a system
usage limit for any resource. This acceptable limit is
established by means of asocial contractdefined by
the CCS system, and establishes the maximumpara-
llel MultiProgramming Level(MPL) or the percentage
of memoryor CPU, that could be used by the parallel
applications on each node. Thus, those jobs mapped in
nodes whose load has reached the threshold fixed by the
social contract are stopped by CCS.

2.2 CCS (Cooperating CoScheduling) Sys-
tem

The time sharing system of CISNE-P provides an execu-
tion environment where the parallel applications can be
dynamically coscheduled. The resources are balanced

Dynamic
Coscheduling

Syscall

Node

Scheme

Cooperating

Mechanism
Job Interaction

Figure 2: CCS Architecture.

and the interactive responsiveness of the local applica-
tions is fully preserved.

Our dynamic coscheduling mechanism, located in a
daemon of the forming clustering nodes, makes schedul-
ing decisions based on the occurrence of local and
remote events involved in the social contract. This
coscheduling is slightly different from traditional dy-
namic coschedulers, mainly because it not only tries
to schedule the communicating tasks making up the
jobs, but it also tries to balance the assignment of the
resources between local and parallel tasks, preserving
in all the cases the portion of computational resources
fixed by the social contract.

Firstly, we will explain CCS architecture (see Fig-
ure 2), the modules that integrate the system and how
they work to achieve its goals. Later, we present differ-
ent scenarios that we have been working on towards a
portable solution.

The main components of the CCS system, residing in
each node, are the following:

• Dynamic Coscheduling (DYN): is the module
which guarantees that no processes must wait
for a non-scheduled process for synchroniza-
tion/communication. This is achieved by means
of increasing the communicating task priority, even
causing CPU preemption [2].

• Job Interaction Mechanism (JIM): it preserves the
local user tasks responsiveness. In order to reach
this goal, the JIM module manages the interaction
between local and parallel jobs by means of a so-
cial contract. It means that both kinds of user, lo-
cal and parallel, compromise for the cession of a
minimum percentage (L) of CPU and memory for
parallel tasks. The minimum term is related to the
fact that if parallel tasks require a bigger percent-
age thanL, then they will be able to use the por-
tion allocated to local tasks, whenever local tasks
are not using this.

• Cooperating Scheme: this module collaborates
with the JIM module in order to balance the re-
sources (CPU and Memory) assigned to tasks be-
longing to parallel jobs running throughout the

JCS&T Vol. 7 No. 1 April 2007

74

Schema
Cooperating

Schema
Cooperating

Node i Node j

pvmd pvmd

Sending(Events)

syscall(events) syscall(events)

Linux KernelLinux Kernel Linux Kernel

JIM
(File System, Memory System

and Scheduler)

JIM
(File System, Memory System

and Scheduler)

Scheduler)

(Communication System and
Dynamic Coscheduling

Scheduler)

(Communication System and
Dynamic Coscheduling

Figure 3: CCS in the kernel space.

cluster. It is responsible for exchanging several
events between cooperating nodes1, such as the lo-
gin (LOCAL) or logout (NO_LOCAL) of a local
user into a specific node, or the stopping (restart-
ing) event generated by the JIM module, which
stops (restarts) a parallel job. This happens when-
ever it has to preserve the local responsiveness.

2.2.1 CCS in kernel space

Firstly, CCSwas implemented in a PVM (v.3.4) - Linux
(v.2.4.18) cluster.

As we can see in Figure 3, theCooperating Schema
was implemented inside the daemon of the PVM system
[4]. PVM provides useful information for implementing
the algorithms for sending/receiving events between the
cooperating nodes. Every node of a PVM system has
a daemon, which maintains information about the PVM
jobs under its management. It contains the identifier of
each job (ptid) and a host table with the addresses of its
cooperating nodes. This way, each node in the CISNE
system knows where its cooperating nodes are.

Likewise, theDynamic CoschedulingandJob Inter-
action (JIM) modules are implemented in the kernel
space. This solution was adapted because thus CCS can
adapt quickly to the continuous changes experimented
by the environment, guaranteeing fast answer time for
local users with interactivity needs as well as a high
coscheduling likelihood for parallel jobs. A patch, with
the following modifications must be introduced into the
Linux Kernel:

File System: CCS sends the LOCAL (NO_LOCAL)
events by means of the Cooperating module to the
rest of the cooperating nodes when there is (no) lo-
cal user interactivity for more than 1 minute. This
value ensures that the machine is likely to remain
available and does not lead the system to squander
a large amount of idle resources [9]. At the be-
ginning of every scheduling epoch, the access time

1nodes executing the same parallel job.

to the keyboard and mouse files is checked, setting
a new kernel variable(LOCAL_USER) to True or
False.

Communication System: A new kernel function is im-
plemented to collect the sending/receiving packets
from the socket queues in the Linux kernel.

Memory System: The Linux swapping is modified to
guarantee the memory portion fixed by the social
contract for local and parallel tasks.

Scheduler: In order to select a task to run, the Linux
scheduler considers thedynamic priorityof each
task, which is the sum of the base time quantum
(static priority) and the number of remaining CPU
ticks by the task in the last epoch. Whenever an
epoch finishes, the dynamic priority is recomputed.
The implementation of the social contract tech-
nique involves the modification of the base time
quantum. Whenever a parallel task is stopped due
to memory being overloaded, the scheduler assigns
such task a quantum equal to zero. On the other
hand, the scheduler decreases the time slice of the
parallel task proportionally to the percentageL
fixed by the social contract, whenever there is a lo-
cal user in such a node. Likewise, the scheduler
was modified to implement dynamic coschedul-
ing. The coscheduling implementation increases
the dynamic priority of each parallel task inserted
in the Ready Queue according to the number of
packets in the receive/send socket queue. Thus,
the current scheduled task can be preempted by the
task inserted into the RQ with most pending mes-
sages. Coscheduling is thus achieved.

However, this installation was complex and unportable,
mainly because the Linux kernel had to be modified to
make use of the CCS system. For these reasons, a more
portable implementation was caught.

JCS&T Vol. 7 No. 1 April 2007

75

Job StateJob State

Node Control

JIM
signal

(local events)

Node i (Client) Node j (Client)

CCS

LoRaS

Node Control

cooperative

coscheduling

sending

(remote events)

(remote events)
signalsignal

(local events)

signal

(local events)
cooperative

schemescheme
JIM

coscheduling
dynamicdynamic

signal
(local events)

(remote events)
signal

Figure 4: CISNE-P architecture in the user space.

2.2.2 CCS entirely in user space

For a more portable solution, we studied and applied the
idea of moving the JIM component to the user space,
as shown in Figure 4. To achieve this goal, we mod-
ified the JIM module to gather information about the
resources consumed by parallel applications from the
"/proc" file system. This way, CCS monitors the amount
of resources (Memory and CPU) used by each parallel
process and, as a consequence, it checks wether the so-
cial contract is being carried out. Whenever the parallel
processes violate the social contract, they are penalized
by means of lowering their priority or even stopping
the parallel job until enough resources are available to
restart it.

Working for a totally portable solution, the only mo-
dule which was left running in kernel space was the dy-
namic coscheduling. So, in a second step, we moved
the dynamic coscheduling to the user space, obtaining
an entirely portable system and a kernel independent
code. The dynamic coscheduling is achieved by lower-
ing/raising priorities according to the number of packets
in the socket queues. Thus, the dynamic coscheduling
module is able to manipulate the priority of parallel jobs
or even through stopping/restarting applications (from
user space) by means of thenice / renice Unix com-
mands.

Finally, the Cooperating schema was separated from
the PVM daemon. Thus, the LoRaS daemon, resid-
ing on each node of the cluster, provides the coopera-
ting module with the information required to exchange
events between the cooperating nodes.

3 Experimentation

This experimentation was divided into two sections.
The first section evaluates the need to use a coschedul-
ing system over a non-dedicated Linux cluster. The sec-
ond set of results compares the performance of CCS im-
plemented in the kernel space (CISNE [7]) against CCS

in the user space (CISNE-P). Likewise, these results are
evaluated in relation to different sets of space-sharing
scheduling policies.

In order to simulate a non-dedicated cluster, we need
two different kinds of workloads: local and parallel.

The local user activity is represented by a bench-
mark that could be parametrized in such a way that it
uses a percentage of CPU, Memory and Network. To
parametrize this benchmark realistically, we measure
our open laboratories for a couple of weeks and used
the collected values to run the benchmark (15% CPU,
35% Mem., 0,5KB/sec LAN). Besides, and according
to the values observed in the monitoring, we load 25%
of the nodes with local workload in our experiments.

The parallel workload is a set of NAS parallel appli-
cations (CG, IS, MG, BT, LU and FT) with a size of 2,
4 or 8 tasks. These benchmarks were mixed in differ-
ent ways according to our experimental purposes. The
composition of each parallel workload is explained in
the following sections.

Both workloads were executed in a Linux cluster
made up of 16 P-IV (1,8GHz) nodes with 512MB of
memory and a Fast Ethernet interconnection network.

3.1 Dynamic coscheduling

First, we show the impact of the DYN module (dynamic
coscheduling in the kernel space) on the performance of
the parallel workload in a non-dedicated/dedicated clus-
ter. With this aim, we execute a parallel workload in
different scenarios: (a) CCS with the DYN module acti-
vated and (b) CCS without the DYN module.

This evaluation was carried out by running three dif-
ferent parallel workloads (B, C and D), each one com-
posed of a set of NAS parallel applications merged in
such a way that it was possible to characterize the sys-
tem bounding it by computation (B workload) and com-
munication parameters (D Workload). Specifically, the
B, C and D workloads were made up of the {MG and
LU}, {SP and CG} and {IS and FT} set of benchmarks,

JCS&T Vol. 7 No. 1 April 2007

76

Figure 5: Makespan: CCS with Dyn vs CCS without Dyn.

respectively. Each workload was exercised several times
for different Parallel Multiprogramming Level (MPL),
from 2 to 4 instances of parallel applications chosen
from the set defined by the workload in a round-robin
manner (e.g.: class A - MPL 4: SP.A, BT.A, SP.A,
BT.A). It is worthwhile pointing out that the threshold of
MPL=4 was chosen taking the results shown in [6] into
account. In that paper, we concluded that the response
time of the local user for a social contract ofL=0,5 and
MPL=4 never exceeds significantly the 400ms stated as
the acceptable limit for disturbing the local user respon-
siveness [8].

Figure 5 shows the makespan metric obtained when
these parallel workloads were executed in a non-
dedicated cluster (left) and a dedicated cluster (right). In
general, these results show the effectiveness of the dy-
namic coscheduling. As was expected, the best values
were obtained by the workload with the highest com-
munication rate (D Workload). Likewise, we can see
that this improvement increased according to the value
of MPL. However, the gain of the dynamic coschedul-
ing is reduced for the case of a dedicated cluster. This
means that DYN performance behaves worse when the
competing parallel tasks tend to be equal. This problem
arises when some competing parallel processes have the
same communication rate. In these cases, a situation
where a set of different parallel processes have the same
number of receiving/sending packets in their reception
queues can happen frequently. In such cases, and taking
into account the implementation of dynamic coschedul-
ing in the kernel space, the scheduler assigns the same
priority to all these processes so the next parallel pro-
cess to run is selected randomly by the scheduler. In this
way, there is a high likelihood that coscheduling was not
achieved.

3.2 CISNE vs CISNE-P

In this section, we compare the performance of CCS im-
plemented in the kernel space (CISNE) against CCS in
the user space (CISNE-P).

In this case, the parallel workload was a list of 90
NAS parallel applications (CG, IS, MG, BT) with a size

of 2, 4 or 8 tasks that reach to the system following
a Poissondistribution. The parallel applications were
merged so that the entire workload had a balanced re-
quirement of computation and communication. It is im-
portant to remark that the MPL reached for the workload
depends on the system state at each moment, but in any
case it will surpass an MPL = 4. In order to validate
our assumptions, the averageTurnaround(see Figure 6)
metric of the parallel jobs and themakespan(see Figure
7) of the workload were used.

This parallel workload was executed with two dif-
ferent combinations ofJob OrderingandJob Selection
policies (see section 2.1): FCFS-FFIT and SJF-JFIRST.
Thus, we were able to evaluate the sensitivity of the
CCS performance in relation to different space-sharing
scheduling policies. In all the cases, a Uniform node
selection policy was chosen.

The results in Figures 6 and 7 show that the penaliza-
tion for moving from kernel to user space is lower than
10% for the turnaround and 30% for the makespan met-
ric in the worst case (see Figure 7.right). The makespan
metric is more sensitive to the CCS implementation than
the turnaround due to the fact that a penalization in a
specific job has a lower influence on an average metric
than on the turnaround. Likewise, we can see that this
behavior is similar for both kinds of environment, dedi-
cated and non-dedicated cluster.

4 Conclusions and future work

This work presents a totally portable and integral system
termed CISNE-P, which provides a space and time shar-
ing scheduling applied to a non-dedicated cluster. It in-
cludes both a previously developed dynamic coschedul-
ing system and a space-sharing job scheduler to make
better scheduling decisions than they can do separately.
CISNE-P allows multiple parallel application to be exe-
cuted concurrently in a non dedicated Linux cluster with
good performance, as much from the point of view of
the local user as that of the parallel application user.

Using this framework, we evaluated two different sce-
narios of CISNE-P implementations, one located inside

JCS&T Vol. 7 No. 1 April 2007

77

Figure 6: Turnaround of parallel applications: CISNE vs CISNE-P.

Figure 7: Makespan of parallel applications: CISNE vs CISNE-P.

the kernel, and the other, entirely implemented in the
user space. The experimentation showed that the dy-
namic coscheduling and the Job Interaction Mechanism
can be moved to the user space. The penalization in
moving from the kernel to the user space is almost in-
significant. Beside, the system improved in portability.
We evaluated the influence of the dynamic coscheduling
inside the CISNE-P environment. The results obtained
show that the performance of parallel jobs is increased
when coscheduling is applied.

Future work is oriented towards extending the func-
tionalities of the CISNE-P system to provide facilities to
execute Soft Real-Time jobs (local/parallel). Likewise,
we are interested in extending the CISNE-P architecture
to multicluster systems. Thus, we will be able to make
better use of the computational resources of any kind of
organization.

References

[1] T. E. Anderson, D. E. Culler, D. A. Patterson, and the
NOW team. A case for now (networks of workstations).
IEEE Micro, 15(1):54–64, 1995.

[2] C. Anglano. A comparative evaluation of implicit
coscheduling strategies for networks of workstations.9th
IEEE International Symposium on High Performance
Distributed Computing (HPDC’00), pages 221–228, Au-
gust 2000.

[3] R. Arpaci, A. Dusseau, A. Vahdat, L. Liu, T. Anderson,
and D. Patterson. The interaction of parallel and sequen-
tial workloads on a network of workstations. InProceed-
ings of the ACM SIGMETRICS/PERFORMANCE 1995,
pages 267–277, 1995.

[4] A. Geist, A. Beguelin, J. Dongarra, W. Jiang,
R. Manchek, and V. Sunderam.PVM:Parallel Virtual

Machine - A User’s Guide and Tutorial for Networked
Parallel Computing. MIT Press Pub., 1994.

[5] F. Giné, F. Solsona, P. Hernández, and E. Luque. Coope-
rating coscheduling in a non-dedicated cluster.EuroPar
2004, Lecture Notes in Computer Science, 2790:212–218,
2004.

[6] M. Hanzich, F. Giné, P. Hernández, F. Solsona, and
E. Luque. Coscheduling and multiprogramming level in
a non-dedicated cluster.EuroPVM/MPI 2004, Lecture
Notes in Computer Science, 3241:327–336, 2004.

[7] M. Hanzich, F. Giné, P. Hernández, F. Solsona, and
E. Luque. Cisne: A new integral approach for scheduling
parallel applications on non-dedicated clusters.EuroPar
2005, Lecture Notes in Computer Science, 3648:220–230,
2005.

[8] R. Miller. Response time in man-computer conversational
transactions.AFIPS Fall Joint Computer Conference Pro-
ceedings, 33:267–277, 1968.

[9] M. Mutka and M. Livny. The available capacity of a pri-
vately owned workstation environment.J. Performance
Evaluation, 12(4):269–284, 1991.

JCS&T Vol. 7 No. 1 April 2007

78

