
Framework for Web Application Agile Development

Lisandro Delía 1, Germán Cáseres 2, Hugo Ramón 3, Pablo Thomas 4, Rodolfo Bertone 5

Institute of Research on Computer Science LIDI (III-LIDI) 6
Faculty of Computer Science - UNLP

1 Scholar III-LIDI UNLP - Fac. of Computer Science, ldelia@lidi.info.unlp.edu.ar
2 Scholar III-LIDI UNLP - Fac. of Computer Science, gcaseres@lidi.info.unlp.edu.ar
3 Full-Time Co-Chair Professor DE, UNLP - Fac. of Computer Science, hramon@lidi.info.unlp.edu.ar
4 Full-Time Co-Chair Professor , UNLP - Fac. of Computer Science, pthomas@lidi.info.unlp.edu.ar
5 Full-Time Co-Chair Professor , UNLP - Fac. of Computer Science, rbertone@lidi.info.unlp.edu.ar
6 III-LIDI UNLP - Fac. of Computer Science, calle 50 y 115, La Plata (1900), Buenos Aires, Argentina,
 Tel/Fax +54 221 4227707 http://www.lidi.info.unlp.edu.ar

ABSTRACT

Any system interacting with a data base requires modules
capable of operating data stored in it. Its development
times generally vary between 50 to 60 % of the time used
for the application life cycle. The present paper describes
the architecture and characteristics of a Framework for
the agile generation of Web Applications, called
PHP4DB. Its main objectives are to drastically reduce the
job time, minimize errors, and tuning, as well as respect a
homogeneous interface between each module. These
characteristics allow the development team to focus and
make emphasis on the tasks particular to the application
domain. For a better understanding of its advantages,
some of the projects in which the Framework has been
used are presented together with the respective analysis
of the results obtained.

Key Words: Software Engineering, Agile Developments,
WEB Applications.

1. INTRODUCTION

SE (Software Engineering) basis is to have an established
process for the development of Software Systems. A
process defines a working framework for a set of key
areas, known as KPA (Key Process Area), which should
be established for the effective delivery of a software
product. [1] [2]

In order to generate a robust and quality process layer, we
should start from specifying the requirements of the
problem [17]. These requirements should: (1) represent
and understand the information domain of a problem; (2)
define the functions the software will perform; (3)
represent the expected behavior of the software (as a
consequence of external events); (4) divide the models
representing information, function, and behavior so as to
discover the details by hierarchical layers. [3]

In order to keep the development of a IS (Information
System) within the scope of the planning, we may
minimize, among others, the time necessary to carry out
the codification. Even though this time is minimum
within a system’s development cycle, the iterative tasks
non specific to the application domain generally take
between 50 to 60 % of the total assigned time. In
addition, tuning, functionality debugging, and generation

of the user’s interface yield temporal values that cannot
be considered as worthless. [4] [5]

Once the requirements are established it is possible to
develop a complete, agile, and dynamic data model
representing them as properly as possible. [6]

From here, a system implanting the required functionality
will need basic modules managing the information
contained in the DB (Data Base). The development and
maintenance of each of these modules require spending
time in routine tasks, keeping the consistency of the
interface and correctness. [7]

The development team should focus on programming the
minimum functionalities (using a programming
language), updating the DB (generally with another
specific language), building data upload forms, grids,
combining visual components, among other activities [8].
In addition, an aspect important to any application – in
particular when we are dealing with a IS – is coherence in
the development of the interface, presenting the
information and interacting with the user in a
homogeneous and consistent way.

These objectives are generally tedious for developers. It
is here, then, when four generation programming
languages (4GL) (such as Clarion [9]) and automatic
code generation CASE tools are particularly useful.

An automatic code generator is a tool which derives,
from certain patterns, the source code of an application.
The use of these tools reduces the time necessary for the
software development, minimize errors, consequently
reducing the debugging and tuning times. 4GLs consist in
procedures which generate the source code in function of
what is expressed in the application design or data model.
For this, the user specifies the program functionality, or
part of it, and the tool determines how to perform such
task. [1]

However, the automatic code generation is not enough in
many cases, since applications obtained from a 4GL have
such staticity level that any change in the data model
produces a great impact in the maintenance.

The working context –basically close to XP-type agile
methodologies [18]- leads to an environment in which the
data model dynamically undergoes conversions and / or

JCS&T Vol. 7 No. 1 April 2007

86

mailto:hramon@lidi.info.unlp.edu.ar

adaptations. Having a static CASE tool does not solve the
problem successfully.

It is then necessary to think about the development of a
CASE capable of dynamically adapting an application to
continuous changes caused over the data model, keeping
the regularity on the produced user interfaces.

2. PRESENTATION OF THE PROBLEM

Within the working context of the authors, the Institute of
Research on Computer Sciences III-LIDI, several
projects have been developed with similar characteristics,
which require a high percentage of tables with the
classical operations such as lists, filters, reports, data
ADM (add/delete/modify). Each table, together with its
classical associated operations, will be called herein
repositories.

These projects are basically Web Systems [10], due to the
need of accessing information from physically remote
locations, and are developed with open-source tools,
within LAMP (Linux + Apache + MySQL + PHP)
environments [11] and interact with DBs integrated by
heterogeneous information. This last causes a great effort
to generate the interface of each repository. In
consequence, it is essential to have a generic software
layer that automates these tasks.

The complexity in developing this layer depends on the
type of application in question. In applications of RAD
type (Rapid Application Development), such as Delphi,
PowerBuilder, VisualBasic, it is possible to parameterize
components so as to get repositories with lesser effort
[12].

In Web applications – based on client-server technologies
[13] – the solution is rather more complex. That is, the
process should be solved both on the client’s side (with
JavaScript, Java Applets), and the server’s (with PHP,
ASP, JSP, etc.), together with a way to show information
(HTML, XML + CSS).

The development proposed – a Framework called
PHP4DB – has been developed to solve the presented
problems. PHP4DB is an object-oriented tool entirely
developed in PHP, whose objective is to generalize as
much as possible the software layer so as to automate
routine codification tasks in a LAMP environment. In the
following sections, PHP4DB is presented and its
behavior is analyzed.

3. ARCHITECTURE AND DESCRIPTION

Functionality

PHP4DB was a fully evolving development: a series of
basic objectives were posed, which once achieved, they
allowed “evolving” both in complexity and completeness.
In the current version it is possible to carry out the
following tasks:

• Visualize data of a repository through a paged
grid.

• Dynamically filter data of the repository
according to features defined for such end

• Obtain a quick view of a grid row

• Data ADM through a pre-established form

• Generate a PDF report of all the data visualized
in the grid or of a particular data

• Relate a particular data to other functionality
external to the repository

• Audit in XML format each operation carried
out by the user in the repository

For this, PHP4DB dynamically communicates with the
DB of the problem to be solved so as to recover or update
the information there contained.

The development of this tool was meant, from the very
beginnings, to be carried out in free-license products. For
this reason, the DBMS used was MySQL. In subsequent
versions we observed that the limitations implanted by
the use of a particular DBMS were not adequate, and for
this reason the Framework was evolved in order to
abstract itself from the particular DB engine. In order to
get the required abstraction, the PEAR (PHP Extension
and Application Repository) DB library was used. [14]

Figure 1 presents the running of a repository as part of a
system. Initially, as main access to such repository, a
paged grid of data is shown together with an associated
filter form. From here, it is possible to access all the
remaining functionalities of the Framework. In the grid
the listed data are described, which can be derived to a
PDF report –as previously mentioned.

Actions can be applied to the shown data; some of them
are basic, such as modification or deletion, and other may
be specific to the repository and related to the behavior
defined by the system requirements. All the specific
functionality is associated to each grid row and is applied
over it. The presentation may be done through a drop-
down list or a tool bar.

In addition, as basic functionality, it is possible to insert
new elements. Figure 2 presents an example of this form,
while figure 3 presents the view of a particular record
before a query.

Figure 1: Example of a repository

JCS&T Vol. 7 No. 1 April 2007

87

Figure 2: Add/Modify Form

Figure 3: Quick view of a record

Structure

PHP4DB is designed as a centralized core in charge of
creating all the functionality mentioned in section 3. For
it, each defined repository makes use of the core’s
functionality in order to present information.

The core needs to be configured for each project
specifically, in order to respond to each application
developed in the Institute. This gives rise to
ProyectDataScript (PDS), an application configuration
file, which has the description of the project’s DB
(server, DBMS, user, password), the style interfaces will
have (CSS, Icons), as well as the necessary additional
information.

By means of the PDS, the core has the system
configuration and the information which is common to all
the repositories.

On its part, a file called FDS (FormDataScript) was
defined, and is in charge of providing all the specific
information of each repository and of the table to which
it refers. With this data descriptor, PHP4DB can provide
all the functionality for the associated repository. FDS
describes, among many other things, the following
information:

• Titles for each repository operation
• Name of the DB table, to which the repository

refers
• Fields of the DB table, where for each of them

we have:
o Field Name
o Significant Label to show
o Visibility in grid/reports
o Visibility in filter
o Field Type

• Access for each function of the repository, with
the objective to enable/disable functions
according to the user’s profile.

Figure 4 presents the structure of the PHP4DB
Framework. Each FDS contains the information of a
particular repository. When one of these repositories is
invoked, the FDS sends all the information to the
PHP4DB core, which carries out some of its functions,
recovering the DB’s information.

It is worth to mention that each new functionality
incorporated to the Framework’s core, such as data
export to a particular format, is obtained by each
repository without any modification. The same happens
with the maintenance of each functionality or error
correction; every repository will receive these benefits,
without altering its contents.

It is interesting to stress that when we need to create a
new repository, it is not necessary to add any
programming (be it PHP, HTML, or SQL code). We only
need to create the FDS associated to the repository.

Figure 4: Structure of the PHP4DB Framework

Assistant for the creation of FDS

Even though developers can generate/modify FDS
manually, a tool which automates this task has been
created, saving time and avoiding errors due to the
cumbersomeness of the manual option.

This tool is a desktop application, called PHP4DB
Assistant, which in very few steps allows creating FDS
for each repository. Taking into account that PHP4DB is
a Framework meant to coexist with several projects
simultaneously, the first task consists in using the FDS
associated to the project in which the new repository is to
be added. PHP4DB Assistant visualizes the tables of the
project’s DB, where the user chooses the table to which
the new repository will refer.

Once the table is selected, the information of its fields is
automatically deployed, and the user should then
configure some details such as: (1) the labels of the
fields, (2) the type of basis data of each field (text,
number, foreign key, etc.), (3) the titles of the different
actions, (4) the functionalities which will be active for the
repository, etc. Figure 5 presents a summary of these
details.

Once configured, the FDS file is stored in a web server,
and we are ready to present the repository from any
browser.

JCS&T Vol. 7 No. 1 April 2007

88

Figure 5: Creation of a repository with PHP4DB Assistant

Characteristics of the repositories

Types of fields: In FDS files, the information
about the fields to be presented in the forms, grids, filters,
and reports is described. These fields vary one from each
other. For instance, the way to present a date in a form
should not be the same as that to show a text. For this
reason PHP4DB identifies each field with a particular
type.

At present, the Framework can work with the following
field types:

• Short and long texts
• Integers and floating number
• Dates
• Images
• Foreign fields
• Booleans

Having an object-oriented design, adding a new data type
to the Framework is not a costly task. In this way, it is
possible to easily extend the Framework, enhancing the
repositories’ scope.

Events: Even though all the basic
functionalities of a repository can be automatically
solved, there exist cases in which some of them need to
behave in other ways.

PHP4DB offers the possibility that the repositories have
orientation to events, allowing running action in given
moments of the execution. In order to do this, PHP4DB
verifies whether the FDS being run has defined the event
corresponding to the running point. If it is defined,
PHP4DB invokes the event; otherwise, it keeps on
working normally. Events such as
before_execute_insert() or after_execute_insert(), just to
quote some, increase the Framework’s dynamism level.

Relation to other functionalities: It was
mentioned that within the ideal working environment
would be that in which the development team dedicates
the time in modules which require a specific
programming, without loosing it in the development of
the repositories.

In the case of having specific modules, there exists the
need to relate them to other repositories. Figure 6 shows
how a particular record can be related to other functions
of the system. By means of a drop-down list, or simple
icons in each grid row, an action can be applied to a
selected record. These actions imply calls to other

modules which have been specifically developed, or else,
other repositories created with the PHP4DB Assistant.

Figure 6: Relation to other functions

4. RESULTS OBTAINED

As previously mentioned, the Institute has developed a
large number of systems with transference. For this
reason, having a tool like PHP4DB has minimized the
codification time, among many other things. Next, a
description of the scope of some of these projects can be
found.

Area 6 – Real State Professionals

Web-oriented CRM (Customer Relationship
Management) Multi-Real State System, at present under
development in Spain. Its objective is to manage real
state activities inherent in a real-state life cycle, from its
entrance to the market to its sale. In addition, it provides
the service of objectively estimating the sale price that a
real state should have, basing on other real states with
similar characteristics. This is the central process of this
application and is called CMA (Comparative Market
Analysis)

Hospital Full Management Software

The objective sought under the project called SAIH-LIDI
consists in the complete computerization of hospitals,
both with self-management and those depending of a pre-
assigned budget.

This is accomplished by integrating the attendance at
medical centers, admission to hospitals, and external
services (which in some cases may consists in patients’
referrals), generating a basic Medical Record for each
patient. In addition, it allows managing the collection
from Medical Insurance Services. All this allows
generating an informative quality framework towards the
patient and external consultations, solving the internal
management of the hospital.

Provincial Directorate of Computer Science and
Communications of the Province of Buenos Aires

The Province of Buenos Aires is managing a public
bidding process to provide the “Data Transmission and
Order Channels Service (Servicio de Transmisión de
Datos y Canales de Ordenes)” for the Single Provincial
Network of Data Communication (Red Única Provincial
de Comunicación de Datos). RedPIBA (Provincial
Network of Research and Development Teams in areas of
Computer Sciences) was in charge of defining the
procedure guidelines so as to unify criteria and the
mechanism to obtain the acceptance of nodes, defining
the framework for their training in specific tasks, and
controlling the projects monitoring. [15]

This provincial network has 1300 nodes, over each of
which an audit is carried out and then each enters the new
network production. For this, the province was divided
into 6 zones, each of them with a University belonging to

JCS&T Vol. 7 No. 1 April 2007

89

the RedPIBA as head: UNLP (National University of La
Plata), UNLM (National University of La Matanza),
UTN (National Technologic University), UNLu
(National University of Luján), UNC (National
University of the Center), UNS (National University of
the South). Each one has a coordinator and two teams of
technical specialists. Also, there exists a central
coordination team.

Coordination tasks for the certification were carried out
by means of a WEB application developed with
PHP4DB.

5. CONCLUSIONS

The use of a Framework in the projects was crucial, since
it was possible to automate a high percentage of use cases
(UCs).

In the project Area6, of the 50 UCs only one was
specifically programmed (CMA) [16], being the most
complex function which requires statistics and particular
ways of use. SAIH-LIDI, on its part, has 30 UCs
implemented up to the present. Of these 30 UCs, only 12
(Shifts and Chemists’) were specifically implemented.
DPIC has 30 UCs and only 4 received particular
programming.

The benefit obtained with PHP4BD is quite clear. The
development time was significantly reduced by the use of
the tool, with the subsequent satisfaction of the user due
to the early availability of the required products. In
addition, the centralization provided by PHP4DB has
allowed obtaining homogeneous interfaces, easing the
posterior maintenance.

Finally, it is worth to notice the expectation created by
the availability of this framework for future applications
that require web orientation.

6. FUTURE WORK

Even though the Framework has such a maturity that
enables operability with any table of any DB engine, the
technological whirlwind leads to taking into account
other information domains such as XML files or views
encompassing information of several tables. With these
extensions the Framework usability will be enhanced,
allowing it to get along with a larger quantity of Systems.

The incorporation of new type of data for PHP4BD will
also be beneficial. Examples of these benefits are the
possibility of storing any type of file in tables
(.doc,.mp3,.mpeg), or having fields whose values are
defined by the user, among many others. Any of these
will increase the product usability even more.

Last but not list, an important task is to take the assistant
mentioned in section 3 into a WEB platform, so as to
create/modify the repositories from any location.

7. REFERENCES

[1] Roger Pressman, Ingeniería de Software. Un enfoque
práctico, Mc Graw Hill, 1998.

[2] M. Paulk, Capability Maturity Model for Software,
Software Engineering Institute, Cargenie Mellon
University, 1993.

[3] A. Davis, Principles of Software Development, Mc
Graw Hill, 1995.

[4] M. Walsamakis, Generación Automática de Código a
partir del modelo de datos, CACIC2004, La Matanza,
2004.
[5] Ian Sommerville, Ingeniería de Software, 6ta Edición,
Addison Wesley, 2002.

[6] Batini, Navathe Cieri, Diseño conceptual de Bases de
Datos, Addison Wesley, 1990.

[7] Dan R. Olsen, Developing User Interfaces, Morgan
Kaufmann, 1998.

[8] Watts S Humphrey, Introduction to the Team
Software Process, Addison-Wesley Professional, 1999.

[9] Clarion 4. Manual de Referencia. Top Speed.

[10] Rodriguez de la Puente Santiago, Programación de
aplicaciones WEB, Paraninfo, 2003.

[11] M. Torchiano, M. Morisio. Overlooked Aspects of
COTS-Bases Development, IEEE Software, 2004.

[12] Johannes Sametinger, Software Engineering with
Reusable Components, Springer, 2001.

[13] Rick Leander, Building Application Servers,
Cambridge University Press, 2000.

[14] http://pear.php.net/

[15] http://www.dpic.sg.gba.gov.ar

[16]
http://homebuying.about.com/library/glossary/bldef4.htm

[17] Loucopoulos, P., Karakostas, V., System
Requirements Engineering, McGraw-Hill, 1995.

[18] Beck K., Una explicación de la Programación
Extrema, Addison Wesley, 2002.

JCS&T Vol. 7 No. 1 April 2007

90

http://lidi-db/horde/services/go.php?url=http%3A%2F%2Fpear.php.net%2F
http://homebuying.about.com/library/glossary/bldef4.htm

