
Complexity of XOR/XNOR Boolean Functions: A Model using Binary
Decision Diagrams and Back Propagation Neural Networks

Ali Assi

Department of Electrical Engineering, United Arab Emirates University, UAE
P.W.C. Prasad and Azam Beg

College of Information Technology, United Arab Emirates University, UAE
V.C. Prasad

Faculty of Engineering, Multimedia University, Malaysia
ali.assi@uaeu.ac.ae

ABSTRACT

This paper proposes a model that predicts the complexity
of Boolean functions with only XOR/XNOR min-terms
using back propagation neural networks (BPNNs) applied
to Binary Decision Diagrams (BDDs). The BPNN model
(BPNNM) is developed through the training process of
experimental data already obtained for XOR/XNOR-based
Boolean functions. The outcome of this model is a unique
matrix for the complexity estimation over a set of BDDs
derived from Boolean expressions with a given number of
variables and XOR/XNOR min-terms. The comparison
results of the experimental and BPNNM underline the
efficiency of this approach, which is capable of providing
some useful clues about the complexity of the circuit to be
implemented. It also proves the computational capabilities
of NNs in providing reliable classification of the
complexity of Boolean functions.

Key words: Binary Decision Diagrams (BDDs), Reduced
Ordered Binary Decision diagrams (ROBDDs),
XOR/XNOR min-terms, Complexity, Boolean Functions.

1. INTRODUCTION
The continuous increase of integration level of modern
digital circuits imposes high and increasing needs for
methods and algorithms used in VLSICAD design
verification and testing [1], [2], [3]. The efficiency of any
method depends on the complexity of Boolean functions
representing circuits under test and verification. Research
on the complexity of Boolean functions using non-uniform
computation models is today an active research area in
theoretical computer science [4], [5]. It has a direct
relevance to practical problems in the CAD of digital
circuits.
ROBDD is an efficient structure for representing and
manipulating Boolean functions symbolically and has
been successfully applied to solving many problems in
VLSICAD [4], [5], [6]. The BDD representation is defined
and proposed by Akers [7] and extended by Bryant [8].
BDDs are compact representations for many functions and
lend themselves for fast execution of logical operations.
One of the constraints required to achieve canonicity is the
ordering imposed by the input variables [9]. The size of
ROBDD, measured in number of nodes it contains,
depends on this order and may vary drastically from one
ordering method to the other. Some functions, such as
adders, lead to a BDD size that exponentially or linearly
varies with the number of variables depending on the
variable order selection [9]. Due to memory and
processing-time constraints associated with real world
CAD applications, it is important to minimize the ROBDD
size as much as possible [10], [11].
BPNNs are common classes of artificial NNs. They are
named after a very familiar teaching method for NNs

called the Back-Propagation. Some examples of inputs and
their corresponding known-correct outputs are presented
to the BPNN. Internal structures of the BPNN are then
numerically adjusted to iteratively improve the difference
between the input and desired outputs [12], [13], [14]. A
lot of research works have been carried out to study the
relationship of Boolean function and NN [15] as well as to
analyze the measure of the Boolean function complexity
related to their implementation in NN [15].
The base of this work is the mathematical model obtained
for the BDD complexity using XOR/XNOR min-terms
[16]. In this work we apply the BBNN method to ROBDD
to estimate the complexity of Boolean function with only
XOR/XNOR min-terms. The proposed BPNNM provides
good alternative to other methods previously proposed by
the same authors. In section 2 we provide some
background information pertaining to BDDs and NNs.
Section 3 reviews the previous works done by the same
authors on the estimation of BDD complexity based on
mathematical models. The proposed BPNNM for the
complexity estimation of Boolean functions with only
XOR/XNOR min-terms is explained in the 4th and 5th
sections. Finally we conclude this paper with our future
developments.

2. PRELIMINARIES

2.1 Binary Decision Diagram (BDD)
Basic definitions for binary decision diagrams are detailed
in [6], [7], [8], [9].

Definition 1: A BDD is a directed acyclic graph (DAG).
The graph has two sink nodes labeled 0 and 1,
representing the Boolean functions 0 and 1. Each non-sink
node is labeled with a Boolean variable v, and has two out-
edges labeled 1 (or then) and 0 (or else). Each non-sink
node represents the Boolean function corresponding to its
1 edge if v=1, or the Boolean function corresponding to its
0 edge if v=0.

Definition 2: An Ordered Binary Decision Diagram
(OBDD) is a BDD in which each variable is encountered
no more than once in any path and always in the same
order along each path.

Definition 3: A Reduced Ordered Binary Decision
Diagram (ROBDD) is an OBDD where each node
represents a distinct logic function. It has the following
two properties:

(i) There are no redundant nodes in which both of the
two edges leaving the node point to the same next
node are present within the graph. If such a node
exists, it is removed and the incoming edges
redirected to the following node.

JCS&T Vol. 7 No. 2 April 2007

141

mailto:ali.assi@uaeu.ac.ae

(ii) If two nodes point to two identical sub-graphs (i.e.
isomorphic sub-graphs), then one sub−graph will
be removed and the remaining one will be shared
by the two nodes.

2.2 Neural Networks (NNs)
NN mimic the ability of a human brain to find patterns and
uncover hidden relationships in data. NNs can be more
effective than statistical techniques for organizing data and
predicting results, and are very efficient in modeling non-
linear systems [17], [18], [19]. A NN is defined as a
computational system comprising of simple but highly
interconnected processing elements (PEs) (or neurons) (
Figure 1) [13]. PEs are NN equivalents of biological
neurons. Similarly, neural network interconnections are
equivalents of synapses that connect a neuron to others.
Information is processed by the PE’s by dynamically
responding to their inputs. Unlike conventional computers
that process instruction and data stored in the memory in a
sequential manner, the NNs produce outputs based on a
weighted sum of all inputs in a parallel fashion.

Figure 1. Processing element (PE) – building block of a
neural network

In Figure 1 the inputs (i(0)..i(n-1)) to a PE are scaled with
weights (w(0) .. w(n-1)) and summed up before being
passed through an activation function. The activation
function determines whether a PE activates (fires) or not.
A sigmoid (non-linear) activation function has an s-shaped
output between the limits [0, 1]. The function (1) is
defined as [20]:

)1(
1

xe
Y −+
= (1)

Each input of an NN corresponds to a single attribute of
the system being modeled. The output of the NN is the
prediction we are trying to make. Figure 2 shows the
topology of a simple 5-layer feed-forward NN with 2
inputs and one output.
The NN has 2 input neurons (PE(ip1), PE(ip2)), three
hidden layers with 5 neurons each (PE(hnm) is the mth
neuron in nth hidden layer), and one neuron in the output
layer (PE(op1)) [20]. The BPNN is fully-connected,
meaning; all neurons in one layer connect to all neurons in
the next layer. NNs use different types of learning (or
training) mechanisms, the most common of them being
supervised learning. In this method of learning, a set of
inputs is provided to the NN and its output is compared
with the desired output.

Figure 2. Topology of 5-layer feed-forward neural
network

The difference between the actual and the desired outputs
is used to adjust the weights (Figure 1) to different PEs in
the network. The process of adjusting weights is repeated
until the output falls within an acceptable range.
To ensure a robust NN design, the set of input data and
corresponding output data has to be chosen carefully. The
input-output data set for an NN is called a training set.
Additionally, special attention has to be paid to the
formatting and scaling of the data for effective NN
training [20]. The available data is divided into training
and validation sets. An NN is only trained with the
training set. Validation set is run on the NN to verify that
the inputs are producing desirable outputs. If the
validation phase produces large deviations, the training set
or the network structure needs to be re-examined; re-
training is required in this case [20].

3. PREVIOUS WORK

In this section we briefly describe the background concept
and results achieved in the area of the estimation of BDD
complexity prior to introducing the BPNNM.

3.1 Relation between the Size of a Boolean function and
the BDD Complexity
The complexity of the ROBDD mainly depends on the
number of nodes represented by the BDD. An experiment
was done in [21] to analyze the complexity variation in
BDDs i.e. the relation between the number of product
terms and the number of nodes for any number of
variables. The experimental and equation graph (Figure 3)
shows that the complexity of the BDD can be modeled
mathematically by (2).

1)(+⋅⋅= ⋅− γβα NPTeNPTNN (2)

where, NN is the number of nodes that represents the
complexity of the BDD, NPT is the number of non-
repeating product terms in the Boolean function,α , β
and γ are three constants. Using curve fitting techniques,
the variations of α, β and γ were mathematically modeled
and represented by the following equations (3), (4) and
(5).

)51.1063.0(9855.0 NVe ⋅⋅=α (3)
)298.1()01552.0(2072.6703115.1 NVNV ee ⋅−⋅− ⋅+⋅=β (4)
)5072.1()4188.0(9723.4196228.0 NVNV ee ⋅−⋅− ⋅+⋅=γ (5)

Where, NV is the Number of Variables.

JCS&T Vol. 7 No. 2 April 2007

142

Figure 3. Simulation / Mathematical ROBDD Complexity
for 11 Variables

3.2 XOR/XNOR Min-term Representations
In this work, the complexity of ROBDD for a specific
group of XOR/XNOR min-terms is analyzed [16]. A
graph that represents the ROBDD complexity and the
behavior of XOR/XNOR is modeled mathematically by
equation (6): Figure 4 shows that the mathematical model
represented by this equation provides a good
approximation of the experimental results of ROBDD
complexity.

[1)(
5.022 +−−⋅= ββα NXMNN] (6)

where, NN is the number of nodes that represents the
complexity of ROBDD, NXM is the number of
XOR/XNOR min-terms in the Boolean function, β is 2n-
1 with n the number of input variables, and α = 0.605234
for 10 variables.
.

Figure 4. Simulation / Mathematical ROBDD Complexity
for XOR/XNOR Min-terms

4. ANALYSIS OF XOR/XNOR MIN-TERM
REPRESENTATIONS

The Colorado University Decision Diagram (CUDD)
package [22] was used to analyze the complexity variation
in ROBDDs for a specific group of XOR/XNOR min-
terms [19]. The number of variables was fixed to n. The
Symmetric Sift variable ordering technique was selected
from the CUDD and hundred different Boolean functions
with one XOR min-term and another hundred different
Boolean functions with one XNOR min-term were
generated. The ROBDDs for all 200 Boolean functions
were built and the average number of nodes in all
ROBDDs was computed. The same procedure was
repeated for different number of XOR/XNOR min-terms
(2, 3, 4…etc) until the maximum possible number of
XOR/XNOR min-terms (2n-1). A graph that represents the
ROBDD complexity in terms of the number of nodes with

respect to the number XOR/XNOR min-terms of the
Boolean function was then plotted.

5. APPLICATION OF NEURAL NETWORKS TO
BOOLEAN FUNCTION COMPLEXITY

MODELING
This section covers the definition and implementation of
the BPNNM for modeling the XOR function complexity
(Figure 5). Inputs to the model are (1) number of variables
and (2) min-terms; and the output (or prediction) is the
tree-size.

Figure 5. BPNNM block diagram for XOR function
complexity prediction

5.1 Data Collection and Processing
For the BPNNM in this paper, the training and validation
data sets were obtained based on the experiments of
section 4. Pre-processing the data sets can take a
considerable amount of resources for a practical and
reliably functioning BPNNM [18], [23]. In our research,
the first data pre-processing step was to transform the data
set in such a way that inputs have equitable distribution of
importance. In other words, the larger absolute values of
an input should not have more influence than the inputs
with smaller magnitudes [13]. The need of such equitable
distribution can be explained with Figures 6 and 7. Figure
6 shows the raw (original) data for 2 to 12 variables.
Notice that the plots for 2 to 7 variables are hardly visible
when all variables are plotted on the same scale. If the data
were presented in its original form to the NN for training,
only the 8- to 12-variable cases may be learnt by the
BPNN and 2 to 7 variables values may be ignored. So in
order to provide similar importance to all variable values
(2 to 12), we performed pre-processing as explained in
section 5.2. The data after pre-processing is plotted in
Figure 7. As we can see now, the different plots (for 6-, 7-,
and 8-variables) are in similar ranges which can ease the
BPNN learning process.

0
50

100
150
200
250
300
350
400
450
500

1 143 285 427 569 711 853 995 1137 1279 1421 1563 1705 1847 1989

Number of XOR/XNOR Minterms

R
O

B
D

D
 C

om
pl

ex
ity

 12 var

11 var

10 var

9 var
8 var

Figure 6: Un-scaled (raw) data for XOR function
complexity.

JCS&T Vol. 7 No. 2 April 2007

143

5.2 Training and Testing the BPNNM
In order to ‘use’ or ‘run’ a trained BPNN, de-
normalization and de-transformation has to be done to
restore the predicted outputs to the original ranges. Steps
employed in 'training' and 'running' the network is
summarized here:

5.2.1 Data set
We had acquired a total of 4106 data sets (also called
facts/training facts) during our simulations of XOR/XNOR
functions. We used 90% of the data sets (facts) as training
set and the remaining 10% as validation set.

5.2.2 Data pre-processing
We pre-processed/scaled both the horizontal and vertical
axis; horizontal axis represents the min-terms (MT) and
vertical axis the Tree-size (TS). Equations for MT (7) and
TS (8) scaling are given below:

1
max

2 −
⋅

= vscaled
MTMTMT (7)

Where,
MT = original value of minterm
MTscaled = scaled value of minterm
MTmax = maximum value of minterm for all (2 to 12)
variables = 2048
V = number of variables

vscaled SFTSTS ⋅= (8)

Where,
TS = original value of tree-size
TSscaled = scaled value of tree-size
SFv = scaling factor corresponding to variable v (listed in Table 1)

Table 1: Scaling factors for different variables

Variables
V

Max Tree-size
TSpeak

Scaling Factor
SFv=max

(TSpeak)/TSpeak

2 3.00 161.77

3 5.00 97.06

4 7.50 64.71

5 11.70 41.48

6 18.88 25.73

7 32.00 15.16

8 54.20 8.95

9 91.86 5.28

10 156.33 3.10

11 272.71 1.78

12 485.33** 1.00
 ** max (TSpeak) = 485.33

Effect of scaling on 2- and 3-variable data can be seen
numerically in Table 2

All variables (2 to 12) have horizontal and vertical ranges
close to each other thus greatly improving the chances of
NNs learning all the curves.

Table 2: Effect of pre-processing/scaling on min-terms
and tree-size

ORIGINAL
VALUES SCALED VALUES

Variables
v

Minterms
MT

TreeSize
TS

Minterms
MTscaled

TreeSize
TSscaled

2 0 1 0 161.77

2 1 3 1024 485.33

2 2 3 2048 485.33

3 0 1 0 97.06

3 1 4 512 388.26

3 2 4 1024 388.26

3 3 5 1536 485.33

3 4 4 2048 388.26

0
50

100
150
200
250

300
350
400

450
500

1 301 601 901 1201 1501 1801

Number of XOR/XNOR Minterms (Scaled)

R
O

B
D

D
 C

om
pl

ex
ity

 (
Sc

al
ed

)

Figure 7. Scaled data (after pre-processing the raw data
with equations 7 and 8) for XOR function complexity.

After the NN has been trained with the scaled data, its
running/use would involve these steps:
a) Scale the input by using the equations in section 5.2.2
b) Present the scaled value to the BPNN
c) Restore to its original range the output of the BPNN to
get the actual result

5.2.3 BPNNM configuration and training
In general, as the number of hidden layers increases, the
prediction performance of a BPNN goes up, but this
continues only up to certain extent, after which the BPNN
performance starts to deteriorate [23]. To find the
optimum topologies for our BPNNs, we experimented
with up to 3 hidden layers; each layer consisted of a
different number of neurons. Most practical problems can
be modeled with one or two hidden layers [24]. However,
we explored a larger design space by experimenting with a
maximum of 3 hidden layers. The details of some of our
BPNN’s experiments are listed in Table 3. Two neurons in
the input layer correspond to two inputs, i.e., number of
variables and min-terms. The single output neuron
represents the model output of tree-size.

The performance metric for an BPNN was the "percentage
of facts learnt with 96% (or more) accuracy". We chose to
limit the training iterations (called epochs) to 500 because
most of our BPNN configuration stopped improving their
performance before they reached the 500-epoch count.
From multiple BPNN configurations we experimented
with, we chose one hidden-layer BPNN (highlighted row
#3 in the table 3) with 5 neurons in its hidden layers. This
configuration provided nearly the same training accuracy
as its larger counterparts (rows #4, #7, #8, #10 and #11).

JCS&T Vol. 7 No. 2 April 2007

144

Table 3. Configuration & Training Statistics For XOR
function complexity BPNN's *

CONFIGURATION TRAINING
STATISTICS

N
o.

In
pu

t L
ay

er
 N

eu
ro

ns

H
id

de
n

La
ye

r 1
 N

eu
ro

ns

H
id

de
n

La
ye

r 2
 N

eu
ro

ns

H
id

de
n

La
ye

r 3
 N

eu
ro

ns

O
ut

pu
t N

eu
ro

ns

Fa
ct

s L
ea

rn
t

Fa
ct

s N
ot

 L
ea

rn
t

%
 F

ac
ts

 L
ea

rn
t

Ep
oc

hs

1 2 3 1 3706 201 94.9% 183

2 2 4 1 3741 166 95.8% 188

3 2 5 1 3751 156 96.0% 38

4 2 7 1 3751 156 96.0% 150

5 2 10 1 3726 181 95.4% 500

6 2 3 3 1 3223 684 82.4% 500

7 2 5 5 1 3752 155 96.0% 74

8 2 7 7 3 1 3764 143 96.3% 88

9 2 3 3 5 1 3373 534 86.3% 500

10 2 5 5 5 1 3751 156 96.0% 279
* Brain Maker training parameters: Training tolerance = 0.07;
testing tolerance = 0.07; learning rate adjustment type = heuristic.
(See [26] for detailed explanation of these settings).

The matrices containing weights for different neuron
layers of the chosen 2-5-1-neuron BPNN (#3) are given in
Tables 4 and 5. For example, weight in ip1-h11 cell in
Table 4 refers to weight between the input "ip1" and "h11"
neuron of the first hidden layer. Similarly, in Table 3, the
weights between the hidden and output layers are shown.

Table 4. Weight Matrix – Input Neuron Layer to Hidden

Neuron Layer-1
 ip1 ip2

h11 2.127 7.687

h12 6.390 -3.640

h13 -2.748 6.275

h14 3.577 -4.510

h15 -5.157 -6.266

Table 5. Weight Matrix – Hidden Neuron Layer-1 to

Output Layer
 h11 h12 h13 h14 h15

op1 -5.972 -0.307 1.187 -2.991 1.544

5.3 BPNN Modeling Results and Analysis
Due to the inherent nature of NN, the input values used for
running the BPNNM should be kept somewhat close to,
but not necessarily the same as, the input values in the
training set. Any significant deviations of the running set
from the training set can provide misleading results. We
used an arbitrary set of values for number of variables and
number of min-terms, and used the BPNNM to predict the
XOR/XNOR function complexity.
Figure 8 indicates the comparison for experimental results
and BPNNM predictions of ROBDD complexity for 10

variables. It can be inferred that the BPNNM results
provide a very good approximation of the ROBDD
complexity.

0

20

40

60

80

100

120

140

160

180

1 38 75 112 149 186 223 260 297 334 371 408 445 482

Number of XOR/XNOR Minterms

R
O

B
D

D
 C

om
pl

ex
ity

Experimental
BPNNM

Figure 8. Complexity analysis of Experimental / Neural
network models for 10 variables

The same work has been repeated for Boolean functions
with 2 to 15 variables. Figures 10 and 11 illustrate
experimental and predicted BPNNM results for variables 8
and 12 respectively.

0

10

20

30

40

50

60

1 11 21 31 41 51 61 71 81 91 101 111 121

Number of XOR/XNOR Minterms

R
O

B
D

D
 C

om
pl

ex
ity

Experimental
BPNNM

Figure 9. Complexity analysis of Experimental / Neural
network models for 8 variables

0

100

200

300

400

500

600

1 177 353 529 705 881 1057 1233 1409 1585 1761 1937

Number of XOR/XNOR Minterms

R
O

B
D

D
 C

om
pl

ex
ity

Experimental
BPNNM

Figure 10. Complexity analysis of Experimental / Neural
network models for 12 variables

Screen capture for a sample Brain-Maker training session
is shown in the Figure 11. The top part shows the training
statistics, i.e. number of 'good' and 'bad' facts, tolerance,
etc. ('Good' facts refer to the training sets learnt that are
within specified accuracy and the 'bad' facts are outside
the required accuracy). The input and output data sets are
also shown near the top left of the screen. The (set of four)
graphs on the bottom left show the histograms for the
neuron weights in different layers whereas the graph on
the bottom right shows the NN error as the training
progresses.
Figure 12 shows the efficiency of the proposed BPNN,
which produces very close fit as the mathematical model

JCS&T Vol. 7 No. 2 April 2007

145

[16] for the prediction of XOR/XNOR function
complexity. It can be inferred that the BPNN was able to
match the experimental curve with minimum error for
most of the XOR/XNOR Product terms.

Figure 11. Training the BPNN using Brain-Maker

Figure 12. Comparison with Experimental and
mathematical models

6. CONCLUSION
In this research work, we have proposed a new ROBDD
complexity prediction methodology based on neural
network as another alternative to the CUDD simulation
and the mathematical models presented by the same
authors. An advantage of this model is that it is a single
BPNNM for the calculation of ROBDD Complexity for
different number of variables and number of XOR/XNOR
minterms. Once the BPNNM is developed, it could be
used to conduct further experiments with different types of
inputs, in a fraction of the time what a circuit simulator
would take. The results show the capabilities of training
algorithms in neural networks, which produce a close
match for the CUDD simulation with average errors of
0.51% for the calculation of the ROBDD complexity. In
light of the results, we conclude that the proposed
BPNNM in this work could be a valuable tool for
exploring the complex computational capabilities of neural
network. We are currently exploring the extension of this
work to other complexity applications. Extending the
BPNNM for wider range of variables to verify the
proposed method with real benchmark circuits will also be
considered.

7. REFERENCES
[1] G. E. Moore, “Progress in Digital Integrated

Electronics,” IEEE IEDM, 1975, pp. 11-13.

[2] K.S. Brace, R.L. Rudell and R.E. Bryant, “Efficient
implementation of a BDD package,” 27th ACM IEEE
Design Automation Conference 1990. pp. 40-45.

[3] I. Wegener, The Complexity of Boolean Functions,.
John Wiley and Sons Ltd, 1987

[4] C. Meinel and A. Slobodova, “On the Complexity of
constructing Optimal Ordered Binary Decision
diagrams,” Proc. of 19th Inter. Symposium on
Mathematical Foundation of Computer Science,
1994, pp.515-524.

[5] F. Somenzi, “Efficient manipulation of decision
diagrams,” Intl. J. Software Tools for Technology
Transfer, (STTT), 2001, pp. 171-181.

[6] K. Priyank, “VLSI Logic Test, Validation and
Verification, Properties & Applications of Binary
Decision Diagrams,” Lecture Notes, Department of
Electrical and Computer Engineering University of
Utah, Salt Lake City, UT 84112.

[7] S. B. Akers, “Binary Decision Diagram,” IEEE
Trans. Computers, Vol. 27, 1978, pp. 509-516.

[8] R.E. Bryant, “Graph-based algorithm for boolean
function manipulation,” IEEE Transaction on
Computers, 1986, pp. 677-691.

[9] S. Minato, Binary Decision diagrams and
Applications for VLSICAD. Kluwer Academic
Publishers, Dordrecht, 1995.

[10] J.E. Harlow, and F. Brglez, “Design of experiments
and evaluation on of BDD ordering heuristics,” Intl.
J. Software Tools for Tech. Transfer., 3: 2001,
pp.193-206.

[11] K. Priyank, “VLSI Logic Test, Validation and
Verification, Properties & Applications of Binary
Decision Diagrams,” Lecture Notes, Department of
Electrical and Computer Engineering University of
Utah, Salt Lake City, UT 84112.

[12] K. Y Siu, V. P. Roychowdhury, and T. Kailath, “
Discrete Neural Computation – A theoretical
Foundation,” Prentice Hall, 1995.

[13] T. Masters, Signal and Image Processing with Neural
Networks, John Wiley & Sons, Inc., 1994.

[14] M. Caudill, AI Expert: Neural Network Primer,
Miller Freeman Publications, 1990.

[15] I. Parberry, Circuit Complexity and Neural Networks,
MIT Press, 1994.

[16] M. Raseen, P.W.C. Prasad, S.M.N.A.Senanayake,
“XOR/XNOR Functional Behaviour on ROBDD
Representation,” Proc. of the 14th IASTED
Conference on Applied simulation and Modelling
(ASM), 2005, pp. 115-119

[17] R. E. Uhrig, “Introduction to Artificial Neural
Networks,” Proceedings of the 1995 IEEE IECON
21st International Conference on Industrial
Electronics, Control and Instrumentation, Vol. 1,
1995, pp. 33-37.

[18] K.Yale, “Preparing the right data for training neural
networks,” IEEE Spectrum, Vol. 34, Issue 3, 1997,
pp. 64-66.

[19] G. Stegmayer, and O. Chiotti, “The Volterra
representation of an electronic device using the
Netural Network parameters,” Latin American
Conference on Informatics (CLEI’2004), 2004.

[20] http://www.eco.utexas.edu/faculty/Kendrick/frontpg
/NeuralNets.htm

[21] M. Raseen, P.W.C.Prasad, and A.Assi, “An Efficient
Estimation of the ROBDD's Complexity,”
Integration, the VLSI Journal, Volume 39, Issue 3,
2006, pp. 211-228.

JCS&T Vol. 7 No. 2 April 2007

146

[22] Somenzi, F. CUDD: CU Decision Diagram Package.
<ftp://vlsi.colorado.edu/> pub/. 2003.

[23] J. Lawrence, “Introduction to Neural Networks –
Design, Theory and Applications,” California
Scientific Software Press, 1994.

[24] J. T Heaton, “Introduction to Neural Networks with
Java,” Heaton Research, Inc, 2005.

[25] “Brain Maker – User’s Guide and Reference Manual,
1998,” 7th edition, California Scientific Software
Press, 1998.

JCS&T Vol. 7 No. 2 April 2007

147

	Text3: Received: Mar. 2006. Accepted: Dec. 2006.

