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Abstract

With the rapid increase in the complexity of chips
and the popularity of portable devices, the per-
formance demand is not any more the only im-
portant constraint in the embedded system. In-
stead, energy consumption has become one of the
main design issues for contemporary embedded
systems, especially for I/O interface due to the
high capacitance of bus transition. In this paper,
we propose a bus encoding scheme, which may re-
duce transitions by reconstructing active address
streams with variable cached strides. The key
idea is to obtain the variable strides for differ-
ent sets of active addressing streams such that
the decoder reconstructs these interlaced streams
with these strides. Instead of sending the full
address, the encoder may only send partial ad-
dress or stride by using either one-hot or binary-
inversion encoding. To exploit the locality and
dynamically adjust the value of stride of active
address streams, we partially compare the previ-
ous addresses of existing streams with the cur-
rent address. Hence, the data transmitted on the
bus can be minimally encoded. Experiments with
several MediaBench benchmarks show that the
scheme can achieve an average of 60% reduction
in bus switching activity.

Keywords: Bus Encoding, Low Power, Inter-
connection, SOC

1 INTRODUCTION

As designers try to integrate multimedia and
communication applications on a system chip,
the design issues of power dissipation has become
as important as that of area and speed. In today’s
processors, a large number of input/output pins
are dedicated to interface the processor core to
the external memory through high-speed address
and data buses. The portion of input/output
(I/0) pads on a system chip consumes significant
energy of an overall system [18], because the em-
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bedded processor has much fewer transistors in-
tegrated on the chip than a general-purpose high-
performance processor. The complexity and the
physical length of bus systems will lead to an in-
creased contribution to the total power consump-
tion of a SOC.

As submicrometer technology matures, inter-
wire parasitic capacitance is no longer negligible
and even becomes a major issue. The closer geo-
metrical proximity of adjacent bus lines will form
a parasitic capacitance between them. This ef-
fect not only leads to crosstalk and delay effects,
it also leads to an increased power consumption
since the parasitic capacitance is charged and dis-
charged when there is a voltage swing between
two or more bus lines. Consequently, lowering
down the switching activity impacts the reduc-
tion of the overall system power consumption sig-
nificantly.

There are several ways to reduce the problem
of interwire capacitances, including widen the
distance between bus lines, using place & route
(P&R) tools to avoid side-by-side routing of bus
lines, change the geometrical shape of bus lines,
and bus encoding techniques. Although many en-
coding techniques for instruction-address buses
have been reported, there are not as many en-
coding methods for data address or multiplexed
address buses. In the case of instruction address
bus encoding, a high correlation between consec-
utive addresses is exploited. In the case of data
addresses, there is much less correlation between
consecutive data addresses, and the offsets are
usually much larger. It is difficult to reduce the
transitions on a data address by bus encoding.

For multiplexed address buses, compared to
data only, there is more correlation between ad-
dresses because of the presence of the instruction
address; thus, more reduction in activity can po-
tentially be obtained when compared to the data
address. However, the presence of two different
address streams (i.e., instruction and data ad-
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dresses) with different characteristics makes the
encoding even more complex.

In this paper, we focus on run-time hardware-
based bus encoding technique by dynamically
reconstructing address streams with variable
cached strides to reduce the address bus transi-
tion. It can adjust stride values according to dif-
ferent application characteristics. The key idea
is that the variable strides for different sets of ac-
tive addressing streams are recorded, and the de-
coder reconstructs these interlaced streams with
those strides obtained earlier. Instead of sending
the full address, the encoder may only send par-
tial addresses or strides by using either one-hot or
binary-inversion encoding. There is a lot of local-
ity in the memory access patterns of digital signal
processing (DSP) applications compared to gen-
eral applications. It can predict the upcoming
address references by exploiting the property of
consecutive address references. The experimental
results show that our proposed encoding scheme
can decrease the switching activity of the multi-
plexed address bus by an average of 60%.

The rest of the paper is organized as follows:
Section 2 summarizes the related work. In Sec-
tion 3, we describe the bus encoding scheme using
stream reconstruction. Section 4 gives the exper-
imental results and discusses the implementation
issues and the overhead. Finally, we conclude in
Section 5.

2 RELATED WORK

There are several kinds of encoding schemes
proposed recently. Bus-invert coding [18], a
hardware-based encoding, inverts the transmit-
ted data if the transitions are larger than half of
the bus width. It selects between the original and
the inverted patterns in a way that minimizes the
switching activity on the bus. This technique is
quite effective for reducing the number of ones
in addresses with random behavior, but it is in-
effective when addresses exhibit some degree of
locality.

Working zone [13, 14] only sends the reference
of working zone address and offset. When a new
address arrives, the offset of the address is calcu-
lated with respect to all zone registers. The ad-
dress is thus mapped to the working zone with the
smallest offset. The working-zone method uses
one extra line to show whether encoding has been
done or the original value has been sent. A stride
is a constant offset that occurs between multiple
consecutive addresses repeatedly and if detected,
can be used to completely eliminate the switch-
ing activity for such addresses. The working-zone
method has a large area and power dissipation
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overhead due to the complexity of the decoder
and encoder logic. In addition, it can completely
be ineffective with some address traces. Consider
a data-address bus where address offsets are not
small enough to be mapped to one-hot code; in
such a case, the original address is sent over the
bus, which usually causes many transitions on the
bus.

In [11, 12], Mamidipaka et al. proposed an
encoding technique based on the notion of self-
organizing lists. They use a list to create a one-
to-one mapping between addresses and codes.
For multiplexed address buses, they used a com-
bination of their method and INC-XOR [16]. In
INC-XOR, which is proven to be quite effec-
tive on instruction address buses, each address is
XORed with the summation of the previous ad-
dress and the stride; the result is then transition-
signaled over the bus. The size of the list in
this method has a significant impact on the per-
formance. To achieve satisfactory results, it is
necessary to use a long list. However, the large
hardware overhead associated with maintaining
long lists makes this technique quite expensive.
Furthermore, the encoder and the decoder hard-
ware are practically complex and their power con-
sumption appears to be quite large.

In [3], it partitions the source-word space into
a number of sectors with unique identifiers called
sector heads. These sectors can, for example, cor-
respond to address spaces for the code, heap, and
stack segments of one or more application pro-
grams. Each source word is then dynamically
mapped to the appropriate sector and is encoded
with respect to the sector head. In general, the
sectors may be determined a priori or can dynam-
ically be updated based on the source word that
was last encountered in that sector. These sector-
based encoding techniques are quite effective in
reducing the number of inter-pattern transitions
on the bus, while incurring rather small power
and delay overheads.

In [10], it introduces the bus encoding
technique, adaptive dictionary-encoding scheme
” ADES” that minimizes the power consumption
of data buses through a dictionary-based encod-
ing technique. Based on exploration of data prop-
erties on buses, it saves on average more than 25%
of bus energy compared to the raw cases for both
address and data buses.

Reference caching using UDRC [6] exploits the
fact that address reference are likely to be made
up of an interleaved set of sequential address
stream and convey the index of active stream in
UDRC format. Static bus encoding decreases the
switching activity by profiling the address stream
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Figure 1: System architecture using multiplexed
address bus

and mapping into hardware. Address level bus
power optimization (ALBORZ) [1], which calcu-
lates the weight of offset and encodes and ad-
dress level bus power optimization is an exam-
ple of static bus encoding scheme. BEAM [2] is
based on the support of a function unit called
”ISA aware unit” that can predict the upcom-
ing address. So, we would not toggle the address
bus because we can get the current address from
instruction. AMBA is the most popular bus pro-
tocol, and there are still some encoding schemes
adapted to it. In [17], a modified bus-invert cod-
ing scheme is proposed to support AMBA-based
SOC platform.

3 THE PROPOSED METHOD

Overview

The target system architecture of this paper
is illustrated in Figure 1, where multiple mul-
tiplexed address streams are considered in our
method. The data and programs are both stored
in external memory, and there is only one port
for memory address. There are two types of I/O
buses; one is the address bus, where the mem-
ory references are most correlated, and the other
one is the data bus, where bus transaction data
sent over the bus are less related. There is a
lot of locality in the memory access patterns of
digital signal processing (DSP) applications com-
pared to general applications. Take the processor
TMS320C54x (a DSP produced by Texas Instru-
ments) for an example, several addressing modes
are provided to accelerate sequential memory ac-
cess. In these memory-intensive applications, en-
ergy consumption of buses is significant. Al-
though data addresses may not be sequential,
they still follow the principles of spatial and tem-
poral locality.

As shown in Figure 2, there are three common
active address streams, including one instruction
stream and two data streams. The accesses of
instruction stream and data arrays are regular
with constant strides. Based on the above ob-
servation, we propose an encoding mechanism,
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Figure 2: Memory allocation and three address
streams

named stride-based stream reconstruction encod-
ing (SBSRE), to take advantages of consecutive
property of memory references, and the encoding
mechanism reconstructs the interlaced sets of in-
struction and data address streams with variable
strides. In addition, we consider a finite state ma-
chine to dynamically adjust the value of strides
in order to exploit the locality and regulate these
address streams.

An encoding scheme for low power buses gen-
erally consists of a predictor, a decorrelator, a se-
lector and its corresponding decoder [8]. The pre-
dictor generates a prediction of the current value
of the received input based on the past value.
Subsequently, the decorrelation phase is used to
encode the results from predictor and produce
the codeword for reducing the switching activ-
ity. Our prediction scheme consists of a predicted
address table (PAT), two previous reference ad-
dress tables (PRAT), and two stride tables (ST),
as shown in Figure 3. The PAT is used to keep
the next predicted addresses, the PRAT is used
to keep the previous referenced addresses, and the
ST is used to keep the offset between two conse-
quence accesses for next prediction. We may pre-
dict the value of upcoming address of a certain
stream based on a stride by taking advantages
of the sequential property of memory references.
Because we store those strides in a stride table,
the encoder may only send the index of the PAT
or the stride value of the address stream over the
address bus by different encoding formats accord-
ing to different prediction results.

To make this technique effective, the total
number of the frequently occurring stride pat-
terns should be much smaller than the number



JCS&T Vol. 7 No. 2

010000...000 [ Hit : most bits are 0]
010000...100 [ Partial Hit : some stride bits are needed]
010110...101 [ Miss : use the original address]

Encoder | | Decoder

Stream # PAT PRAT ST PRAT

0x 0041004 0x 0041000 4 0x 0041000
0x 0041408 0x 0041400 8 0x 0041400
0x 0041004 0x 0041000 4 0x 0041000
0x 0041204 0x 0041200 4 0x 0041200

Address Bus

Control lines (2 bits)

o

-J;J:-oa-b‘__‘

WO =
W = o

Figure 3: The proposed mechanism

format 1

[ stream# | 0000 ... 0000 |

format 2

0000 ... 0000 | stride

REGION_SIZE

stream # |

NUM_ENTRY

format 3

[ Current reference in bus-invert format

Figure 4: Encoding formats

of all possible patterns and a stride pattern in
the source should have a very high probabil-
ity to be in the ST. In other words, the source
must have a small amount of patterns that cover
most part of the address word. As our exper-
iments indicate, high-frequency stride patterns
make SBSRE technique effective for bus encod-
ing. It is not hard to understand that our pro-
posed method technique can take advantage of
temporal locality. For this reason, in some sense,
the widely used cache in memory systems can be
seen as a special case of a SBSRE technique ap-
plication.

Endocing and Decoding Algorithms

The block diagram of the proposed mecha-
nisms is shown in Figure 3. The encoder con-
tains a PAT, a PRAT, and a ST. The decoder
contains a PRAT and a ST. Initially, the con-
tents of the tables are all set to zero. When an
address word is sent the current address and the
addresses stored in the PAT will be compared.
The compared results are introduced as follows.

1. Ezactly Hit (EH). If the current input ad-
dress hits an entry in the PAT, the simplest
format 1 shown in Figure 4 can be sent over
the bus by one-hot encoding. It will only
transmit the index of the table to the de-
coder, and much fewer ones will be trans-
mitted. The control lines will send the sig-
nal indicating a hit. Using the index part
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received, the decoder can recover the refer-
enced address by adding the address in the
PRAT and the corresponding stride value in
the ST.

. Partially Hit (PH). If the current input ad-

dress partially hits (within the near regions)
an entry in the PAT, a stride is obtained by
subtracting the current address from the last
corresponding reference address in PRAT.
If the current stride is not equal to the stride
in the corresponding entry of the ST, the
current stride for the corresponding address
stream has to be dynamically adjusted. In
this case, both the index of the active stream
in the PAT and its new stride value are re-
quired to be sent over the bus by format 2
shown in Figure 4. The control lines will
send the signal indicating a partial hit. In
this case, some bits transmitting the actual
stride values will be needed.

To avoid unnecessary glitch for an array
stream with a regular stride, we further pro-
pose a stride-requlation policy as shown in
Figure 5 to keep the maximum possibility of
the stride re-usage. In the finite state ma-
chine, ’EH’ and ’PH’ means ezact hit and
partial hit respectively. We would update
the stride value when a partial hit occurs.
However, when the state changes from the
’Firm’ state to the ’Init’ state, the stride
value will be kept unchanged to avoid a
small portion of irregular strides. An ex-
ample is that the program counter some-
times has an unexpected large offset caused
by the ’branch’ instruction in an instruction
stream. For example, in Figure 6, after the
first iteration of the inner loop, the active
stream of array b becomes 'Firm’ state with
a stride value of ’0z10’. When the program
steps into next iteration of the inner loop,
the memory reference of array b changes
from 0200410048 to 0x00410000, where the
stride becomes 0z48. To prevent such an ir-
regular update glitch, we do not update the
stride value.

. Miss Predicted. If any of the addresses in

the PAT does not fully match or partially
match with the current address, a miss oc-
curs. In this case, we cannot reconstruct the
current address according to the correspond-
ing information stored in the decoder on the
receiver side. To start a new address stream,
we need to transmit the current address by
format 8 shown in Figure 4. At the same
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Figure 6: Stride-regulated policy example

time, a default stride value (8 or 4) is as-
signed to the address stream. The control
lines will send the signal indicating a miss.

Control Signals

We can observe that there are many zero bits
in format 1 and format 2 as shown in Figure
4. In this case, the one-hot encoding can be
employed to encode the stream number, and
the stride value is transmitted in binary format.
Also, exclusive-or operations are applied to for-
mat 1 and format 2 in order to further reduce
the switching activity. On a miss, the current ad-
dress is encoded by using bus-invert format. In
addition to n bits of the original address bus, ad-
ditional two control lines are required (ctri-info)
to notify the receiver side. We explain the corre-
sponding meanings of these signals as follows.

e EH. The upcoming address is exactly hit,
and the index of the active stream is sent
over the bus by encoding format 1 with one-
hot encoding.

e PH. The upcoming address is partially pre-
dicted. In other words, the address locates at
a reasonable region, and we need to transmit
both the index of the PAT and the actual
stride value by encoding format 2.

e BI_PO. The current address is not pointed
through any active stream in the PAT, and
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the value of polarity bit is ’0’. They will be

sent by format 3.

e BI P1. The current address is not pointed
through any active stream in the PAT, and
the value of polarity bit is ’1’. They will be
sent by format 3.

Design Choice of Comparison Region Size

As discussed in the previous section, the
switching activity due to the encoding format 2
is noticeable. If we enlarge the size of compari-
son region of the stride in format 2 in Figure 4,
we would have more misses caused by irregular
accesses. Enlarging the comparison region would
decrease the exact hit rate. However, it would
increase the partial predicted rate and introduce
relatively less switching activity than bus-invert
format. It is helpful to find a reasonable compar-
ison region that can efficiently reduce the switch-
ing activity with slightly lowering the exact hit
rate, which would be discussed in our experi-
ments.

4 EXPERIMENTAL RESULTS

We implemented our proposed encoding scheme
by SimpleScalar [4], and simulated the traces
of MediaBench benchmarks to obtain the to-
tal switching activity. The address bus width
in SimpleScalar is 32-bit, and the instruction
word occupies 64-bit width. Our set of bench-
mark is composed of six applications from Me-
diaBench. In experiments, we first show the oc-
currence frequency of each encoding format and
the corresponding effect on total switching ac-
tivity. In experiments, the number of maximum
active address streams in the PAT is four with
the least recently used (LRU) replacement policy
[5]. Then, we will show the comparison results
for different entries of the PAT. In addition to
the proposed method, we have implemented bus-
invert [18], asymptotic zero transition [9], work-
ing zone [13, 14], reference caching with UDRC
[6] for comparison purposes. We also simulate
the power savings of our proposed optimization
mechanism. Finally, we discuss the implemen-
tation issues and the overhead of our proposed
method.

The effect of the comparison region size

In Figure 7, the left-hand side shows the occur-
rence frequencies of "EH’, 'PH’, and ’miss’ with
different region sizes. The right-hand side shows
the corresponding effect on total switching activ-
ity with different region sizes. From the results
of these figures we can find that there is a trade-
off between the size of comparison region (stride
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Figure 7: The occurrence frequency and the
switching activity with different region sizes

bits) and the switching activity. If we increase the
size of comparison region, the exact hit (EH) rate
will be slightly decreased due to the irregular ac-
cesses. In addition, the partial hit (PH) rate will
be significantly increased when the size of com-
parison region is increased. In this situation, part
of the miss rate will be replaced by the partial hit
rate. Instead of transmitting the encoding format
in miss, we transmit the same data in partial hit
(PH) format due to the larger region size, and
the switching activities can be decreased. How-
ever, we cannot unlimitedly increase the region
size due to the heavy hardware implementation
cost. Therefore, finding a balanced point that
achieves good savings in switching activity with
slightly decreasing the occurrence frequency of
exact hit (EH) is important. Based on our ex-
perimental results, eight bits would be a good
choice of region size to achieve good results.

The effect of different entry numbers of the
table

There is a trade-off between the design cost and
switching reduction. As shown in Figure 8, the
switching reduction with two entries in the PAT
is about 50%. The switching reduction with four
table entries can achieve about 60%. If we al-
low at most eight active address streams in each
instant of time, we can get 65% switching reduc-
tion. Based on these results we can find that
more entries of the table, more switching reduc-
tion can be achieved. However, the switching re-
duction with four entries may be a good choice
for implementation because of the lower hardware
cost.

153

April 2007

Switching reduction (%)

5 70%
£ 0%
% i o
o
= s 0% |4
BT 20% o3
2 10%
2 0% o o ) . o
& &
2 Sy & ¢ 5
S S o «
& < ¢ Q

Switching reduction

Figure 8: Comparison with different entry num-
bers of the table

Comparison with other encoding schemes

In this section, several encoding schemes were
implemented for comparison, and the results are
shown in Figure 9. Bus-invert encoding scheme
can restrict the maximum transition to n/2 re-
gardless of the locality of transmitted data. In
our experimental results, bus-invert can achieve
15% reduction. The approach of Tzero is to ex-
ploit the consecutive property. However, there
are several active address streams at each instant
of time. So, it will miss predicted caused by only
one address stream maintained. The average re-
duction in Tzero is about 15%. The switching
activity reduced by working zone is 50%, and the
average reduction in reference caching is about
25%. On average, the switching activity of our
proposed approach can achieve 60%. In this ex-
periment, the maximum number of active address
stream is four, and the comparison region size is
eight bits.

5 CONCLUSION

Interwire parasitic capacitance is no longer negli-
gible and even becomes a major issue. The closer
geometrical proximity of adjacent bus lines will
form a parasitic capacitance between them. This
effect not only leads to crosstalk and delay effects,
it also leads to an increased power consumption
since the parasitic capacitance is charged and dis-
charged when there is a voltage swing between
two or more bus lines. In this paper, we propose
a bus encoding scheme for reducing the switch-
ing activity on address buses. It predicts the
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Figure 9: Comparison of different encoding
schemes

upcoming reference address by run-time recon-
structing address streams with previous cached
strides. Based on the prediction results, we can
efficiently achieve about 60% reduction of switch-
ing activity.
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