
Utilizing Block Size Variability to Enhance
Instruction Fetch Rate

AZAM BEG

abeg@uaeu.ac.ae
College of Information Technology, United Arab Emirates University,

Al-Ain, Abu-Dhabi, United Arab Emirates (UAE)
and

YUL CHU
chu@ece.msstate.edu

Department of Electrical & Computer Engineering, Mississippi State University,
Mississippi State, MS 39762, USA

ABSTRACT

In the past, instruction fetch speeds have been improved
by using cache schemes that capture the actual program
flow. In this paper, we elaborate on the architecture and
operation of an instruction cache named Variable-Sized
Block Cache (VSBC) that also makes use of the dynamic
behavior of a program. Current trace-based cache schemes
usually have some instructions stored repeatedly; this
redundancy is eliminated in VSBC. Our cache also allows
storage of basic blocks of arbitrary sizes, in multiple-way
cache structure. An overall comparison of trace miss rate
and average trace length shows VSBC to be a better
performing cache scheme than TC, using SPECint2000
integer benchmarks.
Keywords: Basic blocks, instruction cache, trace cache,
block cache

1. INTRODUCTION AND RELATED WORKS
Caching and branch prediction are two techniques that
exploit the practical nature of common programs. Caching
operation is based on the observation that the programs
tend to access contiguous locations in memory (spatial
locality) or the same memory locations repetitively
(temporal locality). Effectively, the caches try to
approximate the availability of an ideally large memory to
the programmer. A fundamental limitation of a
conventional instruction cache (IC) is that, due to taken-
branches, only a single basic block can be fetched in a
cycle. (A basic block is a set of instructions separated by a
control instruction, such as a conditional or non-
conditional jump) [1]. The technique of storage of basic
blocks has been discussed in several research papers [2],
 [3], [4]. These techniques, however, still limited fetching
of instructions to one or two basic blocks per cycle; this
constraint was overcome by Rotenberg, et al’s [5] trace
cache (TC); it stored instructions as the program
execution progressed. If the stored instruction sequence
was encountered again during the program execution, the
instruction sequence was delivered directly from TC to
the instruction decoder. As a stored TC line was only
accessible by its starting address (and intra-line basic
block boundaries were not identifiable), TC suffered from
excessive switching from trace build mode to trace
utilization mode. TC’s other drawback was redundancy of
basic block storage [6], [7], [8], [9], [10]. Black, et al. [11]
used basic blocks as units of instruction storage in cache
and called this scheme block cache (BC). They added
hardware complexity by introducing new structures to
process traces. Drawbacks of this scheme were block
fragmentation and storage of same basic blocks in
multiple places. No follow-up research has been reported

on BC, since its introduction. Additionally, TC is the only
cache scheme that has been used in commercial
processors, for example, Intel’s Pentium-4. For these two
reasons, our comparison of VSBC is being limited only to
TC.
A thread is a set of instructions that starts execution at its
first instruction and continues execution without
interruption [12]. The threads can be generated either
dynamically or statically. Dynamic thread generation
involves creation and synchronization of some threads by
another thread. There is a hardware and performance cost
associated with thread communication and
synchronization. Static thread models are simpler than
dynamic thread models. Static threads are fixed in count,
and are stored in the processor [13], [14]. Multi-threading
when implemented on a single processor allows switching
between threads in one cycle (or even zero cycle). If one
thread faces long latency, the other thread may start
executing. In a multi-threaded multi-processor system in
 [14], threads are stored locally to each processor but may
migrate to other processors as well. A multi-threaded
processor alters the way a memory is accessed. The cache
effectiveness is reduced because of changed locality of
reference [15].

2. OVERVIEW OF THIS PAPER
In this paper, we present variable-sized block cache
(VSBC) architecture. VSBC addresses the issue of
instruction overlap among traces that occur frequently in
conventional TC1. VSBC enables storage of basic blocks
without the replicated block storage structures as required
in BC. VSBC’s implementation in hardware is only
slightly more complex than TC, but is simpler than BC.
Traditional n-way associativity in VSBC further improves
its performance. Unlike BC, VSBC allows storage of
basic blocks of arbitrary lengths.
We compared VSBC’s performance with TC by running
SPECint2000 benchmarks [18] on single- and multi-
threaded functional simulators of both cache schemes. We
used only a single cache hierarchy in the simulators. The
main focus of our research was VSBC’s own performance
and not that of a complete processor system. We chose
trace miss rate and average trace length as the
performance metrics.

1 In a sim-cache-based [16], [17] TC model that ran 100 million
instructions, we measured the instruction overlap among traces
for SPECint2000 benchmarks [18]. Some measured values of
overlap are: 25.1% for crafty benchmark, 38.5% for mcf, and
79.5% for bzip.

JCS&T Vol. 7 No. 2 April 2007

155

VSBC-ST refers to VSBC in single-threaded
environment, and VSBC-MT refers to VSBC in multi-
threaded environment. Section 3 describes VSBC
architecture and Section 4 explains its operation. Section 5
covers the simulation and modeling results. Finally,
Section 6 presents the conclusions.

3. VARIABLE-SIZED BLOCK CACHE –
ARCHITECTURE

VSBC’s Overall Structure
The VSBC stores instructions in program execution order.
Each trace in VSBC is made up of a fixed number of basic
blocks. A hit to the starting address of any of the basic
blocks in a trace is considered a trace hit. Multiple branch
predictions for end-of-block addresses are also required in
a manner similar to the TC [5] and BC [11]. VSBC stores
block info and block contents in two separate structures
inside VSBC-storage module. The two structures are
called block pointer cache (BPC) and basic block cache
(BBC). An overall view of a VSBC-MT-based system is
shown in Figure 1.

Figure 1: Overall view of a multi-threaded VSBC-
based system. Here we show the two-threaded
implementation.

VSBC Storage Module
VSBC storage module is mainly made up of two cache
structures: BPC and BBC. The full address is used for
BPC lookup, whereas BBC needs tag and index fields for
lookup. A single line from BPC is shown in Figure 2. The
BPC is made up of an array of these lines. Each BPC line
corresponds to a single trace. BPC keeps track of valid
basic blocks resident in the BBC. Upon detection of a
block tail, full linear addresses for both block head and
block tail are placed in a BPC line. Once all entries are
populated, ‘conflicts’ start to occur and certain lines have
to be replaced. LRU fields in BPC determine which BPC
line will be evicted when there is a need for line
replacement. Branch status bits store taken or not-taken
status of the branches at the end of basic blocks. In Figure
2’s BPC line, 3 bits are assigned to the first 3 blocks in a
trace. Branch status for the last block is not saved. In
VSBC-MT, thread-ID field identifies which thread the
trace belongs to.

Th
re

ad
 ID

Tr
ac

e
 V

al
id

H
ea

d
Bl

oc
k

0

Ta
il B

lo
ck

 0

W
ay

 ID
 0

H
ea

d
Bl

oc
k

1

Ta
il B

lo
ck

 0

W
ay

 ID
 1

H
ea

d
Bl

oc
k

2

Ta
il B

lo
ck

 2

W
ay

 ID
 2

H
ea

d
Bl

oc
k

3

Ta
il B

lo
ck

 3

W
ay

 ID
 3

Br
an

ch
 S

ta
tu

s

Tr
ac

e
LR

U

Figure 2: Single BPC trace line

The BBC is composed of two arrays: BBC data array and
BBC tag array. BBC tag array stores tags and performs
tag-matching, whereas basic blocks are stored in the BBC
data array. Basic blocks can be of any size and are only
limited by the number of lines in the BBC-way. The index
and set information is derived from the head-addresses of
basic blocks. (Head addresses are stored in BPC. The
BBC-way, in which a particular basic block resides, is
also stored in BPC). An additional field of thread-ID is
used in multi-threaded VSBC (Figure 3).

Thread

ID
Way-n

Tag
Way-n
Data

Figure 3: Single BBC line

The basic blocks from a trace can be stored in one or more
BBC ways. So BBC data array allows reading of up to 4
blocks in one cycle. Each way has 4 read ports; each port
is 16 instructions wide. (16 is an arbitrary limit used in
this research). This means that the read ports are capable
of supplying a maximum of 4 blocks placed at different
locations in each way.

VSBC Trace Build Engine
As shown in Figure 1, each thread in a VSBC-MT system
needs its own trace build engine. The build engine is quite
simple in nature, and primarily consists of a trace build
buffer (TBB). The head address is stored in TBB, one
cycle after end of a block is detected. Tail address is the
address of the control instruction that terminates the
currently executing basic block. If a conditional branch
ends the block, the branch status gets filled. After all TBB
fields have been filled, TBB contents are copied into BPC.

Coalescing Buffer
A single trace is made up of basic blocks that may be
stored in one or more ways. The task of coalescing buffer
(Figure 4) is to read the basic blocks from BBC, rearrange
and align them, and then send them to the decoder and the
execution engine. Depending on the implementation,
coalescing buffer can perform its function on a single
trace in one cycle. This buffer is replicated for every
thread (Figure 1).

JCS&T Vol. 7 No. 2 April 2007

156

Figure 4: Coalescing Buffer

4. VARIABLE-SIZED BLOCK CACHE –
OPERATION

A VSBC-based system essentially operates in two modes:
trace assembly mode and trace delivery mode. The logic
inside VSBC-storage module is responsible for deciding
VSBC’s operating mode. In a VSBC-ST-based system,
when the program initially starts running, there is a miss
on the VSBC and a single line is requested from the
instruction cache, which in turn has to fetch it from the
main memory. VSBC does not have any valid data in it at
this time and VSBC is in trace assembly mode. As
instructions execute, they get stored at appropriate
locations in BBC structure inside VSBC storage module.
Concurrently, the head and tail addresses of basic blocks
are identified and stored in TBB in VSBC trace build
engine. After the end-of-block condition is recognized,
TBB contents are copied to a BPC line. The BBC-way, in
which this block was being stored, is also placed in BPC.
After a fixed number of TBB writes to BPC line are done,
the trace is considered built.
Three conditions have to be satisfied for a trace hit: (1)
current address matching any block head address in BPC,
(2) tag matching in BBC, and (3) matching of BBC
branch bits to predicted branches. Upon a trace hit, VSBC
switches to trace delivery mode and instructions from
BBC are supplied to the decoder and the execution
engine.

VSBC’s operation in multi-threaded mode is similar
to the single-threaded mode. As mentioned earlier, the
difference here is that multiple threads get their basic
blocks built in their own trace build engines. Each thread
also gets its own branch history table and branch predictor
 [19]. VSBC storage module may see simultaneous write
or read requests and has to process them in the round-
robin fashion. In our study, we opted for allocation of
dedicated BPC lines to threads but kept BBC as a thread-
shared resource.

5. VARIABLE-SIZED BLOCK CACHE –
SIMULATION & MODELING

We created trace-based functional simulators to study
VSBC and to compare its performance with TC. The
simulators did not provide any timing information, such as
cache latency. For performance comparison, we used 10
benchmark programs (listed in Table 1) from
SPECint2000 suite [18]. The programs were compiled
with gcc compiler (version 2.7.2.2 using -O0 option).
Using these programs, we created single- and multi-
threaded workloads (sets of traces), as given in Table 2.
The simulation parameters are listed in Table 3.

Table 1: Benchmark programs for comparing VSBC with
TC

Benchmark Description Input Data Set
bzip Compression input.random

crafty Game playing:
chess crafty.in

gap Group theory,
interpreter test.in

gcc C language
compiler cccp.i

gzip Compression input.compressed

mcf Combinatorial
optimization inp.in

parser Word
processing test.in

perlbmk PERL language test.pl, test.in

vortex Object-oriented
database lendian.raw

vpr
FPGA circuit
placement &

routing
net.in, arch.in

Table 2: Workloads for single- and multi-threaded
simulations

Workload/
Mix #

Thread
Count Benchmarks

WL0a-WL0j 1
bzip, crafty, gap, gcc, gzip,

mcf, parser, perlbmk, vortex,
vpr

WL1 2 bzip, crafty
WL2 2 gap, gcc
WL3 2 parser, perlbmk
WL4 2 vortex, vpr
WL5 4 bzip, crafty, gap, gcc
WL6 4 gap, gcc, gzip, mcf

WL7 8 bzip, crafty, gap, gcc, gzip,
mcf, parser, perlbmk

WL8 8 gap, gcc, gzip, mcf, parser,
perlbmk, vortex, vpr

WL9 16

bzip, crafty, gap, gcc, gzip,
mcf, parser, perlbmk, gap, gcc,

gzip, mcf, parser, perlbmk,
vortex, vpr

Table 3: Simulation parameters for TC and VSBC
Parameter TC VSBC
Number of lines
in BPC N/A 512, 1024

Max number of
traces 512, 1024 512, 1024

Number of ways
in TC/BPC 1 1

Cache capacity
(KB)

1K, 2K, 4K, 8K,
16K

1K, 2K, 4K, 8K,
16K

TC/BBC
associativity 1 way 1-way, 2-way, 4-

way
Number of threads 1, 2, 4, 8, 16 1, 2, 4, 8, 16
Max basic blocks
per trace 4 4

Max possible
number of
instructions per
trace

16 Not limited

Max number of
instructions
delivered per
cycle

16 16

Branch history
table size 1024 entries 1024 entries

JCS&T Vol. 7 No. 2 April 2007

157

VSBC’s Comparison with TC
We ran simulations for different configurations of TC and
VSBC to collect the performance data. In order to make a
comparison for a similar amount of hardware, we used the
same cache size for TC and VSBC. For example, a VSBC
(BBC) of 1K capacity was compared with the TC of 1K
capacity. With cache sizes of 1K, 2K, 4K, 8K, and 16K,
the simulations were run for both caches (in single-way
configuration). For single-threaded workloads (WL0a-
WL0j in Table 2), the trace miss rate and average trace
length comparisons are shown in Figure 5 and Figure 6,
respectively. Similar comparisons for multi-threaded
workloads (WL1-WL9 in Table 2) are shown in Figure 7
and Figure 8. The notations in Figure 5 and Figure 6 can
be understood with these two examples: “bzip 1K”
represents the miss rate or trace length comparison for
bzip benchmark when run on a 1K cache; and “crafty 8K”
represents the miss rate or trace length comparison crafty
benchmark when run on an 8K cache. The notations of
Figure 7 and Figure 8 are explained with two more
examples: “WL1_2thd_1K” stands for the relative miss
rate or trace length when a WL1 (2-thread) workload is
run on a 1K cache, and “WL7_8thd_8K” stands for the
relative miss rate or trace length for a WL7 (8-thread)
workload when run on an 8K cache.
In the single-threaded environment, VSBC’s miss rate
reduction over TC varied from 43% to 95%, yielding an
average improvement of 73.7% (Table 4). The miss rate
reduction percentages dropped slightly when cache sizes
were increased. Larger block benchmarks (e.g., crafty,
gcc, gzip, perlbmk) had better miss rates than smaller
block benchmarks. With the multi-threading workloads,
VSBC consistently performed better than TC with trace
miss rate improvements ranging from 69% to 95%; the
average improvement was 85.7% (Table 4).
The miss rate performance gains over TC are made
possible by reduction in the block overlap among the
traces. VSBC with 1K trace capacity has miss rates
comparable to 16K TC. However, if we keep increasing
TC’s cache capacity, its performance gap with VSBC will
start to narrow. To further improve VSBC’s performance,
use of a better branch prediction scheme is recommended.
Hossain suggested 98% or higher accuracy of branch
prediction to utilize the full potential of a trace-based
cache [20].
Trace length gains varied widely in single-threaded
environment (Figure 6). On the lower side, VSBC’s trace
length gains ranged from -10% to 7%, for five of the
benchmarks; for the other five benchmarks, the gains
ranged between 70% and 254% of the TC trace lengths.
For single-threaded workloads, the overall improvement
in trace lengths was 79.7% (Table 4).
For the multi-threaded workloads, VSBC’s trace lengths
improvements over TC ranged from -3% to 293%, with an
average improvement of 86.1% (Table 4). While multi-
threading, BPC gets equally divided among the threads.
For example, for dual threads, half the BPC lines are

dedicated to one thread and the other half to the other
thread. On the other hand, all BBC lines are open to all
threads, which can cause the traces from different threads
to clobber each other. The combination of reduced BPC
capacity per thread and the inter-thread collisions may be
the reason for a wide variation of performance while
multi-threading.
A point to note is that if BBC were configured in such a
way that dedicated BBC-lines were assigned to each
thread, we would essentially have the equivalent of
multiple instances of completely independent single-
threaded VSBC-based systems; for this reason, it does not
make sense to simulate VSBC with dedicated-line BBC
configurations.

VSBC’s Design Space Study
As the subject of this research is VSBC itself, we
conducted additional simulations to study VSBC’s own
design space (Table 5). Regarding, the sensitivity of
VSBC’s miss rate to BBC size, we observe the expected
improvement in miss rate, when BBC size is increased. In
response to change in BBC-associativity, we see the usual
cache behavior of gradually flattening miss rates with
higher associativity. Multiple threads cause the miss rate
to vary widely which can be attributed to the change in
locality of reference. One can also see that the trace
lengths remain relatively unchanged despite variation in
BBC size. If VSBC operation is changed in such way that
a (smaller length) partial trace hit (explained earlier)
starts new trace builds, the average trace lengths may
improve further. Change in BBC-associativity does not
affect the trace length much. This invariability is because
the blocks belonging to a given trace are stored in a single
way; availability of additional BBC-ways does not benefit
trace lengths. We, however, observe a wide variation in
trace lengths in the multi-threading environment;
variations in miss rate and trace length seem to be the
result of clobbering of traces by different threads in
shared- BBC.

6. CONCLUSIONS
VSBC architecture presented in this research paper
eliminates some of the drawbacks that similar cache
schemes have. VSBC avoids frequently occurring
instruction overlap among TC traces. VSBC does not have
BC-like redundant block storage structures and the related
complexity of hardware.
We compared VSBC with the baseline TC by running
SPECint2000 benchmarks on single- and multi-threaded
TC and VSBC functional simulators. A 1K VSBC
provides similar miss rates as a 16K TC. Use of a better
branch predictor is expected to further improve VSBC’s
performance. VSBC sustains its lead over TC in multi-
threaded mode. Using the performance criteria of trace
miss rate and average trace length, VSBC seems to be a
better performing cache scheme than TC.

JCS&T Vol. 7 No. 2 April 2007

158

Table 4: Trace length and miss rate comparison for single- and multi-threaded environments (BBC = 1KB, 2KB,
4KB , 8KB, 16KB; NBPC = 512; WBBC = 1)

Workload
Average
TC trace

length

Average
VSBC trace

length

VSBC vs.
TC trace

length gain

Average
TC miss

rate

Average
VSBC miss

rate

VSBC vs.
TC miss

rate
reduction

WL0a-WL0j 12.5 24.3 79.7% 15.6 4.4 73.7%
WL1-WL9 12.6 24.0 86.1% 45.8 5.9 85.7%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

bz
ip

 1
K

bz
ip

 2
K

bz
ip

 4
K

bz
ip

 8
K

bz
ip

 1
6K

cr
af

ty
 1

K

cr
af

ty
 2

K

cr
af

ty
 4

K

cr
af

ty
 8

K

cr
af

ty
 1

6K

ga
p

1K

ga
p

2K

ga
p

4K

ga
p

8K

ga
p

16
K

gc
c

1K

gc
c

2K

gc
c

4K

gc
c

8K

gc
c

16
K

gz
ip

 1
K

gz
ip

 2
K

gz
ip

 4
K

gz
ip

 8
K

gz
ip

 1
6K

m
cf

 1
K

m
cf

 2
K

m
cf

 4
K

m
cf

 8
K

m
cf

 1
6K

pa
rs

er
 1

K

pa
rs

er
 2

K

pa
rs

er
 4

K

pa
rs

er
 8

K

pa
rs

er
 1

6K

pe
rlb

m
k

1K

pe
rlb

m
k

2K

pe
rlb

m
k

4K

pe
rlb

m
k

8K

pe
rlb

m
k

16
K

vo
rte

x
1K

vo
rte

x
2K

vo
rte

x
4K

vo
rte

x
8K

vo
rte

x
16

K

vp
r 1

K

vp
r 2

K

vp
r 4

K

vp
r 8

K

vp
r 1

6K

Figure 5: VSBC's miss rate gain with TC in single-threading environment. On average, VSBC is 73.7% better than
TC. (Workload = WL0a-j; NBPC = 512; WBBC = 1).

-20.0%

10.0%

40.0%

70.0%

100.0%

130.0%

160.0%

190.0%

220.0%

250.0%

280.0%

bz
ip

 1
K

bz
ip

 2
K

bz
ip

 4
K

bz
ip

 8
K

bz
ip

 1
6K

cr
af

ty
 1

K

cr
af

ty
 2

K

cr
af

ty
 4

K

cr
af

ty
 8

K

cr
af

ty
 1

6K

ga
p

1K

ga
p

2K

ga
p

4K

ga
p

8K

ga
p

16
K

gc
c

1K

gc
c

2K

gc
c

4K

gc
c

8K

gc
c

16
K

gz
ip

 1
K

gz
ip

 2
K

gz
ip

 4
K

gz
ip

 8
K

gz
ip

 1
6K

m
cf

 1
K

m
cf

 2
K

m
cf

 4
K

m
cf

 8
K

m
cf

 1
6K

pa
rs

er
 1

K

pa
rs

er
 2

K

pa
rs

er
 4

K

pa
rs

er
 8

K

pa
rs

er
 1

6K

pe
rlb

m
k

1K

pe
rlb

m
k

2K

pe
rlb

m
k

4K

pe
rlb

m
k

8K

pe
rlb

m
k

16
K

vo
rte

x
1K

vo
rte

x
2K

vo
rte

x
4K

vo
rte

x
8K

vo
rte

x
16

K

vp
r 1

K

vp
r 2

K

vp
r 4

K

vp
r 8

K

vp
r 1

6K

Figure 6: VSBC's trace length gain with TC in single-threading environment. On average, VSBC is 79.7% better
than TC. (Workload = WL0a-j; NBPC = 512; WBBC = 1).

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

W
L1

_2
th

d_
1K

W
L1

_2
th

d_
2K

W
L1

_2
th

d_
4K

W
L1

_2
th

d_
8K

W
L1

_2
th

d_
16

K

W
L2

_2
th

d_
1K

W
L2

_2
th

d_
2K

W
L2

_2
th

d_
4K

W
L2

_2
th

d_
8K

W
L2

_2
th

d_
16

K

W
L3

_2
th

d_
1K

W
L3

_2
th

d_
2K

W
L3

_2
th

d_
4K

W
L3

_2
th

d_
8K

W
L3

_2
th

d_
16

K

W
L4

_2
th

d_
1K

W
L4

_2
th

d_
2K

W
L4

_2
th

d_
4K

W
L4

_2
th

d_
8K

W
L4

_2
th

d_
16

K

W
L5

_4
th

d_
1K

W
L5

_4
th

d_
2K

W
L5

_4
th

d_
4K

W
L5

_4
th

d_
8K

W
L5

_4
th

d_
16

K

W
L6

_4
th

d_
1K

W
L6

_4
th

d_
2K

W
L6

_4
th

d_
4K

W
L6

_4
th

d_
8K

W
L6

_4
th

d_
16

K

W
L7

_8
th

d_
1K

W
L7

_8
th

d_
2K

W
L7

_8
th

d_
4K

W
L7

_8
th

d_
8K

W
L7

_8
th

d_
16

K

W
L8

_8
th

d_
1K

W
L8

_8
th

d_
2K

W
L8

_8
th

d_
4K

W
L8

_8
th

d_
8K

W
L8

_8
th

d_
16

K

W
L9

_1
6t

hd
_1

K

W
L9

_1
6t

hd
_2

K

W
L9

_1
6t

hd
_4

K

W
L9

_1
6t

hd
_8

K

W
L9

_1
6t

hd
_1

6K

Figure 7: VSBC's miss rate gain with TC in multi-threading environment. On average, VSBC is 85.7% better than
TC. (Workload = WL1-9; NBPC = 512; WBBC = 1).

JCS&T Vol. 7 No. 2 April 2007

159

-30.0%

0.0%

30.0%

60.0%

90.0%

120.0%

150.0%

180.0%

210.0%

240.0%

270.0%

300.0%

W
L1

_2
th

d_
1K

W
L1

_2
th

d_
2K

W
L1

_2
th

d_
4K

W
L1

_2
th

d_
8K

W
L1

_2
th

d_
16

K

W
L2

_2
th

d_
1K

W
L2

_2
th

d_
2K

W
L2

_2
th

d_
4K

W
L2

_2
th

d_
8K

W
L2

_2
th

d_
16

K

W
L3

_2
th

d_
1K

W
L3

_2
th

d_
2K

W
L3

_2
th

d_
4K

W
L3

_2
th

d_
8K

W
L3

_2
th

d_
16

K

W
L4

_2
th

d_
1K

W
L4

_2
th

d_
2K

W
L4

_2
th

d_
4K

W
L4

_2
th

d_
8K

W
L4

_2
th

d_
16

K

W
L5

_4
th

d_
1K

W
L5

_4
th

d_
2K

W
L5

_4
th

d_
4K

W
L5

_4
th

d_
8K

W
L5

_4
th

d_
16

K

W
L6

_4
th

d_
1K

W
L6

_4
th

d_
2K

W
L6

_4
th

d_
4K

W
L6

_4
th

d_
8K

W
L6

_4
th

d_
16

K

W
L7

_8
th

d_
1K

W
L7

_8
th

d_
2K

W
L7

_8
th

d_
4K

W
L7

_8
th

d_
8K

W
L7

_8
th

d_
16

K

W
L8

_8
th

d_
1K

W
L8

_8
th

d_
2K

W
L8

_8
th

d_
4K

W
L8

_8
th

d_
8K

W
L8

_8
th

d_
16

K

W
L9

_1
6t

hd
_1

K

W
L9

_1
6t

hd
_2

K

W
L9

_1
6t

hd
_4

K

W
L9

_1
6t

hd
_8

K

W
L9

_1
6t

hd
_1

6K

Figure 8: VSBC's trace length gain with TC in multi-threading environment. On average, VSBC is 86.1% better than
TC. (Workload = WL1-9; NBPC = 512; WBBC = 1).

Table 5: VSBC’s design space study

Sensitivity to VSBC cache (BBC) size
 (Workload = WL0a-j; NBPC = 512; WBBC = 1; Nth = 1)
BBC -> 1K 2K 4K 8K 16K Comments
Miss rate 5.9 5.1 4.1 3.6 3.1 A drop in miss rate happens with increase in BPC capacity
Ave. trace
length 23.9 24.3 24.4 24.2 24.4 The trace length is relatively insensitive to cache size

Sensitivity to VSBC-BBC associativity
 (Workload = WL0a-j; BBC = 1KB; NBPC = 512; Nth = 1)
WBBC -> 1 2 4 8 Comments

Miss rate 5.9 4.8 4.7 4.7 After an initial drop, the miss rate flattens out with an increase in
associativity

Ave. trace
length 23.9 24.3 24.2 24.3 The trace lengths are not affected noticeably with the change in BBC-

associativity

Sensitivity to workload thread count
 (Workload = WL1-9; BBC= 4KB; NBPC = 1024;WBBC = 4)
Nth -> 1 2 4 8 16 Comments

Miss rate 4.4 5.9 7.1 4.3 7.3 Miss rates vary widely possibly due to cross-thread trace
clobbering in BBC

Ave. trace
length 24.3 14.7 31.6 34.2 25.9 Trace lengths also fluctuate apparently due to cross-thread

trace clobbering in BBC

7. REFERENCES

[1] J. Hennessy, and D. Patterson, “Computer
Architecture: A Quantitative Approach,” 3rd ed., Morgan
Kaufman Publishers, Inc, CA, 2003.
[2] E. Hao, P.Y. Chang, M. Evers, and Y. Patt,
“Increasing the Instruction Fetch Rate via Block-
Structured Instruction Set Architectures,” Proceedings of
the 29th Annual IEEE/ACM International Symposium on
Microarchitecture, pages 191 – 200, 1996.
[3] S. Dutta, and M. Franklin, “Control Flow Prediction
with Tree-Like Sub-Graphs for Superscalar Processors,”
Proceedings of the 28th Annual International Symposium
on Microarchitecture, pages 258 – 263, 1995.
[4] S. Dutta, and M. Franklin, “Control Flow Prediction
Schemes for Wide-Issue Superscalar Processors,” IEEE
Transactions on Parallel and Distributed Systems, Volume
10, Issue 4, pages 346 – 359, April 1999.
[5] E. Rotenberg, S. Bennett, and J. E. Smith, “A Trace
Cache Microarchitecture and Evaluation,” IEEE
Transactions on Computers, Volume 48, Issue 2, pages
111 – 120, February 1999.
[6] D.L. Howard, and M.H. Lipasti, “The Effect of
Program Optimization on Trace Cache Efficiency,”
Proceedings of International Conference on Parallel

Architectures and Compilation Techniques, pages 256 –
261, 1999.
[7] Q. Jacobson, and J. Smith, “Trace Preconstruction,”
Proceedings of the 27th International Symposium on
Computer Architecture, pages 37 – 46, 2000.
[8] S. Patel, D. Friendly, and Y. Patt, “Evaluation of
Design Option for the Trace Cache Fetch Mechanism,”
IEEE Transactions on Computers, Volume 48, Issue 2,
pages 193 –204, Feb 1999.
[9] S. Patel, M. Evers, and Y. Patt, “Improving Trace
Cache Effectiveness with Branch Promotion and Trace
Packing,” Proceedings of 25th Annual International
Symposium on Computer Architecture, pages 262 –271,
1998.
[10] D. Howard, and M. H. Lipasti, “The Effect of
Program Optimization on Trace Cache Efficiency,”
Proceedings of International Conference on Parallel
Architectures and Compilation Techniques, pages 256 –
261, 1999.
[11] B. Black, B. Rychlick, and J. Shen, “The Block-
Based Trace Cache,” Proceedings of the 26th
International Symposium on Computer Architecture,
pages 196 – 207, 1999.
[12] K. Kavi, A. R. Hurson, P. Patadia, E. Abraham, and
P. Shanmugam, “Design of cache memories for multi-
threaded dataflow architecture,” Proceedings of the 22nd

JCS&T Vol. 7 No. 2 April 2007

160

Annual International Symposium on Computer
Architecture, June 1995.
[13] P. Kakulavarapu, et al, “A comparative performance
study of a fine-grain multi-threading model on distributed
memory machines,” Proceeding of the IEEE International
Conference on Performance, Computing, and
Communications Conference, Feb. 2000.
[14] L. Alkalaj, “Performance of multi-threaded execution
in a shared-memory multiprocessor,” Proceedings of the
Third IEEE Symposium on Parallel and Distributed
Processing, Dec. 1991.
[15] D. Lioupis, and S. Milios, “Exploring cache
performance in multithreaded processors,”
Microprocessors and Microsystems, Volume 20, Issue 10,
July 1997.
[16] D. Burger, and T. Austin, “The SimpleScalar Tool
Set, Version 2.0,” University of Wisconsin-Madison
Computer Sciences Department Technical Report #1242,
June 1997.
[17] http://www.simplescalar.com/
[18] http://www.specbench.org/cpu2000/
[19] J. Gummaraju, and M. Franklin, “Branch prediction
in multi-threaded processors,” Proceedings of
International Conference on Parallel Architectures and
Compilation Techniques, Oct. 2000.
[20] A. Hossain, “Trace Cache in Simultaneous Multi-
threading,” PhD dissertation, Dept. of Computer
Engineering, Syracuse University, 2002.

JCS&T Vol. 7 No. 2 April 2007

161

	Text5: Received: May 2006. Accepted: Nov. 2006.

