
ECOLE* : a pedagogical environment for non procedural languages

Pr D.E Zegour (d_zegour@ini.dz)
Institut National d'informatique, Oued Smar, Alger

and
W.K Hidouci (Hidouci@ini.dz)

Institut National d'informatique, Oued Smar, Alger

ABSTRACT
The work described in this paper is related to three areas
in the programming world : logic, functional and object
programming. The main objective is essentially
pedagogical since it is question here to make a synthesis
on non procedural languages. To achieve this, we have
considered many construction types, each one represents
the one of evoked programming. Many fully-documented
environments have been developed for writing
constructions of any type, transforming them in order to
evaluate them by showing the work really accomplished in
the least detail.
Keywords : Logic programming, Functional programming,
Object programming, Compiler, Frames, Actors,
Combinators.

* Work supported by the Ministry of the research of Algiers
under the research project entitled "ECOLE".

1.INTRODUCTION
The project ECOLE is the continuation of project
CONCORD[8]. The latter makes a synthesis on procedural
languages in which the main task is to give the procedure or
the algorithm to follows to resolve a given problem. In other
words, this type of programming is based on Von Neumann
machines in which the assignment operation is the basic one.
In CONCORD, we have studied mainly three basic schemes
corresponding essentially to programming with (1) only
conditional and unconditional jump as statement sequence
control, (2) exclusive control structures due to Dijkstra : if
then else and While, (3) the unique control structure if then
else with recursive calls. For each language we have
developed an syntactic editor. A complete taxonomy of
algorithm transformation is made in CONCORD. Beside the
interpreters and symbolic evaluators made in CONCORD,
different approaches as well on formal systems as on the fix
point theory are implemented to prove algorithms
corresponding to the languages considered.
ECOLE make a synthesis as well on non procedural
programming (logic and functional programming) as on
object programming in all its forms. If in procedural
programming the solution is expressed explicitly, the solution
is rather implicit in a non procedural one. Considering the
existing languages (Lisp, Prolog, Act1, Plasma), we have
conceived simple languages to covers the focused areas of
programming. The extended normal forms of Backus-Naur
corresponding to these languages are in [7].
The constructions considered represent modes of resolution
of problems wholly different. Each mode is devoted to
resolve a specific class of problems. In object programming
with classes (Oc), we focus the reuse of code. Many systems
have used this type of programming to elaborate convivial
interfaces : Window, Visual Basic, Turbo-Vision, Delphi.
The object programming by frames (Of) is specialized to
manage knowledge bases. The object programming by
actors(Oa) is used in a parallel environment in which several
objects (actors) cooperate for the elaboration of a given task.
The logic programming(L) is used in artificial intelligence

and the expert systems. The functional programming(Fv for
functional programming with variables and Fc for functional
programming with combinators) is another way to write
solutions expressed only with functions represented as lists.
Some bibliographical references concerning these types of
programming are in [1, 2, 3, 4, 5,6].
ECOLE offers tools to express solutions in any type among
the constructions considered {L, Fv, Fc, Oc, Of, Oa}.
ECOLE studies the transformation from any logic
construction to the clausal form and from any functional
construction to λ-calculus. ECOLE provides also all the
internal forms produced by our compilers. The different
mechanisms are studied in ECOLE for the implementation of
interpreters related to object languages, the resolution
methods related to logic constructions and the reduction
engines related to functional constructions.
Since the objective of ECOLE is above all pedagogical, it
shows the whole clearness on the languages, transformations,
interpreters, resolution techniques, reduction engines, etc..
The paper is organized as follows : we begin by describing
the different construction types. Then, we present the
construction, transformation and evaluation phases. Once the
architecture of ECOLE environment is depicted, we give
briefly the works realized. We present then two screen dumps
: the first one deals with the object programming by class, the
second with the reduction engines for Fx-constructions.
Finally, the educational aspect is described, and concluding
remarks are given.

2. THE LANGUAGES CONSIDERED
In our project, we consider the following constructions
corresponding to one purely logic language, two purely
functional languages : with variables and with combinators
and three purely object languages : by class, by frame and by
actor. We give below the different types of construction. We
use the term “purely” to designate any construction without
the sequencing as control structure and without the
assignment operation.

L-construction
It is related to logical programming. In this type of language,
one uses the language of the first order predicate logic with
only the clauses of Horn in order to specify the
characteristics of the problem to be solved. The interpreter,
who in this case is a theorem demonstrator, will have to
undertake the resolution of the specified problem. The
language we have considered is inspired of Prolog. The
variables are identifiers starting with a capital letter or the
character ' _ '. the handled objects is the terms, definite
recursively by:
- any constant or variable is a term.
- if f is a n-ary symbol of function and t1, t2... tn are

terms, then f(t1,t2...tn) is also a term.
A statement of the language (a declaratory instruction) is:
- either a fact of the form p(t1,t2... tn). with p a n-ary

symbol of predicate
- or a rule of the form p(...) if q1(...) and q2(...) and...

with p,q1,q2... symbols of predicates.

JCS&T Vol. 7 No. 2 April 2007

162

To invoke the inference engine, we must ask a question
relating to the problem already described. This question (or
instruction-Goal) is of the form: q1(...) and q2(...) and...
Example: Membership of an element to a list:
Exist(X, [X/_]). a fact
Exist(X, [_ / L]) if Exist(X, L). a rule

Goal: Exist(X,[1,2,3]) and Exist(X,[2,5,3,8]) and X > 2.
Answer X = 3 (only one solution)

Fv-construction
It is related to functional programming with variables. This
type of programming avoids the side effects. Likewise the
purely functional languages, our language is based essentially
on the calculation of functions and is characterized by the
absence of the assignment operation, explicit control and
sequentiabilty. Our language is based on λ-calculus like pivot
language, and inspired of Lisp in its syntax. The single
structure of control is the call of functions. There is neither
assignment neither sequential, nor operation of control break.
The conditional operation (if cond exp1 exp2) is regarded as
a non strict function with three arguments (cond, exp1 and
exp2). A functional program is a succession of definitions of
functions followed by a principal expression to evaluate.
Example:
(def sum (L) (if (Nul L) 0 (+ (head L) (sum (tail L)))))
(def length (L) (if (Nul L) 0 (+ 1 (length (tail L)))))
(def avg (L) (/ (sum L) (length L)))
? (avg ‘(1 2 3 4 5)) /* Main
expression */
this program is evaluated into 3. The variables are the
parameters of the functions. They are local and with single
assignment.

Fc-constructions
It is related to functional programming without variables. In
this language a program is specified by a combination of
functions while avoiding the handling of variables. It is
inspired by FP [Backus 78]. The objects handled by the
functions are divided into two categories:
- atoms: like numbers, characters, symbols etc...
- sequences (or lists): [x1, x2... xn] where each xi is an
object.
The application of a function F to an object X is noted: F
app X.
Certain functions known as " primitive " are predefined like
the arithmetic operations such as +, -, *, /, the relational
predicates, the operations of handling of lists (head, tail ...)
etc.
Some constructions (or functional forms) makes it possible to
combine functions (primitive or not) to form new functions.
Among these forms one quotes:
- the composition of functions: (F . G) app x = f(g(x))
- construction: [f1, f2... fn] app x = [f1(x), f2(x)... fn(x)

]
- the conditional one: (p? F: G) app x = { if p(x) then

f(x) else g(x) }
- the mapping of a function to all the elements of a

sequence:
 (Map F) app [x1, x2... xn] = [f(x1), f(x2)... f(xn)]
- etc...

Examples: Definition of the function ' Factorial':
Def Fact = (Zero? ' 1: * . [id, (Fact . Decr)])

where id is the function identity: f(x) = x whereas Zero and
Decr are defined as follows:
Def Zero = equal . [id, ' 0]

with equal the predefined function testing the equality of its
arguments. Then, function zero tests if its argument is equal
to 0.
Def Decr = - . [id, ' 1]
Function Decr allows to decrement its argument.
Explanation:
Fact is defined as being a conditional statement. The latter
tests if its parameter is 0, in which case it returns 1 otherwise
combines the operation ' * ' with the result of the sequence ' [
id, (Fact . Decr)] '. This sequence represents a couple of
values: the parameter and the result of the composition of
functions Fact and Decr.
One sees starting from the preceding examples that the
programming of new function is done without the use of
variables, but simply by combination of functions.

Oc-construction
It is related to object programming with classes. A class is a
set of objects. Each class is defined by its attributes and
methods (encapsulation). It must also specify the parent
classes (inheritance). The objects exchanges information by
means of messages. In this type of construction the single
operation is sending of messages from an object to another.
Certain objects are primitive, i.e. they are instances of
predefined classes (like integers, strings,...). The language is
inspired by SmallTalk and allows
 dynamic typing and multiple inheritance. There is a
predefined class (object) which is on the top of the hierarchy
from which three classes derive : type, action and an empty
object. Type is the parent of classes integer, boolean,
character, string and collection. The objects of class action
represent blocks of instructions. For example the following
block: { i: = i/2 + j; j: = j * 10; k: =k+1 } is regarded as
being an object to which one can send messages representing
the various control structures (the While loop, the conditional
if-then-else, etc...).
A sending of message can take one of the three following
forms:
1. Unary message: if the called method does not have a
parameter.
Example: 5 Fact; the receptor
is the object 5

" Hello world. " print;
 the receptor is the object “Hello world”

Fact should be defined in the class integer and print in the
class string.

2. Binary message: in the case where the method is an
operator (special sign) having only one parameter.
Example:

5 + 6; the receptor is object 5, the called
method is ‘+’ with object 6 as parameter.

3. message with key words: if the method uses one or more
key words corresponding to the parameters. Example:

5 pgcd: 15;
An_array swap: 3 and: 6;

Here an example of adding a method to the Integer class:

Integer AddMethod :
/ * To enrich the class Integer by the method Fact * /
{ Fact
{
{ return 1; } if: (Receiver=1 Or : Receiver=0)
else : { return Receiver * (Receiver -1) Fact; }
}
}

The body of the recursive method Fact is composed of a
conditional statement (the block { return 1; } which one

JCS&T Vol. 7 No. 2 April 2007

163

sends the message ‘if <cond> else <bloc>’ with the following
semantic : if the receiver of the
message is value 1 or 0 then return value 1 as result,
otherwise (the eceiver is an integer N > 1) return N * Fact(n-
1) as result.

Of-construction
It is related to object programming with frames. This type of
programming is directed towards the representation of
knowledge. It uses the concept of ' Frame' which makes it
possible to model a knowledge through a set of objects
dependent between them by semantic links (' kind-of', ' is - a',
…). The definite language is inspired by KRL, FRL and
Shirka. Each frame is at the same time an instance and a
prototype allowing to generate other instances. It is consisted
a set ' of attributes' which can each one, to have several
'facets'. There are declaratives facets (representing data) and
procedural facets (called 'reflexes' or demons) which are:
“if_needed” , “if_possible”, “if_addition” and “if_remove”
Here an example of use of this type of conventional
programming language (calculation of the factorial)

Frame Fact
 {
 Number : Type integer
 If_needed Read();
 Facto : if_needed
Compute_Facto();
 };

Function Read () : Integer;
 Integer value;
 {
 Output(“Enter an integer : “);
 Input(value);
 Return value;
 };
Function Compute_Facto() : Integer;
 Integer x , y ;
 {
 x := Read_Z(Fact* , Number);
 if x = 0 then Return 1
 else {
 Write(Fact * , Number ,
x–1);
 y := Read_Z(Fact * ,
Facto);
 Return (x * y);
 }
 };
Function Main() : Null; /* main program */
 Integer Res;
 {
 Res := Read_Z(Fact , Facto);
 Output(“Result = “, Res);
 };

The instruction Read_Z(Frame*, Attribute) makes it possible
to find the attribute value of a frame by using a traversal of
the ineritance graph according to order Z.

Oa-construction
In this formalism, the resolution of a problem consists in
making cooperate a set of active and autonomous objects,

communicating between them by synchronous and/or
asynchronous messages in a parallel execution environment.
It is related to object programming with actors. An actor is an
entity defined by its state and its script. It must also specify
the delegation (inheritance), the continuation and the type of
synchronization (synchronous / asynchronous). In our Oa-
language, the actors are created and destroyed dynamically.
The script defines the behavior of the object according to
events transmitted by others actors. The script is described by
control structures allowing to express them in a structured
way. We can cite 'If Then Else', 'While' and 'Case' with the
simple reading, writing and assignment operations. The
actors exchange information by messages which are actors
themselves. When one sends a message to an actor one can
possibly specify a list of continuations which represent in fact
the actors who will receive the result of the message. The
general syntax of a sending of message is as follows:

Name-method [list of parameters], CONT [list of
actors] An Actor
In the example below, one gives a solution to the problem of
the factorial of a number with our language:

Actor Fact
Script:
 OBS met[n(Integer)] , CONT[u]
 begin
 [ac , se] /* local variables */
 ifelse [n=0] { met[1] u;
 ac := Create(script: OBS met[h(integer)] begin
met[n*h] u end);
 se := Create(Fact);
 met[n-1],CONT[ac] se
 }
 End

Actor Message
Script:
 OBS met[n(Integer)] begin Affich[“The result is : “];
Write[n] Integer end

Program
DATA: R(Message) , F(Fact)
SCRIPT:
 OBS test-fact[]
 Begin
 R := Create(Message);
 F := Create(Fact);
 Met[3],CONT[R] F
 end

3. THE PHASES OF ECOLE
Construction phase
This phase offers tools to built constructions of different
types. On the one hand, we have an assisted mode in which
we help the user to built constructions by offering him many
schemes. For example, in the case of a object language by
class (Oc), the user has a dialogue box to create a class. This
dialogue box enables you to insert in the editor a text
constituting the definition of a new class. This definition is
carried out in an interactive way thus facilitating the message
calls. As options of the dialogue box one can quote a name
of the class, names of the variable super-classes of class,
Variables of instances, etc. One can also check the syntax of
the body of the method and activate the insertion mode with
indentation. For each proposed construction, we offer a fully
documented integrated environment.

JCS&T Vol. 7 No. 2 April 2007

164

Transformation phase
A transformation of programs is a source-to-source
modification. A transformation must be comprehensible to
ensure equivalence and precise to allow an automation. We
have developed compilers in order to achieve the following
transformations :
- from a logical language to a clausal form
- from a functional language with and without variables to a
λ-calculus.
- from object languages to adequate internal forms.

Evaluation phase
We mean by evaluation the following tasks :
- Empirical tests : to run Ox-constructions with x in [f, a, c]
- Reductions : to run Fx-constructions with x in [c, v].
- Proofs : to run L-constructions.
For this purpose, we have implemented for all the x-
languages (x in { L, Fv, Fc, Oa, Oc, Of}) :
- interpreters in order to unroll object constructions,
- reduction engines in order to unroll functional
constructions,
- provers to unroll logic constructions.
For the resolution methods, two classes of algorithms are
developed according to the traversal is in breadth or depth.
For the reduction engines, several execution schemes are
considered :
Call by value, by name and by need which lead evidently to
the same normal form. (Thesis of Church-Rosser). More
information about these methods are in [1, 2, 13].

4. ARCHITECTURE OF ECOLE ENVIRONMENT
The ECOLE environment is very simple. Any user who
wants to work with this system begins by choosing a
construction type. Then, he can use the construction
environment in order to built his program (x-construction).
In logic part, he may undertake the following tasks :
transformation to clausal form, proof by several mechanisms.
In functional part, he may undertake the following tasks :
transformation to λ-calculus, reduction by several
approaches. In object part, he begins by choosing the type of
object language (Class, Frame or Actor) before to undertake
the following tasks : transformation to internal form,
interpretation.

5. WORKS REALIZED IN ECOLE
Work began on ECOLE in earlier 1997 and is in its final
phase. All the components of ECOLE are implemented by
students in their last year of undergraduate. For each
application, we have developed a friendly user interface with
Delphi.
We have developed syntactic editors for all the constructions
suggested including modules of indentation, compression and
decompression.
A full complement of interactive debugging facilities are
available for each construction type with tracing, breakpoints
and animation of the execution. For each x-construction, we
have added tools which help the curious user to unlock the
mystery of each programming type by showing the work
undertaken by the interpreters, the provers and the reduction
engines.
An environment of construction and correction of L-
constructions has been developed. It consists in assisting the
user to write and unroll logic constructions. An indentation
procedure is developed in order to make the construction
clear and easy to read.
Tools are developed in order to assist the user for
constructing, indenting and unrolling F-construction on data.
The pedagogical aspect to explain the different types of

evaluation is also approached by giving the work made by the
reduction engine.
We have developed an environment of construction and
correction of Oc-construction. It consists in conceiving an
editor, an interpreter and pedagogical tools. The editor offers
tools for writing Oc-construction. The interpreter allows the
unrolling them in continuous or step by step mode.
Tools are offered to build object constructions by class and
unroll them.
Several techniques of resolution for the L-constructions are
implemented in ECOLE. For all the resolution methods
developed, the user has an hypertext (offered by the facilities
of Delphi) presenting theses methods. In addition, the user
may follow the resolution step by step in order to understand
the resolution mechanism. More details are given below.
A simulator is written in order to unroll Oa-constructions on
a single processor microcomputer. The execution is animated
by stopping it at any time to show the active actors, the
passive ones and also the waiting actors. What allows us to
see the states of all the actors with the continuations and the
return points in the scripts. A curious user see thus the inner
work of object programming by actors.
A complete list of the works realized in ECOLE is in
reference from 9 to 16.

Abstracts
We give below brief abstracts of the various works realized
in ECOLE, each one represents a contribution of a student in
its graduation final phase .

(i) Construction of functional programs with variables &
their translation into equivalent λ-expressions.
In this work we will be interested in the project part related to
the realization of an environment of construction and
transformation of functional algorithms with variables. It is a
question of defining a functional language by determining its
syntax and its semantics, then to develop the following tools:
- syntactic editor to assist the construction of the

programs.
- a translator towards a pivot language (λ-calculus).

(ii) Realization of an environment of construction and
transformation of logical algorithms.
It is a question of conceiving an environment of construction,
correction and transformation of logical programs belonging
to the language LOGFC which we conceived beforehand.
The generated code is a clausal form, which constitutes the
pivot code for the mechanism of resolution applied during
the interpretation of the logical programs. The edition of a
program LOGFC could be carried out by an assistance
system.

(iii) Automatic demonstrators for a prototype of logical
language.
This work consists to develop a demonstrator of theorems for
the execution of logical programs (in clausal form) by
adopting various strategies based on the Robinson resolution
and to integrate it in the application already carried out. The
application is equipped with a tool which makes it possible to
transform any formula of the first order predicates logic
towards an equivalent clausal form.

(iv) Machine with reduction for a functional language.
It is question here of developing a machine for the evaluation
of functional programs (in the form of λ-expressions) by
adopting various strategies of Beta-conversion (evaluation by
value, by need, lazy...) and of integrating it in the application
already carried out. The application is equipped with a tool

JCS&T Vol. 7 No. 2 April 2007

165

which makes it possible to check the equivalence of
mathematical functions written in usual form
(Interconvertibility of λ-expressions)

(v) Ecolo: an environment of programming object by
class.
It acts to conceive a language purely object while taking as a
starting point existing languages, provided at least with the
following characteristics:
Encapsulation: regrouping data and methods under the same
entity (object).
Inheritance : transmission system of properties between
classes.
Polymorphism: dynamic link of the methods (principle of
the virtual methods) .
Generic classes: definition of the type of the object
independently of its implementation.
Dynamic typing: possibility of creating new types during the
execution of a program.
Work consists in developing an environment of construction
of object programs as well as an interpreter able to solve the
techniques of the pure object programming (characteristics
quoted above)

(vi) Environment of construction and interpretation for a
prototype of object language by ' Frame'
In the programming by ' frame', the graph of inheritance is
typically dynamic. Also, contrary to the programming by
class, each object (frame) is regarded at the same time as
authority and generator of other objects. This part consists
with the design of an object language typically by ' Frame'
while emphasizing the various concepts of this programming
method. The main goals are :
- implementation of these concepts with an aim of the

development of an interpreter.
- the development of a teaching environment of

programming facilitating the construction of the
programs by ' frames' of the language suggested and
showing the various aspects related to this type of
programming.

(vii) Environment of construction and interpretation for a
prototype of object language by ' Actor'.
In the programming by 'actors', the objects (actors) achieve
independent tasks (scripts) et are communicated by sending
messages. What implies a parallelism on the level of the
treatments. This come back to
- to conceive typically an object language by 'Actors'

while emphasizing the various concepts of this
programming method.

- to implement these concepts with an aim of working
out an interpreter simulating the parallelism.

- to develop a teaching environment of programming
facilitating the construction of the programs by ' Actors'
of the language suggested and showing the various
aspects related to this type of programming.

(viii) Environment of functional programming without
variable.
A typically functional language is conceived, inspired of the
language FP of Backus, in which the programming is done
without the use of variables. Two aspects are developed:
- passage towards a pivot language: combinatory logic
- writing of a reduction machine to evaluate the

combinative forms.
The product is designed of such kind so that it is used at
teaching ends.

Some screen dumps
We present below two applications in ECOLE, the first deals
with the object programming by class (ECOLO), the second
with the reduction engines for functional programs
(LAMBDA).

(i) ECOLO : an environment of object programming by
class.
We have developed an efficacious tool for the object
programming by class named ECOLO. As any integrated
programming environment, it allows to write Oc-
constructions and to execute them. This environment uses a
text editor allowing the classical operations on files and
offering edition and navigation tools in the text. Facilities to
move and size windows are also possible. The environment
can be entirely personalized at the convenience of the user.
Several bars are available on the welcoming screen making
the environment very convivial and easy to use. We have the
following :
Title bar : gives the name of the file present in the text editor.
It holds the standard system menu with the operations
Restore, Move, Size, Minimize, Maximize, etc.
Tools bar : holds buttons to make visual and then more
practical the choice of commands.
Command bar : holds buttons for the edition.
Status bar : informs us on the actual state of the file.
Menu bar : holds the sub-menus File, Edition, Execute,
Tools, Help
The sub-menu Execute is the most important and consists of
the following items :
- Execute : executes the current edited file.
- Syntax : verifies only the syntax of the current file.
- Execute for the pedagogical explorer : allows to visualize
graphically the sending of messages.
- See the error message : displays/hides the last error
message.
- See the output screen : allows to see the last output screen.
A set of dialogue boxes enriches ECOLO with several others
features. We can cite Add/Modify a tool, Definition of
methods , Pedagogical explorer, etc. ECOLO owns a very
important tool : the pedagogical explorer which offers means
to control the execution of an Oc-construction. What allows
us to understand more easily the concepts of object
programming by class. The pedagogical explorer holds the
following parts :
I. SEARCHING OF METHODS
This part shows the inheritance graph and allows to see the
evolution of searching process in this graph. It visualizes also
all the information related on the method being searched.
Two panels are available : the one for the information on the
method and the other for the control operations. An
inheritance graph is also drawn in this part. We describe
briefly this below :
 Information panel
. Value : gives the value of the receptor if it is a constant, its
name if it is an identifier. In the case of class message, it
gives the name of the receptor class.
. Class :gives the name of the receptor class. This class
appears as a leaf in the graph.
. Selector : gives the selector of the searched method in order
to execute the current message.
. Arguments :gives the list of arguments related to the current
message. This area has no effect if it is question of an unary
message. Information on the arguments are known once the
method is found, because the arguments are treated only at
the moment of calls.
 Control Panel

JCS&T Vol. 7 No. 2 April 2007

166

. Button 'Step by Step' : Allows to follow step by step
searching in the partial inheritance graph.
. Button Next Message : goes to the next message
. Button Stop : Interrupt the execution of the current Oc-
construction and stop the pedagogical explorer.
. Button Properties : displays information related to the
selected class.
. Button Information : allows to display or hide the
information panel.
 Inheritance graph
The partial inheritance graph about the searching mechanism
of the current method is drawn. The root of this graph is the
class 'Object', leaf is the class of receptor. A node holds the
code of the class. In order to see its
name or its descriptive if suffices to click the appropriate
buttons.
II. IMAGE MEMORY
This part consists in the visualization of the content of
different champs of data structures used by the compiler to
represent the various objects. It allows also to display the
graph of instances and the one of classes.
 Control panel
. Button Next message and Button Stop as previously.
. Button class : displays the graph representing the directory
of classes and hides the one of instances.
 .Button instance : displays the graph representing the
directory of instances and hides the one of classes.
 Graph of classes
The graph representing the directory of classes is drawn. It
suffices to click the button left or right to obtain its
descriptive and all the relative information respectively.
Graph of instances
The graph representing the directory of instances is drawn.
Additional information are given by simple clicks

III. CODE SOURCE
It consists to visualize the code source of the Oc-construction
being unrolled in order to well situate the current message.
 Text Source
A generic window in which you can only read your Oc-
construction.
 Control panel
. Buttons ‘Next message’ and ‘Stop' as before.
. Button ‘Execute until cursor’ : allows to continue the
execution until a stopping point is reached.
. Button ‘Output screen’ : uses the output screen to see the
current results..
 Status line
A status line allows you
- to locate the current message in the text by following the
progression indicator
- to define a stopping point to reach it directly by using the
control panel described above.
A set of marks allows us to show a progression indicator, the
place where the execution is stopped , a valid stopping point
and a non valid one.
IV. SYMBOLIC STACK
It consists to see the call stack at a given time through a
drawing.
 Control panel
with the same buttons described above.
 Graphical stack
The graph symbolized the call stack at a given time is drawn.
You can select one method in the stack to obtain information
on it in the information panel situated to the left of the stack.
More information about this work is in [11]. Figure 1 gives
some screen dumps. Figure 1.a presents the welcoming
screen. Figure 1.b and 1.c show some states of the

pedagogical explorer : inheritance graph and graph of
instances (memory dump) respectively.

(ii) LAMBDA : Reduction engine
We have also developed an engine, named LAMBDA, in
order to achieve reductions on λ-calculus expressions. It
offers a spectrum of services to the user. Basic debugging
facilities are provided in order to follow thoroughly the
reduction with various methods. LAMBDA includes also an
independent environment for the equivalence of functions
with its own debugging facilities. We give bellow some
technical information on the methods implemented. The
following execution schemes are considered :

Call by value
The substitution to realize at each step is the innermost and
the leftmost function. It consists of calculating sequentially
the values of arguments before the call to the function.

Call by name
The leftmost and the outermost among the functions is made
first. This mechanism do no consist in the evaluation the
arguments at the moment of call but rather to conserve the
function which permits to evaluate this argument.

Call by need
It is a refinement of the ‘call by name’ method. The
arguments are evaluated only one time. The technique is then
doted by an additional task allowing to detect the first
evaluations and save the results already calculated.

It is evident that all these techniques lead to the same normal
form (Thesis of Church-Rosser). For the three execution
schemes the evaluation of a λ-expression is in weak head
normal form, what means that the reduction can stop even if
remains radicals. Recall that a λ-expression is called in weak
head normal form if and only if it is of the form
(FA1A2.....An). F is being a variable, a constant, a
predefined function or a λ-expression and (FA1A2.....An) is
not a redex. We have implemented the technique called graph
reduction suggested recently. It is based on axioms and
transformation rules with the consideration of the intrinsic
properties of expressions. In this technique, the internal
form, i.e. the code to reduce, is represented as a graph. The
application of an axiom involves the reorganization of the
graph. The sub-graph representing the redex is replaced by
the one representing the contractum. The representation by
graph is based on the pointers and avoids thus the
reevaluation of a same sequence. Instead of duplicate the
graph of the sequence , it suffices only to duplicate the
pointer towards this graph. For more details of
implementation see [12]. The problem of equivalence
between mathematical functions is not decidable. In spite of
the whole consistence of the λ-calculus, it does not permit
the interconvertibility of two expressions. We have
elaborated a tool to verify automatically the equivalence of
two mathematical functions for an important class of
functions related to the arithmetical operations algebra. The
equivalence is defined by a congruence operation.
Figure 2 gives some screen dumps. Figure 2.a shows a
functional program compiled with success. Figure 2.b
presents the work accomplished by the reduction engine by
showing : source program, λ-expression and execution trace.
Figure 3.c shows a step by step execution.

6. EDUCATIONAL PURPOSE
ECOLE may be used for pedagogical purposes at two levels :
Firstly, for students having modest experience in classic
programming. Indeed, ECOLE is fully documented on each
construction type and on mathematical concepts behind these
languages as λ-calculus or first order predicates logic.

JCS&T Vol. 7 No. 2 April 2007

167

ECOLE is very simple to use. Thanks to its syntactic editors,
it permits the writing of x-constructions syntactically correct.
And thanks to its interpreters, it allows the unrolling of
constructions.
Secondly, for the students having already a good knowledge
of programming and who want to know more. Indeed,
ECOLE proposes more advanced features. It explains each
type of programming thanks to simple languages considered,
the work undertaken as well by transformations and compiler
for each type as by interpreters, engines and simulators
considered. ECOLE permits thus to see the unrolling of
various constructions step by step in order to understand the
mechanisms of each programming type.
Besides providing the pedagogical objectives, the outcome of
this project will permit to solve a certain number of problems
known difficult. In particular that of the equivalence of
function.

7.CONCLUSION
It is certain that ECOLE is a good synthesis on non
procedural languages and object ones. We think that the
aimed software will be of a great interest for teaching the art
of programming for students having a first experience and
who want to learn more. This synthesis has allowed us to
clarify many concepts and technical details. In particular,
how writing compilers for object languages in all its forms
and for logic and functional ones. We thus revealed all the
mysteries of the theorem demonstrators and reduction
machines.

Acknowledgments
We would like to express special thanks to all the students
who took part in ECOLE for their important contribution in
the implementation of different components of ECOLE. A
major expression of thanks must go to the Professor Gérard
Levy for his advice and helpful comments and suggestions

References
[1] Peyton jones. "Mise en oeuvre des langages
fonctionnels de programmation".Masson 1990.
[2] J. Hogger. "Programmation en logique". Masson
1988.

.

[3] J. J. Meyer "Initiation à la POO à travers Turbo
Pascal". Radio 1990.
[4] 'The Object-Oriented Pre-Compiler, Programming
Smalltalk-80 Methods in C Language' - Brad J.Cox.ACM
SIGPLAN Notices, 18(1) :15-22, 1983.
 [5] 'Les langages à objets, Langages de classes,
langages de frames, langages d'acteurs' - Gérald Masini &
Amedeo Napoli & Dominique Colnet & Daniel Léonard &
Karl Tombre.InterEditions, Paris, 1990.
[6] 'A Survey of Object-Oriented Concepts' -
O.M.Nierstrasz.Active Object Environnements, Centre
Universitaire d'Informatique, Université‚ de Genève, 1988.
[7]. D.E Zegour. " ECOLE : présentation". Rap.
Interne. INI, 1997.
[8] D.E Zegour, G. Levy, CONCORD:an environment
of CONstruction, CORrection anD transformation of
algorithms, Information and Software Technology 40 (1998),
281-290.
[9] S. Dellys, Conception d'un langage fonctionnel et
sa transformation vers λ-calcul, Mémoire d'ingénieur d'état
en informatique, INI, 1996.
[10] H. Djouabi, Conception d'un langage logique et sa
transformation vers la forme clausale, Mémoire d'ingénieur
d'état en informatique, INI, 1996.
[11] M.Smati , S. Bordji, Conception d'un langage objet
pur par "classe", Mémoire d'ingénieur d'état en informatique,
INI, 1997.
[12] D. Boukhelef, Machines à réduction pour un
langage fonctionnel de programmation, Mémoire d'ingénieur
d'état en informatique, INI, 1997.
[13] A. Allaloui, D, Mallem, Démonstrateurs
automatiques pour un prototype de langage logique, Mémoire
d'ingénieur d'état en informatique, INI, 1997.
[14] W. Lassouani, Conception d'un langage objet pur
par "acteur", Mémoire d'ingénieur d'état en informatique,
INI, 1999.
[15] B. Behlouli & F. Abazi Conception d'un langage
objet pur par "frame", Mémoire d'ingénieur d'état en
informatique, INI, 1998.
[16] R. Delli & D. Saidani Conception d'un langage
fonctionnel sans variables", Mémoire 'ingénieur d'état en
informatique, INI, 1999.

JCS&T Vol. 7 No. 2 April 2007

168

	Text6: Received: Apr. 2006. Accepted: Oct. 2006

