
Improving the O-GEHL Branch Prediction Accuracy Using Analytical
Results

Ekkasit Tiamkaew

Department of Computer Science
Naresuan University, Phitsanulok 65000, Thailand

Angkul Kongmunvattana

Department of Computer Science
Columbus State University, Columbus, GA 31907, USA

ABSTRACT

The O-GEHL branch predictor has outperformed other
prediction schemes using the same set of benchmarks in
an international branch prediction contest, CBP-1. In this
paper, we present the analysis results on each of the O-
GEHL branch predictor tables and also on the optimal
number of predictor tables. Two methods are subsequently
proposed to help increase the O-GEHL prediction
accuracy. The first one aims to increase the space
utilization of the first predictor table by dynamically
adjusting the lengths of branch history regarding to the
type of a benchmark currently in execution. The second
one adds an extra table into the O-GEHL predictor using
the space saved from the sharing of hysteresis bits.
Experimental results have confirmed that both schemes
improve the accuracy of two different predictor
configurations, leading to two promising research
directions for future explorations.

Keywords: Branch Predictor, Neural Network,
Perceptron, O-GEHL, Predictor Analysis

1. INTRODUCTION
In the first Championship Branch Prediction competition
(CBP-1) [1], the first-placed branch predictor is the O-
GEHL (Optimized GEometric History Length) predictor
[12], which has modified the perceptron predictor to
exploit various lengths of global branch history. It also
contains a dynamic mechanism that can adaptively adjust
the history lengths used in 3 of its 8 predictor tables,
allowing for the use of even longer branch history when
necessary.

Figure 1 shows the mechanism of the O-GEHL
predictor containing 8 predictor tables, T0-T7. Different
weights from each table entries are selected using various
forms of indexing parameters, and then added together to
generate the prediction outcome, which is the sign of the
final sum. Only the first table, T0, is always indexed by a
branch address alone. Various combinations of branch
address and global branch history are used to index the
remaining 7 tables. Let L(i) be the length of global branch
history used in the indexing function of the ith table. L(0)
and L(1) are initially set to 0 and 3, respectively. The
values of other L(i) can be computed using the geometric
series equation: L(i) = αi-1 * L(1), where a value of α is
{L(M-1)/L(1)}1/(M-2) and M is the number of predictor
tables.

In order to exploit really large branch history, the O-
GEHL predictor has set M to 11 and L(10) to 200 even
though it has only 8 physical predictor tables. All these
tables are initially programmed to use L(0) to L(7) as the
table indices. However, T2, T4, and T6, can adaptively
change their branch history lengths, switching back and
forth between using L(2), L(4), and L(6) to L(8), L(9), and
L(10), respectively, with regard to the current branch

characteristics. The number of entries in each predictor
table is 2K, with the exception of T1, which has only 1K
entries. Each entry in T0 and T1 is represented by a 5-bit
counter, while an entry in the remaining tables uses a 4-bit
counter. These parameters have been empirically selected
and therefore proven to optimize the performance of the
O-GEHL predictor.

. . .

T0 T1 T2 T7

branch address

. . .
L(7)L(2) L(1)

Σ
Prediction

Figure 1. O-GEHL branch predictor

We have performed an extensive analysis on the O-

GEHL predictor, mainly searching for its characteristics
that can be exploited to further increase the predictor
efficiency. The analysis results indicate that, of all
predictor table, the first one, T0, is the least utilized due to
its use of short branch history as a parameter to the index
function, and that more predictor tables generally translate
into higher prediction accuracy. Subsequently, we propose
two alternate designs of the O-GEHL branch predictor to
improve its accuracy, which are: 1) increasing the space
utilization of its first predictor table, T0, by dynamically
adjusting branch history lengths used in the indexing
function, and 2) adding an additional predictor table
without requiring extra space by means of sharing
hysteresis bits.

Our simulation results show that the first proposed
scheme improves the prediction accuracy in almost all
hardware budgets, except for 8K and 16K bits.
Meanwhile, the second scheme provides best performance
when working with branch predictors larger than 64K bits,
indicating that when there are abundant hardware
resources, adding extra predictor tables is more likely to
improve the prediction accuracy than increasing the size of
the existing predictor tables. Further analysis of the
experimental results reveals that even though the second

JCS&T Vol. 7 No. 2 April 2007

171

scheme performs worse than the first one on average,
particularly in FP and INT benchmarks, it enjoys more
success in some MM and all SERV benchmarks.

The rest of this paper proceeds as follows. Section 2
provides a background on the O-GEHL branch predictor
as well as related work, while section 3 describes our
experimental methodology. Section 4 shows our analysis
results on the O-GEHL predictor. Meanwhile, our
proposed mechanisms and the experimental results are
discussed in section 5. Finally, we conclude in Section 6.

2. RELATED WORK
Jimenez has first proposed to use the perceptron in neural
learning branch predictor for studying and predicting
branch outcomes [6, 7]. Despite having higher prediction
accuracy than other prediction methods, the predictor’s
high complexity and long prediction latency have made it
rather impractical.

In CBP-1 [1] where complexity is not an issue, two
highest ranked branch predictors are proposed by Gao [5]
and Seznec [12], both of which have modified the
mechanisms to improve the accuracy of the perceptron
predictor. Under a distributed set of benchmarks, the O-
GEHL predictor [12] scores the highest and therefore is
chosen as the subject of our investigation.

The idea of multiple global history lengths used in the
O-GEHL predictor was initially introduced in [10], and
then refined by Evers et al. [4]. Since then, it has appeared
in several branch prediction schemes and been proven to
be highly effective in boosting the prediction accuracy.
One of our proposed methods has adopted the same
concept by increasing the number of the O-GEHL
predictor’s tables to provide more diversity into the global
history lengths.

In order to add another predictor table without wasting
up more hardware resources, we follow the footstep of
Seznec et al. who proposed to have 2 table entries in the
branch predictor share the same hysteresis bit [13]. It has
been demonstrated that this sharing mechanism has an
insignificant impact on the accuracy of certain branch
predictors, especially the gshare branch predictor, in
which the sharing only slightly increases the entropy per
prediction from 0.18 to 0.19 [9].

Gao’s branch predictor, a runner-up in the first round of
CBP-1, used an adaptive approach to modify the
perceptron predictor to suit each benchmark [5]. We have
adopted a similar idea in one of our proposed schemes in
order to distinguish individual benchmarks for an
appropriate adjustment of the indexing function’s
parameters.

3. EXPERIMENTAL METHODOLOGY
In order to conduct our experiments, we use a branch
predictor framework and input traces from the 1st
Championship Branch Prediction competition (CBP) [1],
which is sponsored by Intel MRL and IEEE TC-uARCH.
This branch prediction contest provides participants with a
common evaluation framework, written in C++, and a
fixed hardware budget, which is 64K bits, to implement
and evaluate their branch prediction algorithms.

In our experiments, we performed a series of
simulations using the provided framework with each of the
benchmark programs distributed by the competition
committee. Benchmarks are classified into 4 categories:
FP (floating point), INT (integer), MM (multimedia), and
SERV (server). All the simulations have been run until
completion. The performance metric used throughout this

paper is the output from the framework, which is the
number of mispredictions per 1000 instructions.

Because the O-GEHL predictor’s original size is 64K
bits, enlarging or reducing the predictor requires some
modifications to the predictor configurations. We have
decided to simply double, or halves, the number of entries
in each predictor table when increasing, or decreasing, the
predictor size.

4. ANALYSIS OF THE O-GEHL BRANCH
PREDICTOR

Space utilization of the predictor tables
After careful and thorough analysis of the predictor to
promote a better understanding of its characteristics and to
probably discover its shortcomings, we have found quite
an interesting statistics regarding the space utilization of
each predictor table. As shown in table 1, while the
allocated spaces of most predictor tables are used more
than 74%, even more than 92% in three of them, the usage
percentage of T0 is surprisingly low, just around 52%.
This apparently introduces an opportunity for enhancing
the predictor’s performance.

 T 0 T 1 T 2 T 3
utilization (%) 52.66 74.07 86.90 75.39

 T 4 T 5 T 6 T 7

utilization (%) 92.12 86.88 93.56 92.75

Table 1. Space utilization in each predictor table

Despite its low utilization, we cannot simply reduce T0
size without inflicting considerable damage to the
prediction accuracy. This is because each benchmark
exhibits a highly different branch distribution pattern
across T0. In an attempt to seek for an insight into branch
behaviors and eventually find a way to make a better use
of T0 space, we have conducted further studies of the way
T0 entries are occupied. The results shown in table 2 and 3
are the number of entries that has been used for each
benchmark during the entire execution. They are grouped
into 4 categories, which are FP, INT, MM, and SERV, as
previously mentioned. The average value of each category
is also calculated and shown in the table.

From the results, all SERV benchmarks have their
branches spread throughout T0, making full use of the
allocated table space. This is a level of success other
benchmarks unfortunately fail to match. Moreover, several
FP and INT benchmarks (even one from MM) have
occupied only 20% of the total T0 capacity. Not only do
such drastic variations in the table usages undoubtedly call
for a more efficient way to distribute branches across the
table, but also indicate how difficult it would be to find
one.

FP 1 400 INT 1 386
FP 2 405 INT 2 1105
FP 3 682 INT 3 791
FP 4 489 INT 4 568
FP 5 231 INT 5 392

Average 441.4 Average 648.4

Table 2. The number of T0 entries used FP and INT

JCS&T Vol. 7 No. 2 April 2007

172

MM 1 409 SERV 1 2037
MM 2 1434 SERV 2 2040
MM 3 852 SERV 3 2047
MM 4 1385 SERV 4 2047
MM 5 1823 SERV 5 2045

Average 1180.6 Average 2043.2

Table 3. The number of T0 entries used MM and
SERV

However, higher space utilization in other predictor

tables suggests that the simplest and most intuitive scheme
to improve T0 usage percentage probably is to use global
branch history as another parameter for the indexing
function of T0. In the other word, L(0) of the new scheme
is no longer zero.

We have performed various experiments with different
values of L(0). One of the best configurations is to set L(0)
to 3 and L(1) to 5 while other L(n) are recalculated using
to the same equation given in the section 2.1. Figure 2
shows the effects this configuration has on the prediction
accuracy for each benchmark set. FP and INT benchmarks
benefit from larger L(0), gaining 5.22% and 1.99% of
prediction accuracy, respectively. Unfortunately, the
overall prediction accuracy is decreased because MM and
SERV benchmarks suffer 7.24% and 10.24% loss in
prediction accuracy respectively. This scenario gets worse
when other configurations with even larger L(0) have been
used in the experiments. The results reveal that while an
indexing function with larger L(0) improves the prediction
accuracy of the benchmarks that exhibited low utilization
percentage, specifically FP and INT, it degrades that of the
others.

Apparently, short global branch history still plays a
significant role in maintaining high branch prediction
accuracy in the O-GEHL predictor, especially for both
MM and SERV benchmarks. This makes the task of
improving the predictor’s efficiency and accuracy much
more complicated since simply increasing the length of
global branch history alone, as done in traditional
perceptron predictor [7], is not going to accomplish the job
anymore.

-12

-10

-8

-6

-4

-2

0

2

4

6

FP INT MM SERV

benchmark

Im
pr

ov
em

en
t i

n
A

cc
ur

ac
y

(%
)

Figure 2. Improvement in prediction accuracy when

L(0) = 3 and L(1) = 5

The effects of T8, T9, and T10 after being allocated
their own space.
Due to a space limitation in the O-GEHL predictor, table
T8, T9, and T10 are arranged to collocate with T2, T4, and
T6, respectively. These extra tables are physically
assigned their own spaces in our experiments for a study
of their impact on the prediction accuracy. As shown in

table 4, approximately 1% improvement on prediction
accuracy is observed each time an extra table is added.
The third table (T10) however is an exception as it causes
a slight drop in the prediction accuracy. These results
show that only 9 or 10 tables are sufficient to obtain
higher predictor efficiency.

O-GEHL

(64K)
9 tables
(72K)

10 tables
(80K)

11 tables
(88K)

Mispredict
(%) 2.82 2.79 2.75 2.76

Table 4. The effects on prediction accuracy when more

tables are added into the predictor

We have also performed other experiments where the
traditional O-GEHL predictor is added with a rather small
table (1-2K bits). Various versions of global branch
history with different lengths are used to index to the extra
table. Even with four-way associativity being
implemented on the table to increase its space utilization,
the consequent prediction accuracy is not improved. This
result, along with the finding from table 3 that most of
MM and all SERV benchmarks use up almost all the table
entries, reveals that an extra table requires a large number
of entries, preferably 2K entries, to have a positive impact
on the overall prediction accuracy.

5. OUR PROPOSED APPROACHES AND THE
EXPERIMENTAL RESULTS

Increasing space utilization in T0
One interesting fact about T0 is that it is under utilized
when used with particular benchmarks but almost fully
utilized with the others. Therefore, static modifications to
table size or indexing function cannot be made without
sacrificing the prediction accuracy in some benchmarks.
An appropriate approach is to find a means to dynamically
adjust the length of global branch history used in the
indexing function of each predictor table, which is L(n)
where 0 ≤ n ≤ 10, with regard to what kind of benchmark
is being used at the time.

Distinguishing between benchmarks that need a small
L(n) and those that need a larger one is a challenging
problem. We have decided to use the number of
conditional branches as a deciding factor in this process
since in most cases there are more of them in FP and INT
than in MM and SERV benchmarks. In our approach, each
L(n) is initially given a default value as done in the O-
GEHL predictor. After a certain time period, t, has passed,
the number of conditional branches, c, is then compared to
a pre-specified value, v. If c is less than v, it is likely that
the currently running benchmark program is in either MM
or SERV category and these L(n) values are not changed.
Otherwise, L(0) is set to 3, L(1) to 5, and L(10) to 200,
which is the same value, while all other L(n) values will
be re-calculated using the given geometric series equation.
These values have been proven to have biggest positive
impact on the prediction accuracy for FP and INT
benchmarks, as previously shown in figure 2. Once this
process is done, regular prediction mechanism of the O-
GEHL predictor can go on without any other interruption.
As a result, an overhead cost is kept very small and each
benchmark is likely to run in the predictor configuration
that suits it the most.

Not only should t be small enough to allow for a timely
adjustment of the L(n) values, but should also be

JCS&T Vol. 7 No. 2 April 2007

173

sufficiently large for an efficient classification of
benchmark programs. Therefore, a 7-bit counter
responsible for tracking the number of all branch
instructions, both conditional and unconditional ones, is
chosen to represent the amount of time that has passed.
The counter overflow signals that the time t is reached,
and triggers the L(n) adjustment process. The use of this
counter allows the time t to be extremely short, compared
to the whole execution time, while the value of v can be
set to, based on the information we have gathered on
previous runs of all benchmark programs, approximately
84% of the counter’s maximum value possible. With this
scheme, another 7-bit counter is required to track the
number of conditional branches, and a comparator is
needed for the comparison process.

We have added this mechanism into the O-GEHL
predictor and run the experiments with various budget
sizes, ranging from 8K-1M bits. The results are shown in
figure 3.

0

1

2

3

4

5

6

7

8K 16K 32K 64K 128K 256K 512K 1M

budget (bits)

m
is

pr
ed

ic
tio

n

Static L0
Dynamic L0

Figure 3. Misprediction rates when the dynamic

adjustment of L(n) is incorporated into the predictor

The prediction accuracy is improved in every case
except for 8K- and 16K-bit predictors. This is not
surprising since T0 in these budgets is 4-8 times smaller
than usual and the task of increasing its space utilization
becomes almost impossible to accomplish. However, a
0.025 average decrease in misprediction rate can be
observed in larger predictors, which is equal to 0.96%
improvement in prediction accuracy. In fact, the most
impressive improvement occurs in the 128K-bit predictor,
which exhibits an almost 2% gain in prediction accuracy.
512K- and 1M-bit predictors are also enjoying more than
1% increase in prediction accuracy. This is all because
higher space utilization can be achieved when T0 is larger.

The fact that the O-GEHL predictor is specifically
optimized for a 64K-bit budget suggests that the predictors
with larger budget may be able to experience even higher
rise in prediction accuracy with different combination of
L(n) or different space allocation method for each
predictor table. This requires extensive examinations of
the predictor with an extremely large set of parameters,
and therefore is outside the scope of our paper. However,
one can easily begin the study by concentrating on T0
space utilization since our analysis and experimental
results have already confirmed that it certainly is an
important factor in deciding the prediction accuracy.

 It is also inevitable that further performance
improvement of the highly optimized 64K-bit O-GEHL
predictor will be highly difficult to achieve. Nevertheless,
our scheme still has reduced the misprediction rate by
0.02, which is roughly a 0.71% improvement. Though this
number seems rather small, it is almost 7 times the
difference in prediction accuracy between the first-placed

O-GEHL predictor and the second-placed Gao’s proposed
predictor [5], which is only 0.003 apart (a tiny 0.11%
increase). The fact that we has improved the accuracy of
the already highly-optimized branch predictor makes the
results even more impressive.

 FP INT MM SERV
8K 7.42 -6.55 -1.03 -1.27
16K 15.30 2.63 -0.38 -3.07
32K 18.58 5.63 0.02 -4.95
64K 13.24 2.06 0.03 -1.13

128K 27.6 0.22 0.69 -0.04
256K 14.65 0.83 -0.22 -1.28
512K 13.17 1.30 0.37 -1.25
1M 20.75 0.79 0.27 -2.28

Average 16.34 0.86 -0.03 -1.91

Table 5. Improvement percentage in the prediction
accuracy for each benchmark group

To elaborate the contributions made by our approach,

we have performed an analysis to evaluate its impact on
the prediction accuracy of each benchmark category, as
shown in table 5. The decrease in prediction accuracy is
displayed in a negative number.

FP benchmarks are undoubtedly the biggest beneficiary
with an average of 16.34% increase in prediction
accuracy. The lowest improvement, 7.42%, lies in the
predictor with 8K-bit budget while the highest one, 27.6%,
is enjoyed by the128K-bit predictor. Meanwhile, almost
all INT benchmarks are experiencing various levels of
improvement in prediction accuracy, particularly with the
highest rise of 5.63% belonging to the 32K-bit predictor.
The average increase in prediction accuracy of all INT
benchmarks is disappointedly only 0.86%. This is mainly
because of a 6.55% deficit in the 8K-bit predictor, which,
among the predictors of all sizes, is the only one that
suffers a prediction accuracy loss. These improvements
are the direct consequences from heightening T0 space
utilization, which is however not the case for SERV
benchmarks that unfortunately have not benefited from
our proposed scheme at all. Insignificant changes around
or less than 1% in prediction accuracy can also be
observed in all MM benchmarks.

The decrease of prediction accuracy in MM and SERV
benchmarks takes place because the process of
distinguishing between each benchmark category is not
efficient enough. As a result, a few MM and SERV
benchmark programs sometimes have to be run with large
L(n), causing more mispredictions. To perfectly
classifying the benchmarks, either a highly complicated
mechanism must be used or a thorough profiling must be
conducted. The former is very likely going to slow down
the prediction process while requiring more die space. On
the other hand, despite being faster and requiring no extra
space, the latter is highly dependent on the profiled
benchmarks and cannot adapt well to a new type of
benchmarks.

The results also reveal that our proposed scheme works
particularly well with most FP and INT benchmarks and is
therefore most suitable for microprocessors that run
scientific and computation-intensive applications. For
computers whose jobs involve running applications with
multimedia or server workloads, a traditional O-GEHL

JCS&T Vol. 7 No. 2 April 2007

174

predictor is more appropriate. Nonetheless, because its
overall misprediction rate is still lower than the O-GEHL
predictor’s, our proposed approach is considered a better
alternative in microprocessors running general
applications with unknown workloads.

Adding an extra predictor table without incurring the
space required
Prediction accuracy usually increases when a predictor is
allocated larger die space, or more predictor tables in a
case of perceptron predictor. However, the analysis results
in section 4.2 have demonstrated that only up to 2
predictor tables are actually required for the O-GEHL
predictor. Our proposed approach is to add an extra table
into the predictor without ever increasing the allocated
table space. With the introduction of hysteresis bits being
shared between 2 table entries, the number of entries in
each predictor table does not even need to be reduced to
make room for an extra table.

In a 2-bit counter, the most significant bit is a direction
bit, which provides the prediction result, while the least
significant bit is a hysteresis bit, which prevents the
direction bit from immediately changing after just a single
misprediction. Seznec et al. have proposed an approach of
sharing a single hysteresis bit between 2 adjacent table
entries [13] to save up more die space of the branch
predictor in an EV8 microprocessor and then use it in a
more fruitful fashion,. This strategy has been proven to
work efficiently by Loh, who shows that hysteresis bits are
strongly biased and that it is unnecessary to waste an
entire bit for hysteresis in a single table entry [9]. His
experimental results also illustrate that, by having 2 entries
in gshare predictor share a hysteresis bit, the entropy per
prediction has increased only slightly, implying that its
prediction accuracy is unlikely to be significantly affected.

We have adopted the hysteresis sharing policy to save
the predictor space and create room for an extra predictor
table. Since higher degree of aliasing is an inevitable
consequence to the hysteresis-bit sharing scheme and is
likely to cause more damages with small predictor tables,
T1 is exempted from being implemented the mechanism.
As a result, the overall die space saved from using this
approach in the 7 remaining predictor tables, each of
which contains 2K entries, is exactly 7K bits. The area of
this size is precisely what another predictor table, T8 in
this case, actually needs as it will contain 2K entries of 3-
bit counters and 1K entries of a hysteresis
bit.

0

1

2

3

4

5

6

7

8K 16K 32K 64K 128K 256K 512K 1M

budget (bits)

m
is

pr
ed

ic
tio

n

8 tables
9 tables

Figure 4. Misprediction rates when 9 predictor tables
with shared hysteresis bits are used in the predictor

The misprediction rates, before and after the sharing of
hysteresis bits, across various predictor budgets are shown
in figure 4. Listing of the improved percentages in

prediction accuracy for each predictor is also presented in
table 6. The results get worse with the predictor of size
8K-64K bits while some improvement can be seen in the
predictors larger than 64K bits. This is simply because
small branch predictors tend to already have high aliasing
rate. Sharing hysteresis bits is likely to multiply increase
the interference to the extent that it cannot be compensated
by the benefits gained from having an extra predictor table
anymore.

Size
(bits)

Improv
(%)

Size
(bits)

Improv
(%)

8K -7.75 128K 2.54
16K -5.73 256K 0.95
32K -3.50 512K 1.08
64K -2.38 1M 1.05

Average -4.84 Average 1.40

Table 6. Improved prediction accuracy across all
predictor budgets

Table 6 shows that the average decrease in prediction

accuracy of the predictors sized 8K-64K bits is 4.84%,
indicating that the strategy does not work well in small
branch predictors. Meanwhile, the average increase in
prediction accuracy of the predictors with hardware
budget between 128K and 1M bits is 1.40%, which is
better than 1.17% improvement obtained from the equal-
sized predictors with dynamic-L(n) scheme. The highest
improvement percentage of prediction accuracy from the
hysteresis-sharing scheme is 2.54% in 128K-bit predictor
and the lowest is 0.95% in 256K-bit predictor, while in the
dynamic L(n) scheme the highest is only 1.96% in 128K-
bit predictor and the lowest only 0.57% in 256K-bit
predictor. These results reveal to us a very interesting
discovery: Even though the hysteresis-sharing scheme
incurs, on average, higher misprediction rate when all
hardware budgets are considered, it outperforms the
dynamic-L(n) scheme in large branch predictors.
Consequently, it can be concluded that a larger number of
tables definitely are an essential factor in enhancing the O-
GEHL prediction accuracy when hardware budget is not
limited.

Size (bits) FP INT MM SERV

128K 24.88 -2.94 0.47 8.64
256K 10.08 -0.43 -0.18 3.98
512K 14.55 0.77 -1.92 0.20
1M 16.05 1.00 4.14 -1.55

Average 16.39 -0.40 0.63 2.82

Table 7. Improvement percentage in prediction
accuracy for each benchmark category, for predictors

with budget larger than 64K bits

To further elaborate the contributions made by our
approach, we have performed an analysis to evaluate its
impact on the accuracy of large predictors (128K-1M bits)
with each benchmark category, as shown in table 7. Even
though the hysteresis-sharing scheme has had a reasonable
success with all FP benchmarks, with an impressive
average improvement of 16.39% in prediction accuracy, it
is still slightly lagging behind the dynamic-L(n) scheme
that exhibits an average of 19.04% increase in prediction

JCS&T Vol. 7 No. 2 April 2007

175

accuracy over the same range of hardware budget.
However, on average for predictors of size 128K-1M bits,
it manages to improve 0.63% and 2.82% of prediction
accuracy in MM and SERV benchmarks, respectively,
while the dynamic-L(n) scheme can only achieve 0.28%
improvement in MM benchmark and even suffer 1.21%
deficit in SERV benchmark. These results confirm the
hysteresis-sharing scheme as an attractive alternative in
improving the prediction accuracy in large predictors, with
a wide range of applications.

Combining the two proposed approaches
In term of prediction accuracy, the combination of the two
mechanisms is only slightly better than the dynamic-L(n)
scheme and is still inferior to the hysteresis-sharing
scheme when the predictor size is larger than 64K bits.
For the predictors of smaller size, it performs worse than
each individual scheme. Hence, we choose to omit the
discussion of its experimental results.

6. CONCLUSIONS
We have performed an analysis on the O-GEHL predictor
and, based on the results, proposed and evaluated two new
mechanisms to help improve its prediction accuracy. Since
T0 is underutilized, our first proposed scheme is to
increase its space utilization by dynamically adjusting the
lengths of global branch history to best suit the benchmark
type. The second scheme proposes to add an extra
predictor table without incurring any hardware budget,
using the space saved from sharing a single hysteresis bit
between 2 table entries

The first scheme increases the prediction accuracy in
almost every hardware budget but 8K and 16K bits, which
are too small for the approach to be effective. In a budget
of 64K bits, a regular O-GEHL predictor size, our
approach improves the prediction accuracy by a much
larger margin than what the O-GEHL predictor does over
the second-placed predictor in the CBP competition. It
also works particularly well with most FP and INT
benchmarks and is thus suitable for microprocessors that
usually run scientific and computation-intensive
applications. Furthermore, its negative impact on MM and
SERV benchmarks suggests that one of the possible future
research directions is to find a more efficient way to
classify the benchmarks to prevent the predictor from
using inappropriate global branch history lengths.

Even though the second scheme causes the prediction
accuracy to drop when a hardware budget is 8K-64K bits,
it outperforms the first scheme when a hardware budget is
128K-1M bits. A larger number of tables are hence an
essential factor in improving the O-GEHL prediction
accuracy when hardware resources are not limited.
Moreover, for branch predictors of size 128K-1M bits, it is
even capable of increasing the prediction accuracy in MM
and SERV benchmarks, which is a task the first scheme
fails to accomplish. This is therefore an attractive scheme
in improving the accuracy of large branch predictors in
microprocessors running a wide range of applications.

For branch predictors sized 32K and 64K bits, the first
scheme using dynamic L(n) is the best option, while the
O-GEHL predictor with regular configurations is still the
best when hardware resources are very limited, 8K-16K
bits in this case.

7. ACKNOWLEDGEMENT

This work was supported in part by NSF under Grant EIA-
0116759 and a gift from Sun Microsystems, Inc.

8. REFERENCES
[1] The 1st JILP Championship Branch Prediction
Competition (CBP-1), Journal of Instruction-Level
Parallelism, 2004, http://www.jilp.org/cbp/.
[2] P-Y. Chang, M. Evers, and Y. N. Patt, “Improving
Branch Prediction Accuracy by Reducing Pattern History
Table Interference”, Proceedings of the 1996 ACM/IEEE
Conference on Parallel Architectures and Compilation
Techniques, October 1996.
[3] A. N. Eden and T. N. Mudge, “The YAGS Branch
Prediction Scheme”, Proceedings of the 31st ACM/IEEE
International Symposium on Microarchitecture,
November 1998, pp. 69-77.
[4] M. Evers, P.Y. Chang, and Y.N. Patt, “Using Hybrid
Branch Predictors to Improve Branch Prediction Accuracy
in the Presence of Context Switches”, Proceedings of the
23rd International Symposium on Computer Architecture,
1996, pp. 3–11.
[5] H. Gao and H. Zhou,” Adaptive Information
Processing: An Effective Way to Improve Perceptron
Predictors”, The 1st JILP Championship Branch
Prediction Competition (CBP-1) in conjunction with
MICRO-37, December 2004.
[6] D. A. Jimenez, “Fast Path-Based Neural Branch
Prediction”, Proceedings of the 36th International
Symposium on Microarchitecture, December 2003, pp.
243–252.
[7] D. Jimenez and C. Lin, “Dynamic branch prediction
with perceptrons”, Proceedings of the 7th International
Symposium on High Performance Computer Architecture,
2001.
[8] C-C Lee, I-C. K. Chen, and T. N. Mudge, “The Bi-
mode Branch Predictor”, Proceedings of the 30th
ACM/IEEE International Symposium on
Microarchitecture, December 1997, pp. 4-13.
[9] G. H. Loh, D. S. Henry, and A. Krishnamurthy,
“Exploiting Bias in the Hysteresis Bit of 2-bit Saturating
Counters in Branch Predictors”, Journal of Instruction-
Level Parallelism, vol. 5, June 2003, pp. 1-32.
[10] S. McFarling, “Combining Branch Predictors”,
Technical Report TN-36, Digital Western Research
Laboratory, June 1993.
[11] P. Michaud, A. Seznec, and R. Uhlig, “Trading
Conflict and Capacity Aliasing in Conditional Branch
Predictors”, In Proceedings of the 24th International
Symposium on Computer Architecture, May 1997, pp.
292-303.
[12] A. Seznec, “The O-GEHL Branch Predictor”, The 1st
JILP Championship Branch Prediction Competition
(CBP-1) in conjunction with MICRO-37, December 2004.
[13] A. Seznec, S. Felix, V. Krishnan, and Y. Sazeides,
“Design Tradeoffs for the Alpha EV8 Conditional Branch
Predictor”, In Proceedings of the 29th International
Symposium on Computer Architecture, May 2002.
[14] E. Sprangle, R. S. Chappell, M. Alsup, and Y. N.
Patt, “The Agree Predictor: A Mechanism for Reducing
Negative Branch History Interference”, Proceedings of the
24th International Symposium on Computer Architecture,
June 1997, pp. 284–291.

JCS&T Vol. 7 No. 2 April 2007

176

	Text1: ekkasit.tiamkaew@gmail.com
	Text7: Received: Jun. 2006. Accepted: Oct. 2006.

