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ABSTRACT 

The O-GEHL branch predictor has outperformed other 
prediction schemes using the same set of benchmarks in 
an international branch prediction contest, CBP-1. In this 
paper, we present the analysis results on each of the O-
GEHL branch predictor tables and also on the optimal 
number of predictor tables. Two methods are subsequently 
proposed to help increase the O-GEHL prediction 
accuracy. The first one aims to increase the space 
utilization of the first predictor table by dynamically 
adjusting the lengths of branch history regarding to the 
type of a benchmark currently in execution. The second 
one adds an extra table into the O-GEHL predictor using 
the space saved from the sharing of hysteresis bits. 
Experimental results have confirmed that both schemes 
improve the accuracy of two different predictor 
configurations, leading to two promising research 
directions for future explorations. 
 
Keywords: Branch Predictor, Neural Network, 
Perceptron, O-GEHL, Predictor Analysis 
 

1. INTRODUCTION 
In the first Championship Branch Prediction competition 
(CBP-1) [1], the first-placed branch predictor is the O-
GEHL (Optimized GEometric History Length) predictor 
[12], which has modified the perceptron predictor to 
exploit various lengths of global branch history. It also 
contains a dynamic mechanism that can adaptively adjust 
the history lengths used in 3 of its 8 predictor tables, 
allowing for the use of even longer branch history when 
necessary. 

Figure 1 shows the mechanism of the O-GEHL 
predictor containing 8 predictor tables, T0-T7. Different 
weights from each table entries are selected using various 
forms of indexing parameters, and then added together to 
generate the prediction outcome, which is the sign of the 
final sum. Only the first table, T0, is always indexed by a 
branch address alone. Various combinations of branch 
address and global branch history are used to index the 
remaining 7 tables. Let L(i) be the length of global branch 
history used in the indexing function of the ith table. L(0) 
and L(1) are initially set to 0 and 3, respectively. The 
values of other L(i) can be computed using the geometric 
series equation: L(i) = αi-1 * L(1), where a value of α is 
{L(M-1)/L(1)}1/(M-2) and M is the number of predictor 
tables. 

In order to exploit really large branch history, the O-
GEHL predictor has set M to 11 and L(10) to 200 even 
though it has only 8 physical predictor tables. All these 
tables are initially programmed to use L(0) to L(7) as the 
table indices. However, T2, T4, and T6, can adaptively 
change their branch history lengths, switching back and 
forth between using L(2), L(4), and L(6) to L(8), L(9), and 
L(10), respectively, with regard to the current branch 

characteristics. The number of entries in each predictor 
table is 2K, with the exception of T1, which has only 1K 
entries. Each entry in T0 and T1 is represented by a 5-bit 
counter, while an entry in the remaining tables uses a 4-bit 
counter. These parameters have been empirically selected 
and therefore proven to optimize the performance of the 
O-GEHL predictor. 
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Figure 1. O-GEHL branch predictor 

 
We have performed an extensive analysis on the O-

GEHL predictor, mainly searching for its characteristics 
that can be exploited to further increase the predictor 
efficiency. The analysis results indicate that, of all 
predictor table, the first one, T0, is the least utilized due to 
its use of short branch history as a parameter to the index 
function, and that more predictor tables generally translate 
into higher prediction accuracy. Subsequently, we propose 
two alternate designs of the O-GEHL branch predictor to 
improve its accuracy, which are: 1) increasing the space 
utilization of its first predictor table, T0, by dynamically 
adjusting branch history lengths used in the indexing 
function, and 2) adding an additional predictor table 
without requiring extra space by means of sharing 
hysteresis bits.  

Our simulation results show that the first proposed 
scheme improves the prediction accuracy in almost all 
hardware budgets, except for 8K and 16K bits. 
Meanwhile, the second scheme provides best performance 
when working with branch predictors larger than 64K bits, 
indicating that when there are abundant hardware 
resources, adding extra predictor tables is more likely to 
improve the prediction accuracy than increasing the size of 
the existing predictor tables. Further analysis of the 
experimental results reveals that even though the second 
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scheme performs worse than the first one on average, 
particularly in FP and INT benchmarks, it enjoys more 
success in some MM and all SERV benchmarks. 

The rest of this paper proceeds as follows. Section 2 
provides a background on the O-GEHL branch predictor 
as well as related work, while section 3 describes our 
experimental methodology. Section 4 shows our analysis 
results on the O-GEHL predictor. Meanwhile, our 
proposed mechanisms and the experimental results are 
discussed in section 5. Finally, we conclude in Section 6. 
 

2. RELATED WORK 
Jimenez has first proposed to use the perceptron in neural 
learning branch predictor for studying and predicting 
branch outcomes [6, 7]. Despite having higher prediction 
accuracy than other prediction methods, the predictor’s 
high complexity and long prediction latency have made it 
rather impractical.  

In CBP-1 [1] where complexity is not an issue, two 
highest ranked branch predictors are proposed by Gao [5] 
and Seznec [12], both of which have modified the 
mechanisms to improve the accuracy of the perceptron 
predictor. Under a distributed set of benchmarks, the O-
GEHL predictor [12] scores the highest and therefore is 
chosen as the subject of our investigation. 

The idea of multiple global history lengths used in the 
O-GEHL predictor was initially introduced in [10], and 
then refined by Evers et al. [4]. Since then, it has appeared 
in several branch prediction schemes and been proven to 
be highly effective in boosting the prediction accuracy. 
One of our proposed methods has adopted the same 
concept by increasing the number of the O-GEHL 
predictor’s tables to provide more diversity into the global 
history lengths. 

In order to add another predictor table without wasting 
up more hardware resources, we follow the footstep of 
Seznec et al. who proposed to have 2 table entries in the 
branch predictor share the same hysteresis bit [13]. It has 
been demonstrated that this sharing mechanism has an 
insignificant impact on the accuracy of certain branch 
predictors, especially the gshare branch predictor, in 
which the sharing only slightly increases the entropy per 
prediction from 0.18 to 0.19 [9]. 

Gao’s branch predictor, a runner-up in the first round of 
CBP-1, used an adaptive approach to modify the 
perceptron predictor to suit each benchmark [5]. We have 
adopted a similar idea in one of our proposed schemes in 
order to distinguish individual benchmarks for an 
appropriate adjustment of the indexing function’s 
parameters. 
 

3. EXPERIMENTAL METHODOLOGY 
In order to conduct our experiments, we use a branch 
predictor framework and input traces from the 1st 
Championship Branch Prediction competition (CBP) [1], 
which is sponsored by Intel MRL and IEEE TC-uARCH. 
This branch prediction contest provides participants with a 
common evaluation framework, written in C++, and a 
fixed hardware budget, which is 64K bits, to implement 
and evaluate their branch prediction algorithms.  

In our experiments, we performed a series of 
simulations using the provided framework with each of the 
benchmark programs distributed by the competition 
committee. Benchmarks are classified into 4 categories: 
FP (floating point), INT (integer), MM (multimedia), and 
SERV (server). All the simulations have been run until 
completion. The performance metric used throughout this 

paper is the output from the framework, which is the 
number of mispredictions per 1000 instructions.  

Because the O-GEHL predictor’s original size is 64K 
bits, enlarging or reducing the predictor requires some 
modifications to the predictor configurations. We have 
decided to simply double, or halves, the number of entries 
in each predictor table when increasing, or decreasing, the 
predictor size. 
 

4. ANALYSIS OF THE O-GEHL BRANCH 
PREDICTOR 

 
Space utilization of the predictor tables 
After careful and thorough analysis of the predictor to 
promote a better understanding of its characteristics and to 
probably discover its shortcomings, we have found quite 
an interesting statistics regarding the space utilization of 
each predictor table. As shown in table 1, while the 
allocated spaces of most predictor tables are used more 
than 74%, even more than 92% in three of them, the usage 
percentage of T0 is surprisingly low, just around 52%. 
This apparently introduces an opportunity for enhancing 
the predictor’s performance. 
 

 T 0 T 1 T 2 T 3 
utilization (%) 52.66 74.07 86.90 75.39 

 
 T 4 T 5 T 6 T 7 

utilization (%) 92.12 86.88 93.56 92.75 
 

Table 1. Space utilization in each predictor table 
 

Despite its low utilization, we cannot simply reduce T0 
size without inflicting considerable damage to the 
prediction accuracy. This is because each benchmark 
exhibits a highly different branch distribution pattern 
across T0. In an attempt to seek for an insight into branch 
behaviors and eventually find a way to make a better use 
of T0 space, we have conducted further studies of the way 
T0 entries are occupied. The results shown in table 2 and 3 
are the number of entries that has been used for each 
benchmark during the entire execution. They are grouped 
into 4 categories, which are FP, INT, MM, and SERV, as 
previously mentioned. The average value of each category 
is also calculated and shown in the table.  

From the results, all SERV benchmarks have their 
branches spread throughout T0, making full use of the 
allocated table space. This is a level of success other 
benchmarks unfortunately fail to match. Moreover, several 
FP and INT benchmarks (even one from MM) have 
occupied only 20% of the total T0 capacity. Not only do 
such drastic variations in the table usages undoubtedly call 
for a more efficient way to distribute branches across the 
table, but also indicate how difficult it would be to find 
one.  
 

FP 1 400  INT 1 386 
FP 2 405  INT 2 1105 
FP 3 682  INT 3 791 
FP 4 489  INT 4 568 
FP 5 231  INT 5 392 

Average 441.4  Average 648.4 
 

Table 2. The number of T0 entries used FP and INT 
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MM 1 409  SERV 1 2037 
MM 2 1434  SERV 2 2040 
MM 3 852  SERV 3 2047 
MM 4 1385  SERV 4 2047 
MM 5 1823  SERV 5 2045 

Average 1180.6  Average 2043.2 
 

Table 3. The number of T0 entries used MM and 
SERV  

 
However, higher space utilization in other predictor 

tables suggests that the simplest and most intuitive scheme 
to improve T0 usage percentage probably is to use global 
branch history as another parameter for the indexing 
function of T0. In the other word, L(0) of the new scheme 
is no longer zero.  

We have performed various experiments with different 
values of L(0). One of the best configurations is to set L(0) 
to 3 and L(1) to 5 while other L(n) are recalculated using 
to the same equation given in the section 2.1. Figure 2 
shows the effects this configuration has on the prediction 
accuracy for each benchmark set. FP and INT benchmarks 
benefit from larger L(0), gaining 5.22% and 1.99% of 
prediction accuracy, respectively. Unfortunately, the 
overall prediction accuracy is decreased because MM and 
SERV benchmarks suffer 7.24% and 10.24% loss in 
prediction accuracy respectively. This scenario gets worse 
when other configurations with even larger L(0) have been 
used in the experiments. The results reveal that while an 
indexing function with larger L(0) improves the prediction 
accuracy of the benchmarks that exhibited low utilization 
percentage, specifically FP and INT, it degrades that of the 
others.  

Apparently, short global branch history still plays a 
significant role in maintaining high branch prediction 
accuracy in the O-GEHL predictor, especially for both 
MM and SERV benchmarks. This makes the task of 
improving the predictor’s efficiency and accuracy much 
more complicated since simply increasing the length of 
global branch history alone, as done in traditional 
perceptron predictor [7], is not going to accomplish the job 
anymore. 
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Figure 2. Improvement in prediction accuracy when 

L(0) = 3 and L(1) = 5 
 
The effects of T8, T9, and T10 after being allocated 
their own space. 
Due to a space limitation in the O-GEHL predictor, table 
T8, T9, and T10 are arranged to collocate with T2, T4, and 
T6, respectively. These extra tables are physically 
assigned their own spaces in our experiments for a study 
of their impact on the prediction accuracy. As shown in 

table 4, approximately 1% improvement on prediction 
accuracy is observed each time an extra table is added. 
The third table (T10) however is an exception as it causes 
a slight drop in the prediction accuracy. These results 
show that only 9 or 10 tables are sufficient to obtain 
higher predictor efficiency. 

 

 
O-GEHL 

(64K) 
9 tables  
(72K) 

10 tables 
(80K) 

11 tables 
(88K) 

Mispredict 
(%) 2.82 2.79 2.75 2.76 

 
Table 4. The effects on prediction accuracy when more 

tables are added into the predictor 
 

We have also performed other experiments where the 
traditional O-GEHL predictor is added with a rather small 
table (1-2K bits). Various versions of global branch 
history with different lengths are used to index to the extra 
table. Even with four-way associativity being 
implemented on the table to increase its space utilization, 
the consequent prediction accuracy is not improved. This 
result, along with the finding from table 3 that most of 
MM and all SERV benchmarks use up almost all the table 
entries, reveals that an extra table requires a large number 
of entries, preferably 2K entries, to have a positive impact 
on the overall prediction accuracy.  
 

5. OUR PROPOSED APPROACHES AND THE 
EXPERIMENTAL RESULTS 

 
Increasing space utilization in T0 
One interesting fact about T0 is that it is under utilized 
when used with particular benchmarks but almost fully 
utilized with the others. Therefore, static modifications to 
table size or indexing function cannot be made without 
sacrificing the prediction accuracy in some benchmarks. 
An appropriate approach is to find a means to dynamically 
adjust the length of global branch history used in the 
indexing function of each predictor table, which is L(n) 
where 0 ≤ n ≤ 10, with regard to what kind of benchmark 
is being used at the time. 

Distinguishing between benchmarks that need a small 
L(n) and those that need a larger one is a challenging 
problem. We have decided to use the number of 
conditional branches as a deciding factor in this process 
since in most cases there are more of them in FP and INT 
than in MM and SERV benchmarks. In our approach, each 
L(n) is initially given a default value as done in the O-
GEHL predictor. After a certain time period, t, has passed, 
the number of conditional branches, c, is then compared to 
a pre-specified value, v. If c is less than v, it is likely that 
the currently running benchmark program is in either MM 
or SERV category and these L(n) values are not changed. 
Otherwise, L(0) is set to 3, L(1) to 5, and L(10) to 200, 
which is the same value, while all other L(n) values will 
be re-calculated using the given geometric series equation. 
These values have been proven to have biggest positive 
impact on the prediction accuracy for FP and INT 
benchmarks, as previously shown in figure 2. Once this 
process is done, regular prediction mechanism of the O-
GEHL predictor can go on without any other interruption. 
As a result, an overhead cost is kept very small and each 
benchmark is likely to run in the predictor configuration 
that suits it the most. 

Not only should t be small enough to allow for a timely 
adjustment of the L(n) values, but should also be 
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sufficiently large for an efficient classification of 
benchmark programs. Therefore, a 7-bit counter 
responsible for tracking the number of all branch 
instructions, both conditional and unconditional ones, is 
chosen to represent the amount of time that has passed. 
The counter overflow signals that the time t is reached, 
and triggers the L(n) adjustment process. The use of this 
counter allows the time t to be extremely short, compared 
to the whole execution time, while the value of v can be 
set to, based on the information we have gathered on 
previous runs of all benchmark programs, approximately 
84% of the counter’s maximum value possible. With this 
scheme, another 7-bit counter is required to track the 
number of conditional branches, and a comparator is 
needed for the comparison process. 

We have added this mechanism into the O-GEHL 
predictor and run the experiments with various budget 
sizes, ranging from 8K-1M bits. The results are shown in 
figure 3. 
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Figure 3. Misprediction rates when the dynamic 

adjustment of L(n) is incorporated into the predictor 
 

The prediction accuracy is improved in every case 
except for 8K- and 16K-bit predictors. This is not 
surprising since T0 in these budgets is 4-8 times smaller 
than usual and the task of increasing its space utilization 
becomes almost impossible to accomplish. However, a 
0.025 average decrease in misprediction rate can be 
observed in larger predictors, which is equal to 0.96% 
improvement in prediction accuracy. In fact, the most 
impressive improvement occurs in the 128K-bit predictor, 
which exhibits an almost 2% gain in prediction accuracy. 
512K- and 1M-bit predictors are also enjoying more than 
1% increase in prediction accuracy. This is all because 
higher space utilization can be achieved when T0 is larger. 

The fact that the O-GEHL predictor is specifically 
optimized for a 64K-bit budget suggests that the predictors 
with larger budget may be able to experience even higher 
rise in prediction accuracy with different combination of 
L(n) or different space allocation method for each 
predictor table. This requires extensive examinations of 
the predictor with an extremely large set of parameters, 
and therefore is outside the scope of our paper. However, 
one can easily begin the study by concentrating on T0 
space utilization since our analysis and experimental 
results have already confirmed that it certainly is an 
important factor in deciding the prediction accuracy. 

 It is also inevitable that further performance 
improvement of the highly optimized 64K-bit O-GEHL 
predictor will be highly difficult to achieve. Nevertheless, 
our scheme still has reduced the misprediction rate by 
0.02, which is roughly a 0.71% improvement. Though this 
number seems rather small, it is almost 7 times the 
difference in prediction accuracy between the first-placed 

O-GEHL predictor and the second-placed Gao’s proposed 
predictor [5], which is only 0.003 apart (a tiny 0.11% 
increase). The fact that we has improved the accuracy of 
the already highly-optimized branch predictor makes the 
results even more impressive.  
 

  FP INT MM SERV 
8K 7.42 -6.55 -1.03 -1.27 
16K 15.30 2.63 -0.38 -3.07 
32K 18.58 5.63 0.02 -4.95 
64K 13.24 2.06 0.03 -1.13 

128K 27.6 0.22 0.69 -0.04 
256K 14.65 0.83 -0.22 -1.28 
512K 13.17 1.30 0.37 -1.25 
1M 20.75 0.79 0.27 -2.28 

Average 16.34 0.86 -0.03 -1.91 
 

Table 5. Improvement percentage in the prediction 
accuracy for each benchmark group 

 
To elaborate the contributions made by our approach, 

we have performed an analysis to evaluate its impact on 
the prediction accuracy of each benchmark category, as 
shown in table 5. The decrease in prediction accuracy is 
displayed in a negative number. 

FP benchmarks are undoubtedly the biggest beneficiary 
with an average of 16.34% increase in prediction 
accuracy. The lowest improvement, 7.42%, lies in the 
predictor with 8K-bit budget while the highest one, 27.6%, 
is enjoyed by the128K-bit predictor. Meanwhile, almost 
all INT benchmarks are experiencing various levels of 
improvement in prediction accuracy, particularly with the 
highest rise of 5.63% belonging to the 32K-bit predictor. 
The average increase in prediction accuracy of all INT 
benchmarks is disappointedly only 0.86%. This is mainly 
because of a 6.55% deficit in the 8K-bit predictor, which, 
among the predictors of all sizes, is the only one that 
suffers a prediction accuracy loss. These improvements 
are the direct consequences from heightening T0 space 
utilization, which is however not the case for SERV 
benchmarks that unfortunately have not benefited from 
our proposed scheme at all. Insignificant changes around 
or less than 1% in prediction accuracy can also be 
observed in all MM benchmarks.  

The decrease of prediction accuracy in MM and SERV 
benchmarks takes place because the process of 
distinguishing between each benchmark category is not 
efficient enough. As a result, a few MM and SERV 
benchmark programs sometimes have to be run with large 
L(n), causing more mispredictions. To perfectly 
classifying the benchmarks, either a highly complicated 
mechanism must be used or a thorough profiling must be 
conducted. The former is very likely going to slow down 
the prediction process while requiring more die space. On 
the other hand, despite being faster and requiring no extra 
space, the latter is highly dependent on the profiled 
benchmarks and cannot adapt well to a new type of 
benchmarks. 

The results also reveal that our proposed scheme works 
particularly well with most FP and INT benchmarks and is 
therefore most suitable for microprocessors that run 
scientific and computation-intensive applications. For 
computers whose jobs involve running applications with 
multimedia or server workloads, a traditional O-GEHL 
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predictor is more appropriate. Nonetheless, because its 
overall misprediction rate is still lower than the O-GEHL 
predictor’s, our proposed approach is considered a better 
alternative in microprocessors running general 
applications with unknown workloads. 

 
Adding an extra predictor table without incurring the 
space required 
Prediction accuracy usually increases when a predictor is 
allocated larger die space, or more predictor tables in a 
case of perceptron predictor. However, the analysis results 
in section 4.2 have demonstrated that only up to 2 
predictor tables are actually required for the O-GEHL 
predictor. Our proposed approach is to add an extra table 
into the predictor without ever increasing the allocated 
table space. With the introduction of hysteresis bits being 
shared between 2 table entries, the number of entries in 
each predictor table does not even need to be reduced to 
make room for an extra table. 

In a 2-bit counter, the most significant bit is a direction 
bit, which provides the prediction result, while the least 
significant bit is a hysteresis bit, which prevents the 
direction bit from immediately changing after just a single 
misprediction. Seznec et al. have proposed an approach of 
sharing a single hysteresis bit between 2 adjacent table 
entries [13] to save up more die space of the branch 
predictor in an EV8 microprocessor and then use it in a 
more fruitful fashion,. This strategy has been proven to 
work efficiently by Loh, who shows that hysteresis bits are 
strongly biased and that it is unnecessary to waste an 
entire bit for hysteresis in a single table entry [9]. His 
experimental results also illustrate that, by having 2 entries 
in gshare predictor share a hysteresis bit, the entropy per 
prediction has increased only slightly, implying that its 
prediction accuracy is unlikely to be significantly affected. 

We have adopted the hysteresis sharing policy to save 
the predictor space and create room for an extra predictor 
table. Since higher degree of aliasing is an inevitable 
consequence to the hysteresis-bit sharing scheme and is 
likely to cause more damages with small predictor tables, 
T1 is exempted from being implemented the mechanism. 
As a result, the overall die space saved from using this 
approach in the 7 remaining predictor tables, each of 
which contains 2K entries, is exactly 7K bits. The area of 
this size is precisely what another predictor table, T8 in 
this case, actually needs as it will contain 2K entries of 3-
bit counters and 1K entries of a hysteresis 
bit.

0

1

2

3

4

5

6

7

8K 16K 32K 64K 128K 256K 512K 1M

budget (bits)

m
is

pr
ed

ic
tio

n

8 tables
9 tables

Figure 4. Misprediction rates when 9 predictor tables 
with shared hysteresis bits are used in the predictor 
 

The misprediction rates, before and after the sharing of 
hysteresis bits, across various predictor budgets are shown 
in figure 4. Listing of the improved percentages in 

prediction accuracy for each predictor is also presented in 
table 6. The results get worse with the predictor of size 
8K-64K bits while some improvement can be seen in the 
predictors larger than 64K bits. This is simply because 
small branch predictors tend to already have high aliasing 
rate. Sharing hysteresis bits is likely to multiply increase 
the interference to the extent that it cannot be compensated 
by the benefits gained from having an extra predictor table 
anymore. 
 

Size 
(bits) 

Improv 
(%)  

Size  
(bits) 

Improv 
(%) 

8K -7.75  128K 2.54 
16K -5.73  256K 0.95 
32K -3.50  512K 1.08 
64K -2.38  1M 1.05 

Average -4.84  Average 1.40 
 

Table 6. Improved prediction accuracy across all 
predictor budgets 

 
Table 6 shows that the average decrease in prediction 

accuracy of the predictors sized 8K-64K bits is 4.84%, 
indicating that the strategy does not work well in small 
branch predictors. Meanwhile, the average increase in 
prediction accuracy of the predictors with hardware 
budget between 128K and 1M bits is 1.40%, which is 
better than 1.17% improvement obtained from the equal-
sized predictors with dynamic-L(n) scheme. The highest 
improvement percentage of prediction accuracy from the 
hysteresis-sharing scheme is 2.54% in 128K-bit predictor 
and the lowest is 0.95% in 256K-bit predictor, while in the 
dynamic L(n) scheme the highest is only 1.96% in 128K-
bit predictor and the lowest only 0.57% in 256K-bit 
predictor. These results reveal to us a very interesting 
discovery: Even though the hysteresis-sharing scheme 
incurs, on average, higher misprediction rate when all 
hardware budgets are considered, it outperforms the 
dynamic-L(n) scheme in large branch predictors. 
Consequently, it can be concluded that a larger number of 
tables definitely are an essential factor in enhancing the O-
GEHL prediction accuracy when hardware budget is not 
limited. 

 
Size (bits) FP INT MM SERV 

128K 24.88 -2.94 0.47 8.64 
256K 10.08 -0.43 -0.18 3.98 
512K 14.55 0.77 -1.92 0.20 
1M 16.05 1.00 4.14 -1.55 

Average 16.39 -0.40 0.63 2.82 
 

Table 7. Improvement percentage in prediction 
accuracy for each benchmark category, for predictors 

with budget larger than 64K bits 
 

To further elaborate the contributions made by our 
approach, we have performed an analysis to evaluate its 
impact on the accuracy of large predictors (128K-1M bits) 
with each benchmark category, as shown in table 7. Even 
though the hysteresis-sharing scheme has had a reasonable 
success with all FP benchmarks, with an impressive 
average improvement of 16.39% in prediction accuracy, it 
is still slightly lagging behind the dynamic-L(n) scheme 
that exhibits an average of 19.04% increase in prediction 
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accuracy over the same range of hardware budget. 
However, on average for predictors of size 128K-1M bits, 
it manages to improve 0.63% and 2.82% of prediction 
accuracy in MM and SERV benchmarks, respectively, 
while the dynamic-L(n) scheme can only achieve 0.28% 
improvement in MM benchmark and even suffer 1.21% 
deficit in SERV benchmark. These results confirm the 
hysteresis-sharing scheme as an attractive alternative in 
improving the prediction accuracy in large predictors, with 
a wide range of applications. 
 
Combining the two proposed approaches 
In term of prediction accuracy, the combination of the two 
mechanisms is only slightly better than the dynamic-L(n) 
scheme and is still inferior to the hysteresis-sharing 
scheme when the predictor size is  larger than 64K bits. 
For the predictors of smaller size, it performs worse than 
each individual scheme. Hence, we choose to omit the 
discussion of its experimental results. 
 

6. CONCLUSIONS 
We have performed an analysis on the O-GEHL predictor 
and, based on the results, proposed and evaluated two new 
mechanisms to help improve its prediction accuracy. Since 
T0 is underutilized, our first proposed scheme is to 
increase its space utilization by dynamically adjusting the 
lengths of global branch history to best suit the benchmark 
type. The second scheme proposes to add an extra 
predictor table without incurring any hardware budget, 
using the space saved from sharing a single hysteresis bit 
between 2 table entries 

The first scheme increases the prediction accuracy in 
almost every hardware budget but 8K and 16K bits, which 
are too small for the approach to be effective. In a budget 
of 64K bits, a regular O-GEHL predictor size, our 
approach improves the prediction accuracy by a much 
larger margin than what the O-GEHL predictor does over 
the second-placed predictor in the CBP competition. It 
also works particularly well with most FP and INT 
benchmarks and is thus suitable for microprocessors that 
usually run scientific and computation-intensive 
applications. Furthermore, its negative impact on MM and 
SERV benchmarks suggests that one of the possible future 
research directions is to find a more efficient way to 
classify the benchmarks to prevent the predictor from 
using inappropriate global branch history lengths. 

Even though the second scheme causes the prediction 
accuracy to drop when a hardware budget is 8K-64K bits, 
it outperforms the first scheme when a hardware budget is 
128K-1M bits. A larger number of tables are hence an 
essential factor in improving the O-GEHL prediction 
accuracy when hardware resources are not limited. 
Moreover, for branch predictors of size 128K-1M bits, it is 
even capable of increasing the prediction accuracy in MM 
and SERV benchmarks, which is a task the first scheme 
fails to accomplish. This is therefore an attractive scheme 
in improving the accuracy of large branch predictors in 
microprocessors running a wide range of applications. 

For branch predictors sized 32K and 64K bits, the first 
scheme using dynamic L(n) is the best option, while the 
O-GEHL predictor with regular configurations is still the 
best when hardware resources are very limited, 8K-16K 
bits in this case. 
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