
DATA BASES AND DISCRETE EVENT SIMULATION

Abdelhak Boubetra1, Hocine Belouadah1, Nassreddine Mouhoub1

Department of computer science
University of Bordj Bou Arreridj

EL ANNASSER 34000
ALGERIA

boubetraabd@yahoo.fr

ABSTRACT

This paper is an attempt to define how a
specific data structure might be used to
store, in a persistent manner, temporal
information during a computer simulation.
In particular, it considers the sort of
temporal information generated during a
discrete event simulation of a system to
which a relational data base exists and
considers the demands this data makes on
data base design.

Key-Words: - Computerized system,
temporal data, discrete event simulation,
data base

1. Introduction
Simulation is the act of experimenting with a
model representing a system. It serves as
direct means of observing the system’s
behavior within time and starting from a
chosen initial state. If the system to be
simulated is computerized (a data base for the
system under investigation exists) the
simulation writer can gain in the initialization
phase of the simulation by starting his
simulation runs from existing data by
connecting the output of the query system of
the existing data base management system
(DBMS) to the simulation system.
In addition, there are requirements to find
ways and means for the case where the
simulation writer is asked by the data base
user to write back the simulation results into
the user database since he is accustomed to
interrogate his computerized system with his
own DBMS. Here difficulties can arise due to
the fact that most of existing DBMS were not
conceived to support temporal data with
which simulation deals.
Thus, a simulation temporal data structure to
store the dynamic data and their relationships,
which are of primary interest to the discrete

simulation modeler, is wanted and needed. In
other words, the aim of our suggestion is to
investigate the simulation of computerized
systems and to provide a design approach to a
data structure for simulation which can be
implemented with simulation systems and
interfaced with an existing data base of the
system under simulation.
In this paper we are concerned with how to
deal with the generated behavior in simulation
in the context of a computerized system. To
tackle that, we first introduce a description of
the concepts in which discrete event
simulation has grown and highlight the recent
recommendations for the simulation on which
our suggestion was conducted. In a second
phase, we point out the possibility of building
a simulation temporal data structure that can
be interfaced to an existing data base and
helps understanding the behavior of a wide
range of systems.

2. Simulation and DBMS
One of the early contribution to meet the
requirement of a DBMS for the simulation is
the Simulation Data Language (SDL)
proposed by C.R. Standridge and D.B.
Wortman in 1981. As a criticism to the SDL
was its limits to mechanisms available in the
FORTRAN source language in which it was
written. In the same direction, in 1999, C.R.
Standridge proposed an object manager
architecture to manage the flow of data
between software tools to perform a
simulation project where a simulation
environment consists of a set of tools as well
as the data needed for input to the tools and
the data resulting from the use of the tools.
Thomas Wiedemann (1999) presented an
approach towards building a flexible
modeling and simulation environment with
database technologies. He proposed that the
database structure has to allow a high
flexibility of relationships between all objects
of a simulation model and he mentioned a

JCS&T Vol. 7 No. 2 April 2007

186

serious discussion about the usage of
relational or object-oriented databases and for
his implementation he choose a relational
database. The attributes of the database-tables
are of two groups: a set of attributes for
administration and others for the storage of
the objects data. This data structure was used
for all model entities and a relational language
called SimSQL was introduced for
manipulating the model during design and
run-time. From another point of view, an
article (Henk de Swaan Arons 1999)
investigated the use of a database of existing
models can help and save time to select a
model that in some sense is close to the
system under study. On the other hand from a
simulation data collection point of view, N.H.
Roberstson and T. Perera (2001) argued that
automating this phase by interfacing the
corporate business systems as a potential data
source for simulation will accelerate the data
collection process needed to run the
simulation. A previous research (L.G. Randel
and G.S. Bolmsjo 2001) developed a modular
software designed to reduce the modeling and
maintenance effort when modeling an entire
factory where the database used to
automatically generate and drive the
simulation model is a copy of the production
planning database. Here, it has been shown
that it is easy to integrate a simulation system
with other computer systems (a database).

3. Simulation requirements and
temporal aspects
As a summary of the above suggestions,
we notice that the database modeling
techniques concentrate almost exclusively
on static views of the system being
modeled. However, simulation
concentrates on dynamic views of the
system being modeled. What is modeled
is the system behavior or the dynamism of
the real world. Thus, the need to have
something in the database that represents a
system entity (object) behavior just as a
collection of events drives an entity
through its behavior in the real world. To
do so, in specifying the dynamic behavior
of a system, time forms the core of any
simulation study. It appears that temporal
databases that capture what is known
about events and their effects occurring

over time can meet the requirement of a
database for the simulation. T.Mclean,
L.Mark, M.Loper and D. Rosenbaul
(1998) put important questions regarding
the utility and viability of a temporal
database for simulation. They were
seeking issues of how and where to collect
the data in a simulation and noted the
opportunity to explore temporal database
concepts to embody simulation
requirements. In our view, we confirm
that it is difficult to keep track of all the
execution of large simulation studies in a
simulation program. A well-integrated
temporal data structure is the issue in this
problem in order to provide facilities for
organization, access and control of the
data.

4. Approach to the simulation temporal
data structure
Today, we are witnessing the use of object-
oriented concepts when designing
applications, since the conceptual notion of
object provides an easy and a realistic way of
observing and understanding a real world
system. It is clear that these concepts interest
the databases and simulation designers most.
The database designers take advantage of the
fact that object-oriented concepts concentrate
on the static and dynamic aspects of entities
(objects), instead of the static aspects only. As
a result, object-oriented database systems
replace relations with objects as the essential
entities. On the other hand, simulation
designers are looking for something that holds
their objects’ behavior in a persistent manner.
Moreover, the functionality of the simulation
is time based. The objects of the simulated are
perceived to be time varying and moving from
snapshot to snapshot taking states reflecting
the changes of the system under study. When
the time aspect is to be explicitly stored with
the behavior generated by a system to record
the state changes at the different snapshots of
the time evolution, we propose a temporal
data structure in the form of a relation that can
be viewed as a 3-dimensionnal structure
(Figure 1) where the first two dimensions
represent the entities and their attributes and
the third dimension represents the time aspect.
In this paper, we investigate how this
temporal data structure can be explored and

JCS&T Vol. 7 No. 2 April 2007

187

even implemented without performance and
storage problems and we show how we can
keep track of a number of situations occurring
at different times and we can move from one
snapshot to another backwards and forwards
in order to learn what was produced at that
snapshot and what has led to this situation.

 Fig 1: A cubic view of the system changes

With the cubic representation applied to the
simulation; each horizontal slice will indicate
the changes at a specific snapshot of a
simulation object. The upper horizontal slice
represents in general the most current view of
the simulated system object. However, this
representation reveals some difficulties. When
some attributes of an object remain unchanged
but others change their states at a snapshot,
the object can be assumed to have logically
taken the last state at the most current
snapshot which is not true.
Because much work has been done in
processing tables without time support, we
can see that the three dimensional structure
can be converted into a two dimensional table
by adding a time attribute like in figure 2.
Object Attribute1 ……. Time

Fig 2: Relational table with time support

 It is obvious that figure 2 can be implemented
directly on any relational database systems.
The additional attribute Time, can be used to
store the simulation time values for each
tuple. When a tuple is created, the time value
at that snapshot will be stored. It is clear that
it is not sufficient to have only one attribute
for time. While it is adequate to support
creation and update but it is not adequate to

support deletion because we only store the last
state of an entity. A more realistic data
structure model would be a 3-dimensional
structure where the first dimension represents
the entities, the second one represents only the
changes of the attributes and the third is the
time dimension as in figure 3. The simulation
temporal will be based on this approach.

 Objects

Ti
m

e

 Attributes

 Fig 3: Irregular cubic view of the data

5. The simulation temporal data
structure design
In discrete event modeling , entities may be
divided into classes. Each class is composed
of entities having the same attributes and
characteristics. To perform the cubic
representation of figure 3, we extend our
concept to include the history behavior of the
simulated system. Instead of building one
table for each class of entities with additional
time attributes to contain all the tuples and
their changes since their creation, we shall
have a table that contains only the current
tuples as is done in the current view systems.
However, to capture the time aspect we will
have its value stored with the tuples of the
current view. This time will not behave as in
the case where the temporal domain is
supported by adding the time attributes to the
tables.
Included with each tuple will be a pointer that
points to the first history tuple when there is
as shown in figure 4.

The method for creating and storing history
simulation data works as follows: all history
information belonging to one tuple
representing an entity is chained in time order.
The beginning of the chain is the current view
of the entity and with this structure we can
process all the current and history view of the

JCS&T Vol. 7 No. 2 April 2007

188

entities. Now we go into discussion of our
approach and focus on the performance and
the design of the historical view which is
illustrated in figure 5. We organize another
table for sequential accessing of the time
aspect which will be referred to as the
simulation historical table and it consists of
two fields. The first one represents the time
and the second one is a pointer to the
attributes values of an entity. In this figure,
the historical pointer HISTPTR of the entities
class points to the simulation historical table
which acts as a pointer to the attributes values
of the entities with the time as a key access in
the first field. The second field of the
simulation historical table is a pointer to the
attributes which have undergone a change.
This pointer is denoted in figure 5 by
PTRATR.

Entity
1

V(attr1) V(attr2) V(time) HISTPT
R

Entity
n

V(attr1) V(attr2) V(time) HISTPT
R

Histotical View
Of entity n

Historical view
of entity 1

 ..…

 ��

Fig 4. Current and historical view of an
entities class

 Current view

Entity Attributes Time HISTPTR

Time Attributes

Pointer
60 PTRATR

55 PTRATR

43 PTRATR

Fig 5. Simulation historical table

In discrete simulation modeling, at a snapshot
the changes on the attributes are arbitrary, that
means one or more attributes of an entity
undergo a change. As we are interested in the
historical view to keep only the changes of
some of the attributes so we must take care of
this condition. In fact, the pointer PTRATR of
the simulation historical table points to
another table showing the attributes of the
entity of interest which have undergone a
change at a specified snapshot. This table is
composed of three fields: the first field
represents the table identity holding the
attribute values, the second one is the record
number in the attribute values table and the
third field is a pointer to the next attribute of
the same entity having undergone a change at
this specified snapshot. Figure 6 is an
illustration of the data structure. For example
the entity: ENTITY undergoes a change at the
snapshot 60 which concern only the attributes:
atr1, atr2 and atr3 which their values are in the
records 30, 45 and 50 of the table TABLE1,
TABLE2 and TABLE3 respectively.

6. Conclusion

This paper has suggested the use of a temporal
data structure to meet the need for supporting
the data outcome of a simulation running.
This structure represents an efficient
framework to reason about simulation and
time since its design is based on a three
dimensional view (entity, attributes, time).
Thus the simulation temporal data structure is
a kind of irregular cube of the simulation data
where each horizontal slice represents only
the changes of a specific snapshot of the
simulation. Beside that, there is much benefit
in the ability of moving backward and
forward within the simulation temporal data
structure and slicing it into snapshot states
which may in the future form a means to write
back the simulation results or each snapshot
state into an existing data base of the system
to be simulated. This ability provides
Managers, when taking decisions, with a
means to move backward and forward within
the time to see the evolution of the simulated
system at a specified time.

Attributes
Values

JCS&T Vol. 7 No. 2 April 2007

189

7. References

[1] Arons H. S. 1999. Knowledge-based
modeling of discrete-event simulation
systems. In proceedings of the 1999 winter
simulation conference, ed. P.A. Farrington,
H.B. Nembhard, D. T Sturrock, and G. W.
Evans, 591-597 : society of computer
simulation.

[2] McLean T., Mark L., Loper M. and
rosenbaum D. 1998. Applying temporal
databases to HLA data collection and
analysis. In proccedings of the 1998 winter
simulation conference, ed. D.J. Medeiros,
E.F. Watson, J.S Carson and M.S.
Mannivannan, 827-833 :society for computer
simulation.

[3] Randell L.G. and Bolmsj� G.S. 2001.
Database driven factory simulation : a proof-
of- Concept demonstrator. In proceedings of
the 2001 winter simulation, ed.B.A. Peters,
J.S. Smith, D.J Medeiros and M.W.Rohrer,
977-983: Society for computer simulation.

[4] Robertson N.H. and Perera T. 2001.
Feasibility for automatic data collection. . In
proceedings of the 2001 winter simulation
conference, ed. B.A. Peters, J.S. Smith,
D.J.Medeiros and M.W. Rohrer, 984-
990 :Society for computer simulation.

[5] Standridge C. R. and Wortman D.B. 1981.
The simulation data language (SDL), a
Database management systems for modelers,
Simulation journal; August 1981: 55-88.

[6] Standridge C.R. 1999. Modular simulation
environments. An object manager based
architecture. In proceedings of the 1999
winter simulation conference, ed.P.A.
Farrington, H.B. Nembhard, D.T. Sturrock,
and G.W. Evans,598-602 : Society of
computer simulation.

[7] Wiedmann T. 1999. Database oriented
modeling with simulation microfunctions. In
proceedings of the 1999 winter simulation
conference, ed. P.A. Farrington, H. B.
Nembhard, D.T. Sturrock, and G.W. Evans,
586-590: Society of computer simulation.

JCS&T Vol. 7 No. 2 April 2007

190

	Text10: Received: Jan. 2007. Accepted: Mar. 2007.

