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ABSTRACT 

An ad-hoc mobile network is a collection of mobile 

nodes that are dynamically and arbitrarily located in such 

a manner that the interconnections between nodes are 

capable of changing on a continual basis. Routing 

protocols are used to discover routes between nodes. 

Many mobile ad-hoc networks protocols such as AODV 

construct route only when desired by the source node 

(reactively). The advantage hereof is that no prior 

assumptions of the network topology are required. In 

highly mobile networks this is an attractive property. 

Other used protocols (such as OLSR) are said proactive. 

Such protocols maintain information about routes to all 

destinations all times. The consequence of this approach 

is that the amount of control traffic is independent of the 

actual traffic and mobility in the network. 

In this paper we describe three major optimization 

schemes for the well-known AODV routing protocol in 

order to get some of the proactive protocols features in it. 

The targeted characteristics are: traffic independent 

control and shortest path routes. 

 

Keywords: Manet, Ad-hoc networks, Mobile networks, 

Wireless networks, Dynamic routing 

 

1. INTRODUCTION 

 
A mobile ad-hoc network (MANET) is a collection of 

nodes capable of movement and connected dynamically 

in an arbitrary manner. Nodes of theses networks 

function as routers which discover and maintain routes to 

other nodes in the network. 

The issue in MANETs is that routing protocols must be 

able to respond rapidly to topological changes in the 

network. At the same time the amount of control traffic 

generated by the routing protocols must be kept at a 

minimum due to the limited available bandwidth through 

radio interfaces. 

Since the advent of DARPA packet radio networks in 

1970’s [9] several protocols dealing with the problems of 

routing in mobile ad-hoc networks have been developed. 

These protocols may generally be categorized as (a) 

proactive or table driven [14], [4] and (b) reactive or on 

demand driven. 

Proactive routing protocols attempts to maintain 

consistent, up-to-date routing information from each node 

to every other node all times. Theses protocols require 

each node to maintain on or more tables to store routing 

information and respond to topological changes by 

propagating updates through the network. 

Thus using a proactive protocol, a node is immediately 

able to route or drop a packet. Examples of proactive 

protocols are TBRPF ’’Topology Broadcast based on 

Reverse Path Forwarding’’ [18] and OLSR [19] 

(Optimized Link State Routing protocol’’. 

Reactive routing creates routes only when desired by the 

source node. When a node requires a route to a 

destination, a query is flooded on the network and replies 

containing possible routes to the destination are returned. 

Examples of reactive protocols include AODV ’’Ad-hoc 

On Demand Distance Routing protocol’’ [15] and DSR 

’’Dynamic Source Routing’’ [2]. 

In this paper three optimization schemes of the AODV 

will be presented. Theses optimizations aim in on hand to 

render the amount of control traffic independent of the 

actual traffic and mobility in case of high utilization of 

the network and keep it as low as possible otherwise. In a 

second hand ensure that the learned routes are the 

shortest ones in term if hop count. 

The reminder of this paper is organized as follows: in 

section 2, a short overview of the AODV routing protocol 

is given, emphasizing on the path setup stages and route 

maintenance. In section 3, we introduce three 

optimization schemes for the previously described 

AODV protocol. The paper is concluded in section 4. 

 

2. AODV OVERVIEW 

 
Ad-hoc On demand Distance Vector algorithm [15][16] 

is described by its authors as a pure on-demand route 

acquisition system, as nodes that are not on a selected 

path do not maintain routing information. A node doesn’t 

discover and maintain a route to another node until a 

communication is needed. Local connectivity is 

maintained by the use of local broadcast known as hello 

messages.  

The path discovery process is initiated   whenever a 

source node needs to communicate with another node for 

which it has no routing information. Path initiation is 

done by broadcasting a route request RREQ packet to the 

neighbours, which then forward the request to their 

neighbours, and so on, until either the destination or an 

intermediate node with a route to the destination is 

located (fig 2.a). AODV utilizes destination sequence 

numbers to ensure all routes are loop-free and contain the 

most recent route information. The RREQ contains the 

following fields:  

<source_addr, source_sequence_#, broadcatid, 

dest_addr, dest_sequence_#, hop_cnt>. 

broadcatid and source_sequence_# are incremented 

whenever the source issues a new RREQ. The pair 

<source_addr, source_sequence_#> uniquely identifies a 

RREQ. The source node includes in the RREQ the most 

recent sequence number it has for the destination. 

Each neighbour either satisfies the RREQ by sending a 

route reply (RREP) back to the source or broadcasts the 

RREQ to its neighbours after increasing the hop count 

(hop_cnt).  
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Figure 2. a 

 

An Intermediate node can reply to the RREQ only if it 

has a route to the destination whose corresponding  

destination sequence number is greater than or equal to 

that contained in the RREQ. If a node cannot satisfy the 

RREQ, it keeps track of the following information to 

implement the reverse path setup as well as the forward 

path setup: 

 

Destination IP 

Source IP 

Broadcast id 

Expiration time for reverse path route entry 

Source node sequence number 

 

As the RREP is routed back along the reverse path, node 

along this path setup up forward route entries pointing to 

the node from witch the RREP came (fig 2.b). 

A timer is associated with each route entry in order to 

delete it if it is not used within a specified lifetime. If a 

source moves, it is able to reinitiate a route discovery to 

find a new route. When either the destination or some 

intermediate node moves, a special RREP is sent to the 

affected source nodes. 

To maintain local connectivity, the protocol uses periodic 

local broadcasts of hello messages to inform each mobile 

node of the others nodes in the neighbourhood. The use 

of hello messages is not necessary; nodes can listen for 

retransmission of data packets to determine if the next 

hop is within communication range. 

 
Figure 2. b 
 

3- AODV Optimization schemes 
In this section, we propose modified schemes for the 

AODV routing algorithm. The objectives herein are: (a) 

reduce the amount of control traffic during high network 

utilization and mobility periods and make it as possible 

independent of the actual traffic and (b) get the shortest 

path for a destination node. Theses schemes rely on 

modifying the rules a node obey during the reverse and 

forward path setup stages.  

 

3.1. Reverse path setup 

In AODV, to set up a reverse path, a node records the 

address of the neighbour from witch it received the first 

copy of the RREQ. This only guarantees a fast setup, and 

not the shortest path to the source (fig 3.a). In our 

modified scheme, a node updates the reverse path each 

time it receives a RREQ request from the source with hop 

count less than the stored one. This RREQ request is not 

forwarded. 

 
Figure 3. a 

 
3.2. Forward path setup 

In AODV, if an intermediate (possibly the destination it 

self) does have a current route to the destination and if it 

has not been processed previously then the node unicasts 

a route reply packet back to the source. This also doesn’t 

guarantee that the forward route to the destination is the 

shortest one. To ensure the selection of the shortest path, 

we propose a new scheme in which an intermediate node, 

replies each time it receive a RREQ with hop count less 

than the one previously processed.  
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3.3. Route Scattering 
The third scheme we propose in this paper concerns route 

scattering. Each node on the newly discovered route by 

the AODV algorithm knows only how to reach the end 

points of the path and not the other nodes on the same 

path (fig 3.b). Hence, if two nodes on an active path need 

to communicate, the whole process must be restarted.  

 
Figure 3. b 

 

To prevent this, we propose to modify the RREQ and 

RREP to contain an additional field routers_list. Upon 

the receipt of a route request RREQ, each node either 

satisfies the RREQ by sending a route reply RREP back 

to the source with routers_list containing the IP addresses 

of all the nodes from the source to the destination or 

rebroadcasts the RREQ to its own neighbours after 

adding its address to the routers_list and increasing the 

hop_cnt field.  

As the RREQ travels from a source to a destination, it 

automatically sets up reverse path to all the nodes back to 

the source by using the routers_list field of RREQ 

(fig3.c). 

 
Figure 3. c 

 
The same way, as the RREP travels back to the source, 

each node along the reverse path sets up a forward 

pointer to all nodes along the way to the destination. This 

is also possible because of the routers_list in RREP 

(fig3.d). 

 
Figure 3. d 

 
Finally, all nodes on the path from the source to the 

destination broadcast their forward and reverse entries to 

their neighbours outside the path. This, permit to those 

nodes in the neighbourhood of the path to use it as a 

backbone (fig 3.e) 
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Figure 3. e 

 
  

 

4. CONCLUSION AND FURTHER WORKS 

 

Non-optimal routes bring a non negligible overhead that 

is proportional to the data load of the network. We have 

shown that the AODV algorithm yields non-optimal 

routes and then proposed three modified simple schemes 

with the goal of reducing route length overhead. This is 

done by first modifying the node’s behaviour face of 

RREQs and RREPs and second by adding a new field to 

RREQ and RREP. Route scattering is another presented 

scheme which aims to provide a backbone to the nodes in 

the neighbourhood of an active path. 

Currently, are about specifying the details of the 

proposed schemes in an Internet Draft to be submitted to 

the IETF manet working group. Simulation work is in 

progress to test theses new schemes under different traffic 

and mobility scenarios. 
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ABSTRACT 
Decision Support Systems (DSS) are a constantly growing 
area. More and more domains of the daily life take 
advantage of the available tools (medicine, trade, 
meteorology…). However, such tools are confronted to a 
particular problem: the great number of characteristics that 
qualify data samples. They are more or less victims of the 
abundance of information. On the other hand, sat domain 
benefits from the appearance of powerful solvers that can 
process huge amounts of data in short times. 
This paper presents an approach for translating timetable 
problems (which are a particular case of DSS), into a 
Boolean formula which is then provided to an 
environment that allows executing an artificial ants 
algorithm in order to find solutions that satisfy a 
maximum number of clauses (Max-Sat problem). Finally, 
the best solutions are back-translated into the original 
problem in order to find an adequate schedule that satisfies 
the characteristics and constraints of the timetable 
problem. 
Keywords: Decision Support Systems, Timetable, 
Satisfiability, Optimization, Ant Colony Systems. 

 
1. INTRODUCTION 

The Decision Support System (DSS) concept was born at 
the USA during the seventies, to help managers in the 
decision process. 
DSSs have been developed to solve decision systems that 
have been few or badly structured [10], and that have at 
least one of the following characteristics: decider 
preferences are essential; the criteria for making a decision 
are numerous, they raise a or the problem evolves rapidly 
[15]. 
There exist a great number of DSS methods, based on 
fundamentally different principles. From a mathematical 
point of view, the main difficulty that occurs in DSS is the 
problem formulation [21].   
From an organizational point of view, the main problem is 
the identification of the actors and their relation [18]. 
These two aspects are complementary, since on one hand, 
the choice of a DSS method requires a deep knowledge of 
the decision context, and on the other hand, the 
materialization of the result is conditioned by the 
opportunity of the chosen approach [19].   
[23] tackled the search for an optimum. He explains that 
the existence of an optimal solution is conditioned by  
three constraints: exclusivity, exhaustivity and transitivity 
of the actions.  
However, the decider preferences are often fuzzy, 
incompletely formulated and non-transitive. Besides, they 
tend to evolve during the decision process. 
 
 
 
 
 

 
 
 
 
[22] showed the limits of this type of methods in the 
resolution of timetable problems, which is the problem our 
works deal with. 
This paper presents an approach for translating timetable 
problems, expressed as sets of positive and negative 
examples, into Boolean formulas composed of CNF 
(Conjunctive Normal Form) clauses. The Sat problem 
obtained is then provided to an environment that allows 
executing ant colonies in order to extract solutions that 
satisfy a maximum number of clauses (Max-Sat problem). 
The best solutions are back-translated into cases that are 
applied to the data sets in order to extract the pertinent 
information solving the original learning problem. 
Section 2 gives an overview about timetable problem. The 
third one introduces the Sat/Max-Sat problem. Section 4 
references the translation method used to transform a set 
of examples into a CNF formula. Section 5 presents the 
approach used to solve the sat problem. The sixth section 
gives some results obtained on a real benchmark. 

2. TIMETABLE PROBLEM 
Timetable problem was defined by [4] as the follows: 
“Timetabling is the allocation, subject to constraints, of 
given resources to objects being placed in space time, in 
such a way as to satisfy as nearly as possible a set of 
desirable objectives”. 
This problem is strongly constrained. There are two types 
of constraints: the hard (imperative) ones and the soft 
(desirable) ones [22].  
 
Imperative constraints: They must not be violated or relaxed 
in any case. For example, a section (set of student following 
the same lecture at the same time) must not be scheduled for 
more than one lecture at the same time. A section cannot be 
in two different rooms at the same time. 
Soft constraints: They are desirable but not essential. For 
example, the daily scheduled hours should be limited for a 
section. A lecture should be scheduled during the morning. 
 

3. DESCRIPTION OF THE STUDIED PROBLEM 
The problem we are dealing with in this paper is a course 
timetabling. It can be expressed as follows: 
A set of subjects S ={s1, …, sn}; each teacher is 
associated to one or more subjects according to his skills. 
A set of time slots called periods P = { p1, …, pm}. There 
two morning periods and three afternoon ones per day. 
A set of rooms R = {r1, …, rl} 
 
In order to build a timetable, on must take into account the 
following imperative constraints: 
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1. During a given period, the following elements: lecture 
units, sections (sets of student groups following a same 
lecture at the same time) and rooms must appear no more 
than one time. 
2. A scheduled lecture unit must be done exactly one 
time. 
3. The load of a room must be respected. 
4. The same lecture cannot be scheduled in two different 
rooms at the same time; 
5. The same room cannot be used for two different 
lectures at the same time; 
6. A section (or a group) cannot be in two different 
rooms at the same time; 
 
And the following desirable constraints:  
1. Avoid to schedule a lecture twice in the same day; 
2. Avoid the blanks in section schedules; 
3. Avoid to overload a professor during one day; 
A lecture should be scheduled during morning periods 
 
 

4 SATISFIABILITY AND THE MAXIMUM 
SATISFIABILITY PROBLEM (SAT/MAX-SAT) 

 
In the theory of complexity, the problem of Satisfiability 
(SAT) of a Boolean formula plays a very significant 
theoretical and historical role.  It is from this problem and 
the concept of nondeterministic Turing machine that Cook 
defined the NP-Complete class [5]. Since then, a whole 
branch of theoretical computer science is dedicated to the 
study of NP-completeness [12]. This interest is due to the 
fact that very significant problems like partitioning, 
scheduling belongs to this class [16].  The SAT problem is 
central in the class of NP-Complete problems. Several 
problems having practical applications can be reduced to a 
SAT one in a polynomial time [12]. Moreover, domains of 
application of this problem are large such as: the integrity 
and the consistency of data bases [11] and inconsistency 
of knowledge bases in exp ert systems [20, 13].   
We define in the following the problem of Satisfiability of 
a Boolean formula (SAT problem).  Let X= {x1, x2 … 
xn} and C = {C1, C2 … Ck} be respectively a set of n 
variables and a set of k clauses.  F is a Boolean formula in 
its conjunctive normal form (called system SAT) if  
F = ?  Ci (1 ?  i ?  k)   where each Ci = ?  xj (1 ?  j ?  n); 
xj being a literal (a propositional variable or its negation).  
F is said to be satisfiable if and only if there exists a truth 
assignment I such as I(F) is true, I being a function which  
associates to each variable a truth value (Yes or No).   
The inconsistency of a SAT system (i.e. its 
nonsatisfiability) leads us to ask the following question:  
"How many clauses of F can be satisfied simultaneously?" 
This problem is called the maximum satisfiability problem 
(Max-Sat).  The Max-Sat problem is obviously a problem 
of optimization; it has been classified as a NP-hard 
problem [1]. 
 

5.ENCODING TIMETABLE PROBLEMS AS SAT 
FORMULAS  

The characteristics and constraints of the timetable 
problem can be expressed as a set of examples in a truth 
table. Each line of this table corresponds to a positive or a 
negative example. An example is considered positive if it 
corresponds to a soft constraint.  It is considered negative 
if it corresponds to a hard one. Although this truth table is 
not exhaustive (since all the combinations cannot be 

coded), the amount of data generated grows exponentially, 
making it impossible to manually deal with. Note that  
On the other hand, interest in Satisfiability (SAT) is 
always on the rise, not only because it is a central problem 
in NP-completeness, but also because of the recent 
availability of powerful tools that are sufficiently efficient 
and robust to deal with the large-scale SAT problems. 
This is why we proposed to translate the timetable 
problems to Sat ones. It will then be possible to:  
experiment number of general heuristics to try solving 
them, and overcome the limitation of the number of 
variables imposed by classical DSS approaches. 
 
Translation approach 
Note that the translation is not as easy as it may appear. If 
the timetable problem is described with a set of examples 
that constitute an exhaustive one (all the cases are present 
in the truth table), then the translation can be solved using 
De Morgan rules. However, if, as it is the case in a wide 
majority of the problems encountered, the truth table is 
incomplete, the approach proposed in [14] can then be 
used. Using the sets of translation rules described in these 
works, we developed a tool that automatically translates 
an incomplete truth table of positive and negative 
examples to a CNF formula that can be solved by Sat 
tools. 
The number of variables (NV) and clauses (NC) generated 
in the CNF formula are calculated as follows: 

NV = K * (2 * N + A) 
NC = K * (N * (A+1) + R) + A 

With: N: number of variables in the case description of the 
original problem; A: number of positive examples in the 
original problem; R: number of negative examples in the 
original problem; K: number of product terms. 
 
 
6. SOLVING THE TIMETABLE PROBLEM WITH 

ANTS 
As mentioned earlier, the training set used as benchmark 
in this study is extracted from a real case: the timetable of 
the National Computing Institute of Algiers. 
Using the approach referenced in 4.1, the translation of the 
benchmark gave a CNF formula with 410 variables and 
1081 clauses.  
An execution model, named PARME (Partitioning and 
Max-sat Environment) [2, 3, 17] was used 
 
Heuristic used  
In PARME, different meta-heuristics have been 
implemented, such as: simulated annealing, taboo search, 
genetic algorithms, ant colony algorithms as well as 
several dedicated algorithms. Each one was implemented 
with a set of strategies. In this paper, we will be focusing 
on ant colony optimization method (ACO).  
Research on the collective behaviors of the social insects 
provides to computer scientists powerful methods for the 
design of optimization algorithms. 
In addition to their capacity, already surprising, to solve a 
broad spectrum of problems, these techniques offer a high 
degree of flexibility (the colony adapts to the abrupt 
changes of environment) and of robustness, (the colony 
continues to function when certain individuals fail to 
achieve their task). They solve in a more effective way 
problems of optimization, such as the problem of the 
quadratic assignment.   
The algorithms of optimization by ant colony are inspired 
by the behavior of the real ants [7].  The ants are social 
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insects; therefore, they live and behave for the survival of 
the whole colony rather than for the survival of only one 
individual.   
The ACO (Ant Colony Optimization) is a meta-heuristic 
to solve optimization problems introduced by Marco 
Dorigo [7, 8]. The artificial ants used in the ACO are 
procedures of construction of stochastic solutions, by 
adding iteratively components to the partial solution, by 
taking into account (i) heuristic information on the 
instances of the problem to be solved, if they are available, 
and (ii) the track of pheromone, which changes 
dynamically [9].  It is significant to note that the ants 
move jointly and independently, and that each ant is 
complex enough to find a solution to the problem 
considered.  Typically, the solutions of good quality are 
result of the collective interaction of the ants.   
The steps of the Ant Colony System (ACS) we used are 
given in figure 2. 
 

 
Begin 
1-Initialize value of pheromone on 
components/connections to the value ?0 given by the 
user 
While not stopping criteria do 
 2-Position the ants on the starting nodes 
 Repeat 
    For each ant  do 

3- Choose the next literal to be assigned either 
randomly or choose the literal that satisfies the 
maximum clauses  
4- Put this literal in a taboo list 
5-Apply step -by-step pheromone update by 
decreasing the value of the pheromone on the 
component/connection to make it less attractive 
for coming ants (Diversification strategy) 

End for 
 Until  the solution is built 
 6- Update the best solution found  

7- Improve the solution using a local search 
algorithm   (GSAT) 
8- Offline pheromone update. /* We either decide to 
intensify  the search by adding extra pheromone on 
the component/connection to make it more attractive 
or diversify the search by decreasing the value of the 
pheromone if a stagnation of the solution is detected  

End do 
End. 
 

Figure. 1. ACS Procedure. 

 
7. SIMULATIONS AND RESULTS 

In this section, we will present the tests and results 
obtained by the GA and ACS on the medical benchmark 
described in section 4.2. 
All the tests have been run on an Intel Pentium IV, 2GHz 
with a 256 Mo RAM. This benchmark is a formula 
consisting of 68 variables and 346 clauses. 
Table 1 summarizes test parameters and results for the 
considered benchmark.  
These tests allowed us to tune the parameters of the ACS. 
We noticed that the simulation that gave us the best results 
was the first one. The maximum number of ants to be used 
is : 2n ants (n being the number of variables). The 
pheromone was put on the component. The candidate list 
should not exceed 30. If we increase that size, the 

performance of the algorithm decreases. The choice of the 
next literal to be assigned is based on a heuristic. We 
proposed two different ones: a static and a dynamic one. 
We noticed that the latter gave best results. 
The parameters ?0, ? , Q0, ?  and ?  should be well chosen 
by the user. The best values are given in the first entry of 
table 1.  
 

S NA NG H LS ?0 ?  ?  ?  Q0 EC ET 
S1 100 5 D 100 0.3 0.1 0.5 0 0.99 1081 46 
S1 820 2 D 20 0.1 0.1 0.1 4 0.8 1080 29270 
S1 70 5 D 10 0.1 0.1 0.01 1 0.8 1078 457 
S1 100 5 D 100 0.1 0.1 0.01 1 0.8 1081 386 
S2 100 5 D 100 0.3 0.1 0.5 0 0.99 1080 18135 

S : Strategy (S1: pheromone on component, S2: pheromone 
on connections, S3: pheromone on connections with 
sums); NA: Number of Ants; NG: Number of 
Generations; H: Heuristic; S: Static;  D: Dynamic; N: 
without heuristic; LS : Candidate List Max Size;        ?0: 
initial value of pheromone; ? : heuristic; Q0: balance 
between exploitation and exploration; ? : pheromone 
persistance;  ? : pheromone decadence; EC: Elite Solution 
Cost; ET: Execution Time (seconds).  

Table 1: ACS executed on the benchmark. 

Notice that ACS, when having the values of the 
parameters of simulation 1 (table 1), could satisfy in 100 
per simulation the optimum solution (1081 clauses out of 
1081).   
This is due to the approach used: each ant in the ACS 
builds its own solution based on the pheromone it finds on 
its way (pheromone put by the other ants). The ants 
cooperate to find the best solution.  
Moreover, the ACS has two interesting strategies: 
diversification and intensification that are used in step 8 of 
the algorithm (Figure. 2).  If stagnation is noticed (the best 
solution did not change) after a given number of iterations 
then we will diversify the search by decreasing the value 
of the pheromone on components/connection of the best 
solution found.  Otherwise, we will intensify the search by 
adding extra pheromone on it.  
The number of ants has a big influence on the execution 
time, as showed in simulation 2 (table 1) where the 
algorithm takes more than 8 hours.   
 
 

8. CONCLUSION 
This paper introduced an approach that uses ant colonies 
to solve timetable problems. The data was first translated 
into a Sat system in order to benefit from a parallel 
environment named PARME that was designed to solve 
Sat/Max-Sat problems.  
The advantage of translating the timetable problem into a 
Sat one is essentially to be able to deal with great numbers 
of variables and large data sets.  
An other advantage of using PARME is that, unlike many 
other tools that exclude the expert from the learning 
process, it is possible here to choose a certain number of 
solutions that the latter finds "satisfying", according to his 
knowledge and skills. Besides, too dedicated tools are 
difficult to generalize as soon as small changes are 
performed on the data sets. The translation to sat problems 
and the use of general heuristics avoid this kind of 
drawback. 
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