
A pattern language to join early and late requirements1 
 

Alicia Martínez1,2, Oscar Pastor1, Hugo Estrada1,3 
1 Valencia University of Technology  

Avenida de los Naranjos s/n, Valencia, Spain 
2 I.T. Zacatepec, Morelos, Mexico  

3 CENIDET Cuernavaca, Mor. Mexico 
 

                                                                 
1 This work has been partially supported by the MEC project with ref. TIN2004-03534, the Valencia University of Technology, Spain, and the 
SUPERA project, Mexico. 

ABSTRACT 
At present, the early phase of Requirements Engineering is 
a new research area in the Software Engineering field. 
This phase is concerned with the analysis of the 
organizational context in which a software system will be 
used. The models used in this phase allow us to describe 
an organizational environment using actors, goals, 
business processes and relationships. The late phase of 
Requirements Engineering, which is focused on 
representing the expected functionality of the software 
system, is more developed, so there are multiple 
techniques and tools to describe the software system that 
will be developed inside its operational environment. 
However, although there are methodologies which give 
separate support to each phase of requirements 
engineering, the development of methods to derive late 
requirements from the early requirements in a 
methodological way has been neglected in recent research 
works. This is due, in great measure, to the large 
difference between the abstraction levels of these two 
specification models. The objective of this paper is to 
propose a pattern language which allows us to reduce the 
abstraction level between early requirements and late 
requirements in a systematic way. This is done in an 
MDA-based approach. 
Keywords: Organizational Model, Early Requirements, 
Late Requirements, Pattern Design. 

1. INTRODUCTION 

At present, several research efforts have been made to 
accurately represent an organizational model (early 
requirements) [2][3][6][5]. In these works, conceptual 
primitives represent business goals, organizational actors 
and dependencies among these actors. There are also 
several research works focused on the development of 
requirements models (late requirements) to represent the 
expected functionality of the information system 
[14][7][11][15]. However, the problem of linking Early 
Requirements (business models) with Late Requirements 
(requirements of the information system) in a 
methodological way has still not been resolved. One of the 
main reasons for this is the different nature of their 
specifications. In the early requirements phase, the 
concepts are related to the organizational context, while, in 
the late requirements phase, the concepts are related to the 
software system to be developed. There is thus a 
significant difference between the abstraction levels of 
both requirements specifications.  
The lack of methods to generate the expected functionality 
of the software system from the relevant plans of the 
organizational model have lead to severe limitations in the 
usefulness of these works in real software development 
environments. 

The main objective and contribution of this paper is to 
propose a pattern language which permits us to reduce the 
abstraction level of a “pure” organizational model so that 
it is closer to the requirements model. The reduction 
process generates a new organizational model that is 
correctly adapted to systematically generate the 
requirements model. The proposed method complies with 
the MDA[8][10] approach, implementing the concept of 
PIM (platform independent model)-to-PIM 
transformations.  
This paper is structured as follow: Section 2 presents the 
methodological background of the method. Section 3 
presents an overview of the proposal as well as a case 
study. Section 4 shows the pattern language, and Section 5 
presents conclusions and future work. 

2. METHODOLOGICAL BACKGROUND 

The methods that give theoretical support to this research 
work are presented in this section. First, we present the 
Tropos Framework. This Framework is used to represent 
the early and late requirements of this proposal. We then 
present a brief review of the Software Patterns. The 
patterns proposed in this work are used to reduce the 
abstraction level between early requirements and late 
requirements. 

2.1 Organizational Model  
In this paper, the Tropos Framework [2] is used to 
represent organizational contexts. Tropos proposes a 
software development methodology and a development 
framework which are both founded on concepts used to 
model early requirements [16]. One of the key points of 
the Tropos Framework is the capacity for representing 
both the organizational context where the software system 
will operate, and also, the interactions between the 
software system and the human agents. In the early 
requirements phase of Tropos, the modeling activity is 
focused on describing the application domain and the 
intentions of the social actors that want to achieve their 
goals. In this phase, the social actors are identified and the 
network of dependencies between them is specified. In 
this way, it is possible represent the cases where an actor 
depends on other actors for goal to be achieved, for plans 
to be performed, and resources to be furnished. Some key 
concepts in Tropos are: a) Actor, that represents a 
physical, social or software agent as well as a role or 
position, b) Goal, which represent actor’s strategic 
interest, c) Plan, which represents, at an abstract level, the 
way of doing something, A plan can contain AND/OR 
decomposition of a root plan into sub-plans, d) Resource, 
which represents a physical or an informational entity. e) 
Dependency, which indicates that one actor depends, for 
some reason, on the other in order to attain some goal, 

JCS&T Vol. 5 No. 2                                                                                                                                     August 2005

64



execute some plan, or deliver a resource. It is composed 
by: Depender: the actor who is dependent on another 
actor, Dependee: the actor on whom another actor 
depends, and finally, Dependum: the task, goal, resource 
or softgoal on which the relationship is focused.  

2.2 Pattern Languages  
A pattern is a description of a common solution to a 
recurrent problem, which can be applied to a specific 
context [9]. There are several types of patterns such as 
architectural patterns [4] that show the high level 
architectures of a software system, design patterns [13] 
that are focused on the programming aspects, or patterns 
that are focused on project management [1].  
In this paper, we propose a set of organizational patterns 
to allow us to reduce the abstraction level of an 
organizational model, bringing it closer to the 
requirements model of a software system. This is done by 
inserting the software system actor into the original 
organizational model and redirecting the dependencies of 
the original organizational actors towards this new actor. 
In this way, the proposed patterns allow us to analyze the 
organization elements, such as plans, resources and goals, 
with the purpose of inserting a new organizational actor, 
which represents the software system to be developed. 
This new organizational actor should map the objectives 
and dependencies that exist among the organizational 
actors. 

3. PROPOSAL OVERVIEW  

In this section, we present an overview of the proposed 
method to reduce the abstraction level between early 
requirements and late requirements. This specific research 
work is part of a project called “A methodological 
approach to generate conceptual schemas from 
organizational models”. 

The complete method is composed of several phases 
which allow us to use the organizational context for 
generating, in a systematic way, the specification of the 
conceptual schema of an information system. This 
conceptual schema is the input for the OO-Method Case 
Tool, which produces the source code for the information 
system in a target language.  
However, for reason of brevity, in this paper we only 
describe the process for joining the early requirement 
phase with the late requirement phase. In the MDA 
Modeling context, the initial model (Tropos´s Goal 
Diagram) could be considered as the first PIM model of 
the process. Later, we use transformational rules to 
generate a new PIM Model from the Goal Diagram. The 
new PIM represents an organizational model which 
integrates the software system actor (SSA). In this paper, 
the transformation rules are defined by a Pattern Language 
called “FELRE” (From Early Requirements to Late 
Requirements). Finally, the organizational model is 
systematically transformed into a new PIM that represents 
the conceptual model of the information system. This last 
phase was analyzed in a previous initial version [12]. 

3.1 The Case Study 
In order to illustrate our approach, we analyze the “Golf 
Tournaments Management (GTM)” case study. The 
objective of this case study is to analyze the business 
processes of a company that manages golf tournaments.  
The golf tournaments are validated by the Golf Federation, 
which ranks golfers in the golf championship. One of the 
main concerns of the company in question is to provide 
partial results for each game. To do this, there are 
controllers that register the results of the golfers for 
specific holes. 
Figure 1 shows a fragment of the organizational model for 
this case study.  

Play 
game  

Card

Game 
results

Card

Card

Partial
results

Validate 
results of 

the games

Register
golfers

Assign 
controllers to 
each game

Provide  info. 
about the game

Manage golf 
courses

Publish partial 
results

Publish 
final results

Send 
information

Validate 
cards

Register par-
tial results

Send information
(Golfers)

Know  infor-
mation about the 

game

Create 
gamesGolfers

Federation

Controllers

Organiza-
tion

Register
results

Validate 
games

Validate 
games

Validate 
games

Manage 
the game

Keep the gol-
fers informed

Inform partial 
results

Participate in 
tournament

Actor perspective

Hardgoal Plan

Resource

Legend

AND decomposition

Depender DependeeDependum

OR decomposition

Manage 
tournament

Play 
game  

Card

Game 
results

Card

Card

Partial
results

Validate 
results of 

the games

Register
golfers

Assign 
controllers to 
each game

Provide  info. 
about the game

Manage golf 
courses

Publish partial 
results

Publish 
final results

Send 
information

Validate 
cards

Register par-
tial results

Send information
(Golfers)

Know  infor-
mation about the 

game

Create 
gamesGolfers

Federation

Controllers

Organiza-
tion

Register
results

Validate 
games

Validate 
games

Validate 
games

Manage 
the game

Keep the gol-
fers informed

Inform partial 
results

Participate in 
tournament

Actor perspective

Hardgoal Plan

Resource

Legend

AND decomposition

Depender DependeeDependum

OR decomposition

Actor perspective

Hardgoal Plan

Resource

Legend

AND decompositionAND decomposition

Depender DependeeDependum

OR decompositionOR decomposition

Manage 
tournament

 
Figure 1. A fragment of the Goal Diagram for the GTM case study 

JCS&T Vol. 5 No. 2                                                                                                                                     August 2005

65



This model represents the actors who perform plans in the 
business: the Organization (the company), the Golfers, and 
the Controllers and the Golf Federation. There are several 
dependencies among the actors: the Organization depends 
on Golfers to obtain the registration information for each 
player. The Golfers depend on the Organization to obtain a 
card with the game information. 
The Organization depends on the Controllers to get the 
partial results of each game. The Organization also depends 
on the Federation to validate the results of the games. The 
shaded elements in Figure 1 will be used in section 4 to 
illustrate the translation patterns proposed in this paper 

4. THE FELRE PATTERN LANGUAGE 

At present, pattern languages have been widely used as 
tools to define methodological frameworks that guide the 
modeling and design processes.  
Following this research line, we have developed a pattern 
language called "FELRE" (From Early Requirements to 
Late Requirements), which allows us to reduce the gap that 
exists between early requirements and late requirements. 
As result of the application of the patterns, an intermediate 
model is created between the organizational model and the 
software requirements. The new organizational model 
called SS-BM (Software System-Business Model) will 
integrate the Software System Actor (SSA) as an actor of 
the organizational model. Table 1 shows a brief description 
of the FELRE pattern language. 
The SS-BM represents the information system to be 
constructed, and in this context, this actor contains all the 
organizational plans selected to be automated using a 
software system.  
To do this, the original dependencies, goals, resources and 
plans of the organizational actor need to be redirected 
towards the SSA. In this way, the goals and plans of the 
business are not modified; only the actor responsible for 
satisfying them is modified. Besides the elements that are 

redirected towards the SSA, this new organizational actor 
also contains the new dependencies that have been created 
during the insertion of the SSA. They allow the SSA to 
obtain resources from the organizational actor as well as 
the execution of plans using the information system. 
The inclusion of the software system as an actor in the 
organizational model allows us to have a high-level 
description of the plan that must be supported by the 
information system. This high-level description permits 
focus only on the relevant aspects to be automated, thereby 
reducing the complexity of the analysis plan. Therefore, 
this model is correctly adapted to start the process of 
finding the requirements for the information system. 
The generation process of the SSA could be done in a 
systematic way using the patterns presented in this paper. 
Without the patterns, the process of insertion of the 
software system actor could be very costly in time and in 
effort.  

4.1 Implementing the FELRE pattern language  
FELRE is composed of five patterns which systematically 
guide the analyst to obtain the new SS-BM. The proposed 
patterns are used as transformational rules to transform the 
initial PIM Model (Tropos´s Goal Diagram) into a new 
PIM Model (Organizational Model that includes the 
Software System Actor). The process to implement the 
pattern language is as follows: 
Step 1. Identify the relevant plans to be automated. The 
relevant elements of the organizational model are shown in 
Figure 1 (elements with thick border). These shaded areas 
are used to indicate each one of the proposed patterns.  
Step 2. Place the SSA into the SS-BM. Include the actors 
that have some plans, goals or dependencies relationship to 
be automated. In the case study analyzed, the actors with 
these characteristics are: the Golfers, the Organization, the 
Federation, and the Controllers. 

 
Pattern Name Use   Plan or goal to be automated 

The Final Plan without 
dependencies Automation 
Pattern 

To be used when a final plan without 
dependencies needs to be automated. The final 
plans without dependencies are those final plans 
that do not require the intervention of another 
actor. 

ActorActor

 
The General Plan or 
General Automation 
Pattern 

To be used when a General Plan or General 
Goal needs to be automated. 

ActorActorActor

 
The Depender-Dependee 
Actor Plans Automation 
Pattern 

To be used when the plans to be automated are 
both the depender actor plan and the dependee 
actor plan. 

Depender
Dependee

Actor

Actor

Depender
Dependee

ActorActor

ActorActor

 
The Depender Actor Plan 
Automation Pattern 

To be used when the depender actor plan must be 
automated. 

Depender
Dependee

ActorActor

ActorActor

 
The Dependee Actor Plan 
Automation Pattern. 

To be used when the dependee actor plan must be 
automated. 

Depender
Dependee

Actor

Actor

Depender
Dependee

ActorActor

ActorActor

 
Table 1 A short description of the FELRE patterns  

JCS&T Vol. 5 No. 2                                                                                                                                     August 2005

66



Step 3. Transfer the plans or goals to be automated to the 
SSA. To perform this step, the following substeps must be 
carried out: 
 Step 3.1 Analyze the internal plans of the actors. An 

actor can be composed of several goals and plans, 
which, in turn, can be subdivided into goals or plans. 
This subdivision leads to a tree structure. An infix 
traversing must be performed in the internal plans 
trees of each one of the organizational actors of the 
organizational model.  

In our case study GTM, for example, if the infix 
traversing of the actor Organization in Figure 1 is 
performed, the first plan analyzed would be Register 
Golfers. The next goal to be analyzed would be 
Manage Tournament, followed by the plans Assign 
Controllers to each game. This process continues until 
all the internal plans of the Organization actor have 
been traversed. 

 Step 3.2 Analyze each one of the internal elements 
obtained in the infix traversing. If one of these 
elements has a dependency relationship associated to 
it, all the elements of this dependency (depender, 
dependee and dependum) must be analyzed. This 
analysis allows us to identify the automation patterns 
that exist in the organizational model. In our case 
study, to satisfy the plan Register Golfers, the 
Organization (depender actor) depends on the Golfers 
(dependee actor) to obtain their personal data. This is 
represented with the plan dependency send 
information between the Organization and the Golfers. 
In this example, the registration processes as well as 
the process of sending this information have been 
selected for automation. For this reason, the Pattern 
identified in this example is the Depender-Dependee 
Actor Plans Automation Pattern. 

 Step 3.3 Use the appropriate pattern to transfer the 
plans or goals to be automated to the SSA. Once this 
pattern has been identified, the steps indicated in the 
pattern description must be followed. 

4.2 Automation pattern descriptions 
In this section, each one of the five automation patterns of 
FELRE pattern are explained.  
 
1) The Final Plan without Dependencies Automation 

Pattern  
Context: The organizations are composed of different 
types of plans. One of these types is the final plan. This 
sort of plan is not decomposed into other goals or into other 
plans. The final plans without dependencies are those final 
plans that do not require the intervention of another actor. 
This final plan only needs the actor that contains it. For this 
reason, this plan does not have associated any dependency 
with any other actor associated to it. 
Problem: When analysts start analyzing the company to 
determine the expected functionality of the software 
system, they must analyze the organizational plans that will 
be automated as well as the effects of this automation on 
the organizational actors and on the dependencies that 
already exist among these actors.  If the plan to be 
automated is a final plan, which does not have any 
dependencies with any other actors, then other situations 
should be analyzed.  Three forces are associated to this 
problem:   

 The final plan to be automated needs the 
intervention of the actor that performed it 
previously. 

 The final plan to be automated needs the 
intervention of the actor that performed it 
previously as well as the intervention of other 
organizational actors. 

 The final plan to be automated doesn’t need the 
intervention of any organizational actor. 

Solution: When a final plan without dependencies needs to 
be automated, the first step is to transfer this plan to the 
SSA of the SS-BM. The next step is to determine if the 
original owner of the plan must perform it, or if the SSA 
could perform the plan itself. 
If the intervention of another actor is required to perform 
the plan, either to execute plans or to obtain resources, new 
dependency relationships should be created among these 
actors and the SSA. These new dependencies could be:  

 Plan Dependencies, which indicate the 
introduction of information to the software system 
from the organizational actor. In this case, it will be 
necessary to identify the entities modified in each 
plan and to place them as parameters in the 
dependency plans. 

 Resource Dependencies, which indicate the 
delivery of resources to/from the organizational 
actor. 

Example: In our case study, this pattern was found by 
performing the infix traversing of the Organization actor 
(Figure 1). The plan Manage Golf Courses of this actor 
complied with the characteristics of the Final Plan without 
Dependencies Automation Pattern. When the pattern was 
applied, this plan was transferred to the SSA and a new 
plan dependency between the Organization actor and the 
SSA was generated. This dependency allowed us to 
indicate that the Organization would provide the 
information about the golf courses to the SSA. For this 
reason, the Golf Courses element was set as a parameter of 
the plan dependency. The results of the application of this 
pattern are shown in Figure 2. 
 
2) The General Goal or General Plan Automation 

Pattern 
Context: One of the elements of the Goal Model of Tropos 
is the AND/OR decomposition link, which provides 
AND/OR decompositions of a root plan into sub-plans. 
These elements indicate that a main plan (named General 
Plan or Parent Node) needs to be executed by performing 
each one of the sub-plans (named Child Nodes).  
Problem: When a General Plan or General Goal is 
analyzed for automation, its associated children nodes must 
also be analyzed. This is due to the fact that the transfer of 
this plan or goal to the SSA will depend on the decision to 
automate any of the child nodes. Two forces are associated 
with this problem:   

 At least one children node needs to be automated.    
 The General Plan or General Goal has a 

dependency with another organizational actor.  
Solution: To determine if the General Plan/Goal should be 
transferred to the SSA, the child nodes must be analyzed. If 
at least one of them needs to be automated, then it will 
probably be necessary to transfer the General Plan/Goal to 
the SSA. To do this, the following two steps must be 
applied: In the first step, the General Plan/Goal is 
transferred to the SSA of the SS-BM. In the second step, all 
the plans and goals that were previously transferred to the 
SSA must be associated to their corresponding General 
Plan/Goal. 
If the General Plan/Goal has a dependency with another 
actor, an appropriate pattern to perform the transfer must be 
selected. The potential patterns to be applied are: The 

JCS&T Vol. 5 No. 2                                                                                                                                     August 2005

67



Depender-Dependee Actor Plans Automation Pattern or 
the Depender Actor Plan Automation Pattern or the 
Dependee Actor Plan Automation Pattern.  
Example: In our case study, this pattern was found by 
performing the infix traversing of the Organization actor 
(Figure 1). The goal Golf Tournament Management of this 
actor complied with the characteristics of the General Plan 
or General Goal Automation Pattern. In this example, the 
plans Register Golfers, Publish partial results and Manage 
Golf Courses; which are sub-plans of the Golf Tournament 
Management Goal, had already been transferred to the 
SSA. For this reason, this goal was also transferred to the 
SSA. The results of the application of this pattern are 
shown in Figure 2. 

 
3) The Depender-Dependee Actor Plans Automation 

Pattern 
Context:  In the Tropos framework, the organizational 
actors are related to each other through dependencies. Each 
dependency is composed by [2]:  The dependency 
direction, which identifies who the depender and the 
dependee are, and the dependency type (resource, goal or 
plan).   
Problem: One of the main problems of inserting the SSA 
into the organizational model is to transfer the plans to be 
automated to this new organizational actor. If the plan that 
is being analyzed has a dependency relationship associated 
to it, all the elements of that dependency (depender, 
dependee and dependum) must be analyzed. When the 
plans to be automated are both the depender actor plan and 
the dependee actor plan, the dependum object is the guide 
for the steps to be followed. Two forces are associated with 
this problem:   

 The plans (depender/dependee) to be automated are 
linked to a resource dependency (dependum).  

 The plans (depender/dependee) to be automated are 
linked to a plan dependency (dependum). 

Solution: When both the depender and the dependee plan 
must be automated, the dependum object must be analyzed 
before following the instructions for each case.   
• The dependum is a resource: the plans or goals linked 

to the resource should be analyzed by completing the 
following steps:  

 Step 1. Depending on the automation, either the 
resource generation plan (of the depedeee actor) or 
the resource reception plan (of the depender actor) 
will be transferred to the SSA.  

 Step 2. The original resource dependency between 
the organizational actors is redefined in a resource 
dependency between a organizational actor and the 
SSA.  

 Step 3. When the redirection of the resource 
dependency has been done, the original resource 
dependency between the organizational actors 
disappears. Therefore, one of the actors of the 
original resource dependency (depending on 
whether the reception plan or the generation plan 
has been selected) loses its dependency with the 
other organizational actor. In this case, it is 
necessary to create a new plan or resource 
dependency between this first actor and the SSA.  

 Step 4. The dependency relationships generated 
during the automation process are labeled to 
indicate that these dependency relationships are 
associated between them. 

• The dependum is a plan: the plans or goals linked to the 
plan should be analyzed by completing the following 
steps:  

 Step 1. The depender actor plan is transferred to 
the SSA. 

 Step 2. A new dependency relationship is created 
between the depender of the original dependency 
and the SSA. The depender of the dependency will 
be the SSA. This new dependency relationship 
represents the introduction or the reception of 
information in the SSA by the organizational actor. 

 Step 3. The dependee actor plan (of the original 
dependency relationship) is transferred to the SSA 
as a plan decomposition that is linked to the plan 
transferred in Step 1. 

 Step 4.  Either a plan/goal dependency between the 
dependee actor of the original dependency and the 
SSA is created. The depender actor of this new 
dependency will be the SSA. This new dependency 
relationship represents the introduction or reception 
of information in the SSA by the organizational 
actor. 

 Step 5. The dependency relationships generated 
during the automation process of resource 
generation or resource reception are labeled to 
indicate that these dependency relationships are 
associated to each other. 

Example: In our case study, this pattern was found by 
performing the infix traversing of the Organization actor 
(Figure 1). The plan Register Golfers of this actor complied 
with the characteristics of the Depender-Dependee Actor 
plans Automation Pattern, because this plan was linked to 
the plan dependency send information (Golfers) which also 
had to be automated. Once the pattern was applied, a plan 
decomposition SSA was created (the parent node was the 
Register Golfers plan, and the child node was the obtaining 
information). A dependency relationship between the 
organizational actor and SSA has also been created. The 
dependencies that were modified or generated in this 
example are labeled with the number 1. These results are 
shown in Figure 2.  

 
4) The Depender Actor Plan Automation Pattern    
Context: In a dependency relationship, the depender actor 
depends on the dependee actor to achieve its goals, to 
perform its plans or to deliver resources [2]. 
Problem: As mentioned before, one of the main problems 
in the insertion of the SSA is the determination of the plans 
to be automated. If the plan analyzed has a dependency 
relationship associated to it, all the elements of that 
dependency (depender, dependee and dependum) must be 
analyzed. When the plan to be automated is the depender 
actor plan, the dependum object is the guide for the steps to 
be followed. Two forces are associated with this problem: 

 The plan to be automated is linked to a resource 
dependency. 

 The plan to be automated is linked to another plan 
dependency. 

Solution: When the depender actor plan must be 
automated, the dependum object must be analyzed before 
following the instructions for each case. 
• The dependum is a Resource. The following steps 

should be carried out.     
 Step 1. The depender actor plan is transferred to 

the SSA from the SS-BM. 
 Step 2. The next step consists of determining if the 

original owner of the plan (the depender actor of 
the original dependency) must perform it, or if the 

JCS&T Vol. 5 No. 2                                                                                                                                     August 2005

68



SSA could perform the plan itself. If the 
intervention of the actor is required, a new plan or 
resource dependency should be created between 
this actor and the SSA. The depender actor of this 
new dependency relationship will be the SSA. 

 Step 3. The resource dependency remains the same 
between the organizational actors. 

• The dependum is a Plan. The following steps should be 
carried out.     

 Step 1. The depender actor plan is transferred to 
the SSA from the SS-BM. 

 Step 2. The next step consists of determining if the 
original owner of the plan (the depender actor of 
the original dependency) must perform it, or if the 
SSA could perform the plan itself. If the 
intervention of the actor is required, a new plan or 
resource dependency should be created between 
this actor and the SSA. The actor depender of this 
new dependency relationship will be the SSA. 

 Step 3. The plan dependency is redirected by 
placing the SSA as the depender actor and placing 
the actor that was the dependee of the original 
dependency as the dependee. 

Example: In our case study, this pattern was found by 
performing the infix traversing of the Organization actor 
(Figure 1). The plan Publishing Partial Results of this actor 
complied with the characteristics of the Depender Actor 
Plan Automation Pattern. In this case, only the depender 
actor plan was automated.  We applied the steps indicated 
for the dependum is a resource. The results of the 
application of the pattern are shown in Figure 2. The 
dependencies that were modified or generated in this 
example are labeled with the number 2. 
 
5) The Dependee Actor Plan Automation Pattern    
Context: The dependee actor is the actor on which another 
actor depends to satisfy the dependency relationship [2]. It 
is the responsible for satisfying the dependency. 
Problem: Generally, the internal plans of the 
organizational actors are linked to dependency 
relationships with other organizational actors. In this case, 
all the elements of that dependency (depender, dependee 
and dependum) must be analyzed. When the plan to be 
automated is the depender actor plan, the dependum object 
is the guide for the steps to be followed. Two forces are 
associated with this problem: 

 The plan to be automated is linked to a resource 
dependency. 

 The plan to be automated is linked to another plan 
dependency. 

Solution: When the dependee actor plan must be 
automated, the dependum object must be analyzed before 
following the instructions for each case. 
• The dependum is a Resource. The following steps 

should be carried out.         
 Step 1. The dependee actor plan is transferred to 

the SSA. 
 Step 2. In this step, it is necessary to determine 

whether the depender actor could use the system to 
obtain the resource, or if the resource will be sent 
by the dependee actor. 
o  Step 2.1 If the depender actor does not have 

access to the system to obtain the resource, the 
resource dependency remains the same, and 
another resource dependency must be created 
between the SSA and the dependee of the 
original resource dependency. The depender 
actor of this new dependency will be the SSA.  

o Step 2.2 If the depender actor does have access 
to the system, then the original resource 
dependency is redefined in a resource 
dependency between the depender actor (of the 
original dependency) and the SSA. A 
dependency relationship between the depender 
actor of the original dependency and the SSA is 
also created.  

• The dependum is a Plan. The following steps should be 
carried out.     

 Step 1. The dependee actor plan is transferred to 
the SSA.   

 Step 2. The dependency plan is redirected between 
the depender actor of the original dependency and 
the SSA. 

 Step 3. The next step consists of determining if the 
original owner of the plan (the dependee actor of 
the original dependency) must perform it, or if the 
SSA could perform the plan itself. If the 
intervention of the actor is required, a new plan or 
resource dependency should be created between 
this actor and the SSA. The depender actor of this 
new dependency relationship will be the SSA. 

Example: In our case study, this pattern was found by 
performing the infix traversing of the Federation actor 
(Figure 1). The plan Validate results of the games of this 
actor complied with the characteristics of the Dependee 
Actor Plan Automation Pattern. In this case, only the 
dependee actor plan was automated. We applied the steps 
indicated for the dependum is a resource. The results of the 
application of the pattern are shown in Figure 2. The 
dependencies that were modified or generated in this 
example are labeled with the number 3. 

5. CONCLUSIONS AND FUTURE WORK 

One of the main problems of current research works on 
organizational modeling is the lack of a methodological 
approach to map of the elements of an organizational 
model into the elements of a requirements model for a 
software system. Because of this lack, efforts in the 
organizational modeling phase have not yet provided 
practical application for software development 
environments. 
 In this work, we have proposed a pattern language which 
allows us to reduce the abstraction level of a “pure” 
organizational model so that it is closer to the requirements 
model. This process has been achieved by inserting the 
software system as an actor into the organizational model 
and redirecting the relevant plans, goals and dependencies 
of the organizational actors to this new actor. In this way, 
there is a pattern for each situation that arises in the 
redirection of plans or goals to the new organizational 
model.  
The new organizational model generated from the 
application of FELRE allows us to have a high-level 
description of the plan that must be supported by the 
information system. This high-level description permits us 
to focus only on the relevant aspects to be automated, 
thereby reducing the complexity of the analysis plan. The 
generated organizational model is therefore an intermediate 
model between the organizational model and the 
requirements model. The proposed method complies with 
the MDA approach because it implements the concept of 
PIM-to-PIM transformations. We are currently developing 
a method to automatically obtain the conceptual model for 
the OO-Method Case Tool from the new organizational 
model presented in this paper. 

JCS&T Vol. 5 No. 2                                                                                                                                     August 2005

69



Organization

Golfers

1 Golfer´s
information

Partial
Results 

Publish 
partial 
results

controllers

2

2

Game
Results 

Game 
Results

Enter partial 
results (Partial 

results)

3

3 Enter golf 
courses Inform. 
(golf courses)

Golf
Federation

Obtain 
golfer´s

information
Software
System

Manage 
Tournament

1

Golfer´s
information

Actor perspective

Hardgoal Plan

Resource

Legend

AND decomposition

Depender DependeeDependum

OR decomposition

Register 
golfers

Validate results 
of the game Manage golf 

courses

Organization

Golfers

1 Golfer´s
information

Partial
Results 

Publish 
partial 
results

controllers

2

2

Game
Results 

Game 
Results

Enter partial 
results (Partial 

results)

3

3 Enter golf 
courses Inform. 
(golf courses)

Golf
Federation

Obtain 
golfer´s

information
Software
System

Manage 
Tournament

1

Golfer´s
information

Actor perspective

Hardgoal Plan

Resource

Legend

AND decomposition

Depender DependeeDependum

OR decomposition

Actor perspective

Hardgoal Plan

Resource

Legend

AND decompositionAND decomposition

Depender DependeeDependum

OR decompositionOR decomposition

Register 
golfers

Validate results 
of the game Manage golf 

courses

 
 

Figure 2 SS-BM generated by the application of the pattern language 
 

6. REFERENCES 

[1] Beedle Michael A. cOOherentBPR –A pattern 
language to built agile organizations, Plop-97, 
Technical Report #wucs-97-34, Washington 
University, 1997. 

[2] Bresciani P., Giorgini P., Giunchiglia F., Mylopoulos 
J., and Perini A., TROPOS: An Agent-Oriented 
Software Development Methodology. In Journal of 
Autonomous Agents and Multi-Agent Systems, 8(3), 
Kluwer Academic Publishers, May 2004, pp. 203-236. 

[3] Bubenko, J. A., Jr and M. Kirikova, Worlds in 
Requirements Acquisition and Modeling. In 4th 
European-Japanese Seminar on Information Modeling 
and Knowledge Bases, edited by K. Sweden, H. 
Kangassalo and B. Wangler, IOS Press, The 
Netherlands, 1994, pp. 159-174. 

[4] Buschmann, R. Meunier, H. Rohnert, P. Sommerland 
and M. Stal, Pattern - Oriented software Architecture: 
A system of Patterns. John Wiley & Sons, England 
1998.  

[5] Castro J. Kolp M. Mylopoulos J. Towards 
Requirements-Driven Information Systems 
Engineering: The Tropos Project. In Information 
System 27(2), Elsevier, 2002, pp. 365-389. 

[6] Cesare S. Mark Lycett, Business Modelling with 
UML, distilling directions for future research, 
Proceedings of the Information Systems Analysis and 
Specification, Ciudad. Real, Spain, 2002, pp. 570-579. 

[7] Cockburn Alistair, Writing Effective Use Cases, 
Addison-Wesley, USA, 2001. 

[8] Frankel S. David, Model driven Architecture, 
applying MDA to enterprise computing, John Wiley 
& Sons, USA, 2003. 

[9] Gamma E., R. Helm, R. Johnson, and J. Vlissides. 
Design Patterns, Addison-Wesley, USA, 1995.  

[10] Kleppe A., Warmer J., Bast W. MDA Explained, the 
model driven architecture: practice and promise, 
Addison-Wesley, USA, 2003. 

[11] Kulak Daryl Eamonn Guiney, Use Cases requirements 
in context, Addison-Wesley, USA, 2003.  

[12] Martínez Alicia, Castro Jaelson, Pastor Oscar, Estrada 
Hugo, Closing the gap between Organizational 
Modeling and Information System Modeling, 
Proceedings of the VI  Workshop on Requirements 
Engineering (WER 2003), Brazil, 2003, pp 93-108. 

[13] Meszaros G. and J. Doble, A Pattern Language for 
Pattern Writing, in Pattern Languages of Program 
Design 3, edited by Robert Martin, D. Riehle and F. 
Buschmann, Addison-Wesley, USA, 1998, pp. 529-
574. 

[14] Pastor Oscar, Gómez Jaime, Infrán E. and Pelechano 
V., The OO-Method approach for information systems 
modeling: from object-oriented conceptual modeling 
to automated programming. In Information Systems 
26(7), Elsevier, 2001, pp. 507-534. 

[15] Rolland R., Souveyet, C., Plihon, V., Method 
Enhancement with Scenario Based Techniques, 
Proceedings of the 11th International Conference on 
Advanced Information System Engineering 
(CAISE’99), Germany, 1999, pp 14-18. 

[16] Yu Eric, Modelling Strategic Relationships for 
Process Reengineering, PhD Thesis, University of 
Toronto, Toronto, 1995.  

JCS&T Vol. 5 No. 2                                                                                                                                     August 2005

70




