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ABSTRACT 

 Tissue classification in Magnetic Resonance 
(MR) brain images is an important issue in the 
analysis of several brain dementias. This paper 
presents a modification of the classical K-means 
algorithm taking into account the number of times 
specific features appear in an image, employing, for 
that purpose, a weighted mean to calculate the 
centroid of every cluster.  

 Pattern Recognition techniques allow grouping 
pixels based on features similarity. In this paper, 
multispectral gray-level intensity MR brain images 
are used. T1, T2 and PD-weighted images provide 
different and complementary information about the 
tissues. Segmentation is performed in order to 
classify each pixel of the resulting image according 
to four possible classes: cerebro-spinal fluid (CSF), 
white matter (WM), gray matter (GM) and 
background. T1, T2 and PD-weighted images are 
used as patterns.  

 The proposed algorithm weighs the number of 
pixels corresponding to each set of gray levels in the 
feature vector. As a consequence, an automatic 
segmentation of the brain tissue is obtained. The 
algorithm provides faster results if compared with 
the traditional K-means, thereby retrieving 
complementary information from the images.  

Keywords: Pattern-Recognition, Classification, 
Images, Brain, Tissue. 

 

1. INTRODUCTION 

 Visual brain atrophy evaluation is very limited. 
The Multicentre Consortium to Establish a Registry 
for Alzheimer's Disease (CERAD) determined that 
the visual evaluation of the generalized brain 
atrophy is insufficient and that image interpretation 
is greatly subjective. The CERAD stated that more 
sensible techniques were needed when measuring 
global atrophy. [1]. Therefore, efforts should aim at 
achieving brain tissue quantification in a more 
accurate, precise and, especially, non-subjective 
way. Magnetic resonance images show loss of brain 
tissue, mainly of gray matter, and consequently an 
increase in cerebrospinal fluid [2] [3].  
 Conventional MR images provide morphological 
information. T1, T2 and PD-weighted images supply  

 
information about the physical properties of water in 
tissues. T1, spin-lattice relaxation time, is inversely 
proportional to the number of molecular motions in 
tissues at resonance frequency. T2, spin-spin 
relaxation time, is inversely proportional to the 
number of motions in tissues at frequencies below 
and equal to resonance frequency. And PD provides 
proton density images. Understanding the physics of 
these interactions is not necessary; the key lies in the 
fact that the three imaging modalities: T1, T2 and PD 
reveal independent information about several 
biological components (fat, water, blood and bone to 
name a few).  
 Segmentation using multispectral MR images 
has yielded satisfactory results. Although the 
distinctive features of the different tissues are vast, 
multispectral analysis is still notoriously successful. 
In 1990, Raya, S. segmented MR images using 
proton density and T2-weighted parameters [4]. In 
1991, Chen et al. used T1 and T2-weighted images 
together in order to interpret and improve segmented 
MR images [5].  
 The use of pattern recognition methods to 
segment MR image data sets has been widely 
described in literature [6] [7] [8] [9]. Nearest 
neighbor, maximum likelihood and Parzen window 
classifiers [10] are among the supervised 
classification algorithms found in literature. In spite 
of this, references to non-supervised techniques [11] 
such as K-means algorithm [12], minimum distance, 
maximum and hierarchical clustering [13] can also 
be found. 

 Perhaps the most widely used non-supervised 
technique is the K-means algorithm. Undoubtedly, 
each approach has its own pros and cons. Many 
attempts have been made to improve the 
performance of the basic K-means algorithm. The 
C-means, for instance, incorporates a fuzzy criterion 
function [14]; and Krishna suggested using genetic 
algorithms [15] [16].  Besides,   many   authors  
have  improved  the basic K-means mapping 
through a neural network [17]. However, most of 
these improvements on the K-means algorithm are 
computationally demanding. 

 This paper proposes a new variation of the K-
means algorithm using complementary information 
available in T1, T2 and PD MR images. Moreover, 
the suggested algorithm takes into consideration the 
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times the set of gray levels combined in T1, T2 and 
PD appear in the images. The main goal of this 
paper is to reduce the calculations carried out during 
the clustering process, thereby providing a high-
speed good-quality segmentation of MR brain 
images. 
 

2. PATTERN RECOGNITION 

 Pattern recognition techniques have been widely 
applied to the identification of regions with different 
textures in images employing different features. 
Once a group of features has been obtained for each 
region, an indicator of the existing texture is assigned 
to each of them. This process can be carried out with a 
supervised algorithm. In such process, the patterns 
associated with each texture are already known. On 
the other hand, in non-supervised algorithms, regions 
are grouped according to some criteria of pattern 
similitude. The algorithm herein proposed is non-
supervised. 

 First of all, a set of n features is measured in the 
set of the different tissues to be classified. These 
measurements make up a feature vector in the n-
dimensional space. The total number of tissues to be 
classified constitutes a set Ω. Let W = { W1 , W2 , ... 
, WK } be a partition of Ω . Each subset W1, W2 , ... , 
WK of Ω is known as a class. In order to assign each 
tissue to a class, the partition H = { H1 , H2 , ... , HK 
} is defined in Rn. The aim is to find the partition H 
that reflects the best possible partition W. That is to 
say, if the component of the feature vector is part of 
a different tissue region Hi of Rn, it could be 
practically ascertained that this pixel belongs to the 
class Wi [8] [18]. 

 In this work, the objects to be classified are the 
pixels of brain multispectral MR images. The three 
images used are the calculated T1, T2 and PD 
images, which share the same size. Each pixel has to 
be assigned to four possible classes, CSF, gray 
matter, white matter and background [19] [20]. 

 The feature vector X = (x1, x2, x3) , where x1, x2 
and x3 are the gray levels of the images T1, T2 and 
PD respectively, represents a pattern in the R3 space. 
The objective is to obtain four clusters or groups of 
patterns: H1, H2, H3 and H4 by using feature vectors 
X. Thus, all pixels whose vectors belong to Hi 
partition are assigned to a Wi class. The result of the 
performed algorithm is a segmented brain image. 

 
2.1. Minimum Distance Classifier 
 
 This algorithm assigns a pattern X prototype or a 
representative of the same, Pi, to each K class, where i 
= 1,2,...K. Then, each pattern is assigned to the class 
whose prototype is nearest (minimum Euclidean 
distance). Then, if 
 

 22
ii pxD −=                    (1) 

 
is the squared distance of the pattern to prototype Pi, 
the minimum is chosen. In this case, a lineal decision 
function is obtained, thus regions Hi in the plane are 
separated by straight lines. The selection of K pixels 
patterns is carried out manually from the image itself. 
The proper selection of prototypes is essential if a 
good performance of the algorithm is sought. 
 
 
2.2. Maximin Algorithm  
 
 For a maximin algorithm, a randomized cluster 
center is initially chosen, in this case, a pixel 
corresponding to the image background. Afterwards, 
the pixel whose feature vector has the greatest 
Euclidean distance in R3 space is selected, electing it 
as the second center. The distance to both centers of 
all remaining samples are calculated, choosing the 
minimum of the two (the sample is assigned to the 
nearest cluster). Then, the maximum of these 
minimum distances is selected and the corresponding 
pattern is chosen as the third cluster center. The 
procedure is repeated until the four cluster centers are 
obtained, recalculating the distances of the remaining 
samples to the same, assigning them to the class 
whose center is nearest. By applying this method, the 
centers are not necessarily the most representative of 
the class. 
 
 

2.3.  K-Means Algorithm 
 The algorithms introduced in sections 2.1 and 2.2 
are basically intuitive procedures. This section deals 
with an algorithm based on the minimization of a 
criterion function (or performance index) consisting, 
in this case, in the sum of the squares of the distances 
of all cluster points to the center of the same. Three 
initial centers are randomly selected for the three 
clusters; and each sample is assigned to the cluster 
whose center is nearest (minimum Euclidean 
distance). The center of each cluster is recalculated 
minimizing the criterion function, which turns out to 
be the mean X of the samples corresponding to the 
cluster. The algorithm ends when, in the next iteration, 
the cluster centers do not get modified. K-means 
behavior is influenced by the selection of the initial 
centers. Prototypes are not required, as they result 
from the data itself. 

 

3. MATERIALS AND  METHODS  

3.2. Weighted K-Means Algorithm 
 The weighted K-means algorithm is a variation 
of the classic K-means algorithm.   
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 As mentioned above, the patterns are the 
components of the X feature vector whose elements 
(x1, x2, x3) are the pixels gray levels with equal 
spatial location in T1, T2 and PD images. Although 
there are many pixels with the same set of values 
(x1, x2, x3), such as background pixels; there are 
some patterns appearing only in one pixel location. 
To calculate the centroids, the weighted K-means 
algorithm takes into account the times a specific 
pattern X appears in the images, using a weighted 
mean to compute the centroids. 
 The algorithm steps are as follows: 

  1-Centroids of K classes are chosen: Z1 (1), 
Z2 (1) ... ZK (1) 

  2- At the pth iterative step, X samples are 
distributed into K clusters, assigning each sample to 
the cluster whose centroid is nearest, using the 
following relation: 

 )()()( pZXpZXifpSX ijj −<−∈     (2) 

jiKi ≠=∀ ;,...,2,1  

where Sj(p) denotes the set of patterns whose cluster 
centroid is Zj(p) 

  3-From the results obtained in the second 
step, the new cluster centroids are recalculated Z1 
(p+1), Z2 (p+1) ... ZK (p+1) so 

∑ +−=
ji

jjijij pZXnJ
,

2
,, )1(             (3) 

being i=1,2,...,Q, where Qj is the number of patterns 
of the jth class; j = 1, 2, ..K and ni,j is the number of 
pixels of the images with the same pattern X. 

 The value of Zj (p+1) that minimizes this index 
is the new centroid of the cluster given by:  

  ∑=+
ji

jiji
j

j Xn
N

pZ
,
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where Nj is the number of pixels whose X belongs to 
the class of centroid Zj.  

  4-If Zj (p+1) = Zj (p) when j = 1, 2,...K; the 
algorithm ends due to convergence. Otherwise, it 
returns to the second step.  

 In order to reduce processing time, the algorithm 
ceases when ε<+ (p) Zj- 1)(p Zj , with an ε 
small enough not to affect the result (considering 
that X elements are the whole numbers 
corresponding to the gray levels appearing in the 
images). 
 

4. RESULTS 

 All MR data was acquired with a 1.5 Tesla 
system. The image protocol included coronal 3D 
T1-weighted gradient echos orthogonal to the AC-
PC line (TR/TE= 24/5 ms, slice thickness= 1.5 mm); 
and coronal proton density (PD) and T2-weighted 
fast spin echos oriented aparallely (TR/TE!/TE= 
3,500/32/96 ms, echo train length = 8, slice thickness 
= 3 mm) 

 Tests with different standard cluster algorithms, 
such as maximum and minimum distances and K-
means were carried out to compare the results of the 
weighted K-means algorithm in a group of more than 
200 sample images. Figure 1 shows the resulting 
images. The same characteristic vector was used to 
independently evaluate the performance of different 
algorithms. 

 Confusion matrices were calculated to evaluate 
the number of pixels correctly as well as 
misclassified. Along these lines, algorithms were 
compared with more detail than if only the 
recognition rate had been computed (percentage of 
pixels well classified). 

 Table 1 shows the confusion matrix resulting 
from the maximin algorithm. This table clearly 
depicts that although CSF correctly classified 
92.13% of the pixels, grey matter was notoriously 
misclassified in about 27%. Grey matter was over 
classified in almost 8% of the pixels corresponding 
to CSF and in 18.82% of the pixels corresponding to 
WM. 89.10% of the pixels were underclassified as 
white matter. In addition, those patterns with a 
maximum Euclidean distance were set as initial 
points. As seen in Figure 1, the lack of flexibility led 
to unfavorable results.  

 Table 2 shows the confusion matrix resulting 
from the minimum distance algorithm. This 
algorithm is not stable and depends extremely on the 
selection  of  the  initial  points. Figure 1  shows  
that sometimes  classification  is   quite   acceptable, 

  
 

Maximin  

Algorithm  

 
No of pixels 
classified as 
CSF class 
And...  

 
No of 
pixels 
classified 
as GM 
class 
and... 

 
No of pixels 
classified as 
WM class 
And... 

... that should have been 
classified as CSF 

 
92.13 % 

 
1.01 % 

 
7.96 % 

... that should have been  
classified as GM 

 
0.00 % 

 
89.10 % 

 
18.82 % 

... that should have been  
classified as WM 

 
0.00 % 

 
1.01 % 

 
73.22 % 

Table 1. Confusion Matrix resulting from maximin algorithm: 
distribution of classified pixels percentages compared with 
experts’ classification. 
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Mindist 

Algorithm 

 

 
No of pixels 
classified as 
CSF class 
and...  

 
No of 
pixels 
classified 
as GM 
class 
and... 

 
No of pixels 
classified as 
WM class 
and... 

... that should have 
been classified as CSF 

 
60.55 % 

 
5.00 % 

 
37.06 % 

... that should have 
been classified as GM 

 
0.00 % 

 
83.24 % 

 
4.73 % 

... that should have 
been classified as WM 

 
0.00 % 

 
7.47 % 

 
46.3 % 

Table 2. Confusion Matrix resulting from minimum distance 
algorithm: distribution of classified pixels percentages compared 
with experts’ classification. 

 
 

Weighted 
K-means 

Algorithm 

 

 
No of 
pixels 
classified 
as CSF 
class 
and...  

 
No of 
pixels 
classified 
as GM 
class 
and... 

 
No of 
pixels 
classified 
as WM 
class 
and... 

... that should have been 
classified as CSF 

 
98.77 % 

 
0.00 % 

 
0.00 % 

... that should have been  
classified as GM 

 
0.00 % 

 
97.52 % 

 
1.91 % 

... that should have been  
classified as WM 

 
0.00 % 

 
2.48 % 

 
98.09 % 

Table 3. Confusion Matrix resulting from weighted K-means 
algorithm: distribution of classified pixels percentages compared 
with experts’ classification. 
 

whereas others  it  is  not.   In  addition,  the  
recognition  rates evaluated for 10 images were 
really poor as seen in the confusion matrix. CSF is 
correctly classified only in a 60.55% in defect. 
White matter classification is quite poor (only 83%); 
and grey matter is in general over classified. Only 
46.3% of the pixels were correctly classified as grey 
matter; a 37.06% should have been classified as 
CSF and a 5% as white matter. 

 Finally, Table 3 presents the confusion matrix 
resulting from the weighted K-means algorithm. In 
this case, a large percentage of pixels are correctly 
classified (above 97%). A 2.48% of grey matter 
pixels were misclassified as white matter; while 
only 2% of white matter was classified as grey 
matter. 

 The previous tables do not include the classical 
K-means algorithm as it yields results highly similar 
to those of the weighted K-means algorithm with 
respect to the percentages of properly classified 
pixels. 

 In spite of this, the weighted K-means algorithm 
is, indeed, more stable with regard to the selection 
of initial points than the classical version. Several 
tests were performed with the same image, though 
the selection of initial points was changed. This led 
to variations in the confusion matrix of less than 
0.02%. Figure 2 shows the stability of the proposed 
algorithm  in  relation  to  the  variation  of  its initial  

 

Fig.1 Coronal MR images resulting from the three different 
algorithms. First row: maximin algorithm results; second row: 
minimun distance results; third row: weighted K-means algorithm 
results; and forth row: experts classified images. 
 

points. In some tests, it could be observed that the 
standard  version  inverted  the centroids of the 
image background and gray matter. This fault is 
corrected in the weighted version as the great 
number of times the background pattern appears in 
the image is taken into account, notoriously 
modifying the calculus of the corresponding 
centroid. 

 The K-means variation herein suggested, employs 
a weighted means for the calculation of the class 
centroids, i.e., it takes into account the times a specific 
pattern appears  in the image. This modification, 
results in a faster convergence  of  the algorithm.  As a  

Fig.2 Percentage of variation of final cluster centers distance in 
relation to the variation of initial points for the different classes. 
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Fig.3 Error variation with respect to number of iterations in 
traditional K-means and weighted K-means algorithm. 

 

consequence, the number of  iterations and processing 
time  are  lower,   thereby  compensating  for  the  
main disadvantage of the standard algorithm, and 
keeping stability. Figure 3 shows an error graph with 
regard to the  number  of  iterations   for  both K-
means versions, which reflects the highest 
convergence speed of the weighted variant.  

  Furthermore, the variation of the K-means 
proposed takes into consideration the times a specific 
pattern appears in the image to calculate the centroids 
of the classes. Since the weighted mean is used to 
compute the centroids, the number of operations 
involved get reduced. Hence processing times get 
reduced as well, improving the main disadvantage 
the standard algorithm has, though maintaining its 
stability.  

 Finally Table 4 compares the performance of 
minimum distance, maximin, standard and weighted 
K-means algorithms through their recognition rates.  

 Results show that the weighted K-means 
algorithm allows to obtain the best brain image 
segmentation. Feature vector elements with small 
occurrence in the image play a small role in classes 
determination. Besides, this method preserves the 
advantages of the standard K-means if compared 
with the minimum distance algorithm. 

 

5. DISCUSSION AND CONCLUSIONS 

 The results previously presented prove that the 
weighted  K-means  algorithm  offers  the  best  
brain image segmentation. To begin with, it prevents 
characteristics with very little presence from having 
significant incidence on the determination of 
classes. 

 Moreover the method keeps K-means 
advantages regarding minimum distance, since the 
clusters obtained depend on the prototypes manually 
selected from the image. 
 

   
 

Different Classifying Algorithms 
 

Classes Minimum 
distance  

 

Maximin Weighted  
K-means 

 

CSF 
 

60.55 % 
 

92.13 % 
 

98.77 % 
 

Grey matter 
 

83..24 % 
 

89.10 % 
 

97.52 % 
 

White matter 
 

46.33 % 
 

73..22 % 
 

98.09 % 

Table 4. Recognition rate (percentage of pixels correctly 
classified) of the different algorithms evaluated, contrasted with 
experts’ classification .  

 

 Pattern recognition techniques proved to be a 
powerful tool in image segmentation. In this 
particular application, they allowed the effective use 
of the complementary information provided by MR 
T1, T2 and PD-weighted images when separating the 
different brain tissues, to be more precise, in the 
discrimination of white matter, gray matter and 
cerebrospinal fluid (CSF). Further improvements in 
these techniques could lead to an even better brain 
atrophy quantification allowing the evaluation of the 
therapeutic effects of the medication given to 
Alzheimer’s patients. 
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