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ABSTRACT 
Complex control tasks may be solved by dividing 
them into a more specific and more easily handled 
subtasks hierarchy. Several authors have 
demonstrated that the incremental layered evolution 
paradigm allows obtaining controllers capable of 
solving this type of tasks.  
In this direction, different solutions combining 
Incremental Evolution with Evolving Neural 
Networks have been developed in order to provide 
an adaptive mechanism minimizing the previous 
knowledge necessary to obtain a good performance 
giving place to controllers made up of several 
networks.   
This paper is focused on the presentation of a new 
mechanism, called Cyclic Evolution, which allows 
improving controllers based on neural networks 
obtained through layered evolution. Its performance 
is based on continuing the cyclic improvement of 
each of the networks making up the controller within 
the whole domain of the problem.  
The proposed method of this paper has been used to 
solve the Keepaway game with successful results 
compared to other solutions recently proposed.  
Finally, some conclusions are included together with 
some future lines of work.  

Key words: Evolving Neural Networks, Incremental 
Evolution, Layered evolution. 

1. INTRODUCTION 
Several researches have demonstrated that certain 
tasks may be solved using layered evolution. 
By complex task we understand that whose solution 
is not direct but involves the learning of a strategy in 
order to achieve the expected objective. Problems 
such as prey capture and target reaching belong to 
this category [3].  
In addition, there exist situations which cannot be 
solved by a single agent. Such is the case of prey 
capture, in which the predator is slower than the 
prey, or the robot football. In both cases, beyond the 
differences among the agents, the team is the one 
which should carry out the strategy [5]. 
When the situation to solve is complex, it is hard to 
establish a priori the controller to be used, and here 
is where layered evolution becomes important. This 
process consists in dividing the original problem into 

simpler parts, called subtasks, thus allowing a 
gradual learning of the expected response.  
On the other hand, unless we count with the initial 
information necessary to solve each subtask, it is 
ideal to count with some mechanism allowing 
carrying out the adaptation as automatically as 
possible. In this direction, different solutions 
combining techniques of Incremental Evolution with 
Evolving Neural Networks have been developed 
with the aim of providing an adaptive mechanism 
minimizing the previous knowledge necessary to 
obtain an acceptable performance giving place to 
controllers made up of several networks [1]. Another 
aspect to take into account is the way of determining 
which neural network should be run at each time 
instant [9][10]; in this direction, there exist several 
alternatives ranging from the use of an ad-hoc 
design decision tree [4] to mechanisms 
automatically organizing the structure [2].  

2. OBJECTIVE 

This research is based on the works previously 
carried out in the fields of layered evolution [6][8] 
through neuroevolving algorithms and proposes an 
alternative which allows obtaining improvements in 
the proposed solutions. 

The objective of this paper is to present a new 
adaptation strategy, called Cyclic Evolution, through 
which the collective behavior of the controllers 
obtained by traditional layered evolving methods 
can be improved. 

In particular, the results of the adaptation of this 
method for solving the KeepAway game will be 
shown. 

Section 3 describes the KeepAway game together 
with the way of obtaining an initial controller 
capable of solving it. Section 4 presents the 
algorithm used to implement the cyclic learning. 
Section 5 details some of the implementation 
aspects. Section 6 describes the results obtained and 
Section 7 presents the conclusions as well as some 
future lines of work.  

3. KEEPAWAY 
Keepaway is a subtask of Robot Soccer game in 
which one team of agents, the keepers, attempts to 
maintain possession of the ball while the other, the 
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takers, tries to get it. The game is carried out in a 
fixed, circular region and ends when the ball exits 
the bounding circle or when the taker grabs it [7].  
There exist machine learning applications that 
successfully solve different subtasks of the Robot 
Soccer; however, the solution of the complete game 
seems to be beyond the capacities of modern 
techniques. As a consequence of the diversity of 
applications, which solve different parts of the 
Robot Soccer, the task of coherently comparing the 
different machine learning applied techniques 
becomes quite difficult. [7] has recently proposed 
the Keepaway game as a proper domain for 
contrasting different machine learning approaches to 
the resolution of the Robot Soccer. 
Keepaway is a challenging machine learning task for 
several reasons: 
• The state space is far too large to explore 

exhaustively; 
• Each agent has only partial state information; 
• The action space is continuous; 
• Multiple teammates need to learn 

simultaneously; 
• The keepers are relatively large when compared 

to the playing area, which makes moving and 
positioning difficult around the ball; 

• The ball does not move much faster than the 
players, which prevents the keepers from being 
able to quickly make passes around the taker; 

• The keepers do not possess any abilities for 
handling the ball. They are modeled as simple 
cylinders, and lack any way to “grab” the ball 
and move with it. If they run into the ball, the 
ball will bounce away. 

For these reasons, the KeepAway game requires 
complex behavior, ranging from the input data 
processing about each keeper, the teammate – the 
taker – and the ball, to the decision-making as to the 
best course of action decided upon at each moment 
of the game, and the acquisition of the ability needed 
to carry it out.  
In our implementation of KeepAway, each robot 
receives noise-free sensory input describing  
the current state of the game. All these inputs are 
scaled to [-1, 1] and presented to each player in 
relative coordinates. 
Each robot is round, like the ball. A really simple 
physics engine is used to allow the ball to bounce in 
the players once it makes contact with them. As a 
result, the only way in which the players can “kick” 
the ball is to approach it in the precise direction and 
at the proper speed so that the ball bounces or is 
thrown in the right direction.  
Figure 1 shows the region in which the game is 
carried out. Here are three keepers, one of them has 
the ball and the taker is placed in the center of the 
field.  
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Figure 1.  A game of Keepaway 

3.1. Decomposition of the problem in simpler 
subtasks 
This game can be decomposed in four subtasks, each 
of which will be commanded by a feedforward 
neural network obtained by evolution and made up 
of three layers: input, hidden, and output. In all the 
cases, the hidden layer consists of two neurons: 
• Intercept: The goal of this network is to get the 

agent to the ball as quickly as possible. The 
network has four inputs: two for the ball’s 
current position and two for the ball’s current 
velocity. Two output neurons are used, which 
control the keeper’s heading and speed. 

• Pass: The pass network is designed to kick the 
ball away from the agent at a specified angle. 
The difficulty of the learning lies in that the 
angle with which the player kicks the ball 
depends on its relative position to it. Hence, in 
order to learn the proper behavior, the keeper 
should approach the ball in the proper way. The 
network has three inputs: two for the ball’s 
current position and one for the target angle. It 
makes use of two output neurons with the 
keeper’s direction and speed.  

• Pass Evaluate: This network allows the keeper 
deciding to which teammate to pass. It has six 
inputs: two for the position of the ball, two for 
the taker’s position, and two for the teammate 
whose potential as a receiver it is evaluating. It 
has an only output neuron which allows 
obtaining a real value between 0 and 1, 
indicating its confidence that a pass to the given 
teammate would succeed. 

• Get open: The objective of this network is that 
the agent should get to a good position where it 
can receive a pass. It has three inputs: two for 
the ball’s current position, two for the taker’s 
current position, and one indicating how close 
the agent is to the field’s bounding circle. It has 
two output neurons which control the agent’s 
heading and speed. 

3.2. Layered Learning 

Once the subdivision of tasks is carried out, a 
dependence order is established among them, which 
indicates the training sequence. Figure 2 shows these 
dependencies for the KeepAway game. 
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Each rectangle represents a subtask and the arrows 
indicate the dependencies among them. A subtask 
could be learnt once the rest of the subtasks on 
which it depends have been learnt as well.  

Get Open

Pass Evaluate

Pass

Intercept  
Figure 2.  A layered learning hierarchy for 
the keepaway task. Each box represents a 
layer and the arrows indicate dependencies 
between layers. 

 

This is called layered learning based on the 
dependence existing in the order of the learning of 
different subtasks. From another point of view, it 
could be regarded as a structure having an initial 
layer made up of those subtasks which do not need 
others to be learnt. Then, in the following layer, 
those subtasks that can be learnt from previous are 
placed, and so on.  

Notice that this learning does not show how to solve 
the complete problem, but the way of learning to 
carry out each of the expected subtasks.  

3.3. Resolution of KeepAway 

Once the networks are obtained, a decision tree is in 
charge of selecting the network that should be used 
at each instant. In this way, a controller for a 
KeepAway player is obtained based on specific 
controllers for each subtask. Figure 3 shows the 
decision tree used by the keepers to solve the 
KeepAway game. 

The behaviors specified in the tree-leaves are carried 
out by the neural networks proposed by this paper, 
as well as the node “Teammate #1 Safer?”. The 
remaining nodes have fixed behavior.  

In each turn, keepers make use of the decision tree to 
select the proper subcontroller for that moment. If a 
keeper is less far from a certain length of the ball, it 
tests which is the teammate that is more likely to 
successfully receive the pass, and attempts to kick in 
such direction. If it is beyond a certain distance, the 
keeper tries to get the ball if it is directed to it, or 
otherwise it tries to get open to a proper area for 
future receptions.   

 

Near Ball?

Teammate
#1 safer? Passed To?

Pass To
Teammate

#1
Intercept Get Open

Pass To
Teammate

#2

NoYes

NoNoYes Yes

 

Figure 3.  A decision tree for controlling  keepers in 
the keepaway task. 

The behaviors specified in the tree-leaves are carried 
out by the neural networks proposed by this paper, 
as well as the node “Teammate #1 Safer?”. The 
remaining nodes have fixed behavior.  

In each turn, keepers make use of the decision tree to 
select the proper subcontroller for that moment. If a 
keeper is less far from a certain length of the ball, it 
tests which is the teammate that is more likely to 
successfully receive the pass, and attempts to kick in 
such direction. If it is beyond a certain distance, the 
keeper tries to get the ball if it is directed to it, or 
otherwise it tries to get open to a proper area for 
future receptions.   

It is worth to mention that the behavior of every 
node could be controlled by neural networks, instead 
of having a fixed, manually programmed behavior. 
The decision tree could also be replaced by a neural 
network capable of carrying out the same function, 
i.e. selecting the most adequate subcontroller at each 
instant. These options were not taken into account 
for time reasons, since the additional, required 
trainings for each new network would take much 
more time.  

Next, a new learning method – called cyclic 
evolution – is presented, whose implementation 
makes great use of the concepts previously 
mentioned and grounds this paper. The method has 
been created in order to improve the behavior of 
controllers obtained by other learning methods, 
layered learning, in particular.   

4. CYCLIC EVOLUTION 

This training mechanism proposes a strategy to 
improve the performance of neural networks 
controlling each subtask. These networks are 
initially obtained conventionally using layer 
evolution, each allowing the resolution of a part of 
the problem [4]. For this, they are trained in the 
resolution of simpler and more specific tasks. This 
allows them to be part of the resolution of other 
similar problems by just modifying the way they 
interact. 

The method is cyclic since it establishes an order in 
the adaptation of each subtask, allowing –after the 
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last one is trained – the evolution of the first one to 
start once again, thus generating a continuing cycle. 
During subtask learning, the networks controlling 
the rest of the activities remain still. This allows 
each network to improve its behavior and integration 
with a set of already trained networks.  

Let T = {t1,t2,t3,...,tn} be a set  of subtasks, C = 
{c1,c2,c3,...,cn} be a set of subcontrollers solving 
each subtask ti, and E() be a  function representing a 
ci subcontroller training; then, figure 4 graphically 
represents the proposed strategy in this paper.  

E(c1) E(c2)

E(c3) E(c4)

 
Figure 4.  A brief graphic representation 
of cyclic evolution. Each oval represents 
the training of a subcontroller and the 
arrows making up the circle represent the 
order in which the trainings are carried 
out. 

 

It is important to highlight that all the trainings are 
carried out in the final domain, not existing an 
environment specially prepared for each task, as it is 
usually the case in the conventional methods. This 
allows the networks to keep their training within the 
domain in which they are finally solved. 

Cyclic-Evolution Method Algorithm 

    Begin { main program} 
Let C={c1,c2,c3,..,cn} be the initial 
subcontrollers set. 
Let O be the final objective. 
Let Z be the maximum cycle quantity to carry 
out. 
Let G be the maximum number of generations 
per cycle. 
Cycles = 0  {until now no cycle has been 
carried out } 
While (objective O is not accomplished)  

      and (Cycles < Z) 
For each subcontroller ci, with i of 1 a n. 

  Evolve(C, i) 
End For 
Cycles = Cycles + 1; 

End While 
    End {main program} 

The Evolve Process is in charge of improving the 
performance of the i-th subcontroller. It has two 
parameters: C representing the controller made up of 
a set of neural networks, and i indicating the number 

of subcontroller to be evolved. This process returns 
the modified C controller since the i-th subcontroller 
has been replaced by an improved version.  

It is worth mentioning that in order to implement 
this process, any type of evolving algorithm can be 
used. In particular, this paper has made use of ESP 
(Enforced Subpopulations). For a clear description 
of this method, see [3]. 

Next, details of the algorithm used in this paper to 
implement this process are presented. 

    Process Evolve(C,i) 
    {Evolves the i-th C subcontroller using ESP} 
    Begin 
       Repeat  

Repeat 
� Build ci’ selecting at random a 

c/subpopulation hidden neuron. 
� Evaluate the fitness of the controller 

composed by  
� {c1, c2, ...,ci’, ...,cn} in the domain of 

the complete problem. 
� Accumulate the fitness obtained in the 

ci hidden neurons  
Until (each neuron of each subpopulation  
           has taken part in a 10 KeepAway test  
           average)  
Obtain the following neurochromosomes 
generation for each population through 
genetic operators. 

Until (reaching a number of generations) or  
       (until obtaining a ci’ optimum) 

      {replace ci by the best ci’ found up to the 
        moment } 
       C = {c1, c2, ..., ci’,…, cn} 
    End { evolve process } 

5. IMPLEMENTATION ASPECTS 
In order to obtain each of the neural networks 
controlling the subtasks mentioned in section 2, the 
following considerations have been taken into 
account:  
� In all the cases, feedforward networks with a 

single hidden layer made up of two neurons 
have been used. The decision of using two 
neurons in the hidden layer is made by other 
authors [4]. They have tested other 
configurations, though the best results were 
obtained with just two neurons.  

� The training algorithm used in all the cases is 
ESP [3] with two subpopulations of 100 
individuals each, where the used stagnation 
factor for delta coding is 20.  

� For each of the networks, the training was 
carried out in 100 generations.  

For a detailed description of how the initial neural 
networks controlling each subtask were obtained, 
see [4]. 
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Each of these networks builds a controller according 
to the tree shown in Figure 3, which will be 
replicated in each keeper. For its application, we 
have considered that:  
a) The ball is close to the keeper if it is located not 

farther than a D distance equivalent to the sum 
of 3 player’s diameters.  

b) The decision whether a keeper is receiver or not 
depends on the result of the pass network of the 
player keeping the ball. At the moment in which 
a keeper decides to pass the ball to a teammate, 
this last one “knows” he is the receiver. 

As regards the taker’s behavior, even though it is 
possible to use the neural network controlling the 
Intercept subtask, it was awarded with the capacity 
of getting to the ball at a determined speed. This 
allows effectively measuring the improvement in the 
keepers’ behavior.  
Independently of the method used to improve this 
initial method, all the measurements carried out have 
taken into account the following aspects: 
� They begin with the taker moving at some 

percentage of the keepers’ speed. As the 
evolution goes on, each time keepers complete 
20 passes in an average of 3 KeepAway games, 
the taker’s speed is increased in 5%. This 
increase makes the controller, replicated in each 
keeper, adapt itself in order to overcome this 
difficulty.  

� The fitness of each controller made up by the 
neural network set is computed as the average 
number of completed passes during 3 runs of 
the KeepAway game.  

6. RESULTS 

In order to determine the efficiency and efficacy of 
the Cyclic Evolution method, the following 
comparisons have been carried out during N 
generations:  
a) Layered Evolution 

This method has been used in [4] and allows 
obtain the four initial networks trained 
independently in specific environments 
according to the dependency order indicated in 
figure 2. Only the last subtask is trained in the 
complete domain of the problem and evolved 
during the successive generations while the 
three first networks remain still.  

b) Concurrent layered evolution of the different 
networks making up the controller 
This is the method proposed by [4][8]. Here, all 
the networks composing the controller are 
allowed to evolve simultaneously. In order to 
keep the uniformity of the measuring process, 
ESP has been employed in the evolution of each 
network.  

The sole difference found in the paper presented 
in [4] lies in that the taker is not directly 
controlled by the intercept neural network, but 
has the capacity of getting directly to the ball. 
This is justified in several observations in which 
the keepers’ controller receives a high fitness, 
not due to its good performance but for the lack 
of the taker’s controller training. This is what 
causes the difference in the results obtained in 
this paper and those presented in [4] 

c) Cyclic Evolution with a fixed quantity of 
cycles carried out in N generations 
The Cyclic Evolution method has been 
measured for different quantities of cycles. 
Given a number K of cycles to be applied in the 
N generations, each of the four neural networks 
controlling a subtask has been trained during 
N/(4*K) generations respecting the dependency 
order indicated in figure 2. 

d) Cyclic Evolution with  a variable quantity of 
cycles carried out in N generations  
In this method, each network training within a 
cycle is carried out in a  non-predefined quantity 
of generations. The stage from the training of a 
network to the next one is given by a stagnation 
factor EF indicating that a network ends its 
training if after EF generations it does not 
improve its fitness.  

Figure 5 shows the average of the results obtained 
for 100 generations for methods a), b), c) y d) during 
10 runs of the KeepAway game. In the case of 
method  c) N=100 and K=1.3 and 5. were used; and 
for method d) EF=3. It is important to mention that 
100 generations for each method have been used for 
the coherence of the comparisons. In the case of 
cyclic evolution, apart from the fact that cycles 
increase, generations remain constant; all of which 
means that there exist less generations per cycle as 
the cycles increase.  
This allows clearly showing that when using the 
same quantity of generations, differences come to 
light as the cycles are varied.  
As can be observed in figure 5, the layered evolution 
method, described in a) and used for obtaining the 
initial controller of the remaining methods, is not 
capable of improving itself from generation 40. 
Even though this result is influenced by the behavior 
of the first three networks, it does not count with the 
capacity of the remaining methods to properly 
evolve in the solution of the general problem.  
From figure 5 we can also see that the Cyclic 
Evolution method provides better results than the 
Concurrent Layered Evolution method. Notice that 
this relation is independent of the quantity of used 
cycles. Moreover, the efficiency of the controller 
improves as the quantity of cycles increases. Method 
d) further proves that the quantity of cycles 
improves the efficiency of the controller because, in 
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this scheme, a greater quantity of cycles than in the 
case of method c) - for the same quantity of 
generations - is generally achieved.  
Tests carried out with 150 and 200 generations show 
that this relation is kept. Only from the 250 
generations, the differences between the Cyclic 
Evolution and the Concurrent Layered Evolution 
start to be considerably reduced.  

7. CONCLUSIONS AND FUTURE WORK 
 A new strategy, called Cyclic Evolution, has been 
presented. It allows improving the behavior of the 
controllers obtained through Layered Evolution with 
really successful results in the resolution of the 
KeepAway game.  
 

 
Figure 5. The graphic shows the improvements 
obtained in the behavior of the taker’s 
controllers through the different evolving 
methods. As generations advances, these 
improvements allow overcoming certain levels 
of difficulty. 

As it can be drawn from the previously mentioned 
differences, the improvements in the controller 
efficiency introduced by the Cyclic Evolution – even 
though they vary with the size and quantity of cycles 
used- outperform those provided by Concurrent 
Layered Evolution allowing obtaining good 
controllers in fewer generations.  

Even though the cyclic evolution method bounds the 
search space with respect to the concurrent layered 
evolution method, it allows us to obtain local 
improvements in the controller with less generations. 
The concurrent layered method has the potential 
capacity of finding good controllers; however, due 

to the fact that the search space exponentially 
increases, the task of finding an optimum controller 
is more expensive in terms of computing time.  
At present, works are being developed on the 
definition of a mechanism allowing identifying the 
efficiency degree of each network in the solution of 
a subtask. This would allow emphasizing the 
training of the most inefficient networks, reducing 
the running time of the cyclic training.  
At a further stage, we expect to apply the results of 
this research into more complex domains, such as 
the robot football game, an environment into which 
a great part of what has been learnt as regards the 
obtaining of KeepAway controllers could be applied.  
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