

Cyclic Evolution
A new strategy for improving controllers obtained by layered evolution

A.C. Javier Olivera, Lic. Laura Lanzarini
III-LIDI (Institute of Research in Computer Sciences LIDI)
Facultad de Informática. Universidad Nacional de La Plata.

La Plata, 1900, Argentina.

ABSTRACT
Complex control tasks may be solved by dividing
them into a more specific and more easily handled
subtasks hierarchy. Several authors have
demonstrated that the incremental layered evolution
paradigm allows obtaining controllers capable of
solving this type of tasks.
In this direction, different solutions combining
Incremental Evolution with Evolving Neural
Networks have been developed in order to provide
an adaptive mechanism minimizing the previous
knowledge necessary to obtain a good performance
giving place to controllers made up of several
networks.
This paper is focused on the presentation of a new
mechanism, called Cyclic Evolution, which allows
improving controllers based on neural networks
obtained through layered evolution. Its performance
is based on continuing the cyclic improvement of
each of the networks making up the controller within
the whole domain of the problem.
The proposed method of this paper has been used to
solve the Keepaway game with successful results
compared to other solutions recently proposed.
Finally, some conclusions are included together with
some future lines of work.

Key words: Evolving Neural Networks, Incremental
Evolution, Layered evolution.

1. INTRODUCTION
Several researches have demonstrated that certain
tasks may be solved using layered evolution.
By complex task we understand that whose solution
is not direct but involves the learning of a strategy in
order to achieve the expected objective. Problems
such as prey capture and target reaching belong to
this category [3].
In addition, there exist situations which cannot be
solved by a single agent. Such is the case of prey
capture, in which the predator is slower than the
prey, or the robot football. In both cases, beyond the
differences among the agents, the team is the one
which should carry out the strategy [5].
When the situation to solve is complex, it is hard to
establish a priori the controller to be used, and here
is where layered evolution becomes important. This
process consists in dividing the original problem into

simpler parts, called subtasks, thus allowing a
gradual learning of the expected response.
On the other hand, unless we count with the initial
information necessary to solve each subtask, it is
ideal to count with some mechanism allowing
carrying out the adaptation as automatically as
possible. In this direction, different solutions
combining techniques of Incremental Evolution with
Evolving Neural Networks have been developed
with the aim of providing an adaptive mechanism
minimizing the previous knowledge necessary to
obtain an acceptable performance giving place to
controllers made up of several networks [1]. Another
aspect to take into account is the way of determining
which neural network should be run at each time
instant [9][10]; in this direction, there exist several
alternatives ranging from the use of an ad-hoc
design decision tree [4] to mechanisms
automatically organizing the structure [2].

2. OBJECTIVE

This research is based on the works previously
carried out in the fields of layered evolution [6][8]
through neuroevolving algorithms and proposes an
alternative which allows obtaining improvements in
the proposed solutions.

The objective of this paper is to present a new
adaptation strategy, called Cyclic Evolution, through
which the collective behavior of the controllers
obtained by traditional layered evolving methods
can be improved.

In particular, the results of the adaptation of this
method for solving the KeepAway game will be
shown.

Section 3 describes the KeepAway game together
with the way of obtaining an initial controller
capable of solving it. Section 4 presents the
algorithm used to implement the cyclic learning.
Section 5 details some of the implementation
aspects. Section 6 describes the results obtained and
Section 7 presents the conclusions as well as some
future lines of work.

3. KEEPAWAY
Keepaway is a subtask of Robot Soccer game in
which one team of agents, the keepers, attempts to
maintain possession of the ball while the other, the

 JCS&T Vol. 5 No. 4 December 2005

211

takers, tries to get it. The game is carried out in a
fixed, circular region and ends when the ball exits
the bounding circle or when the taker grabs it [7].
There exist machine learning applications that
successfully solve different subtasks of the Robot
Soccer; however, the solution of the complete game
seems to be beyond the capacities of modern
techniques. As a consequence of the diversity of
applications, which solve different parts of the
Robot Soccer, the task of coherently comparing the
different machine learning applied techniques
becomes quite difficult. [7] has recently proposed
the Keepaway game as a proper domain for
contrasting different machine learning approaches to
the resolution of the Robot Soccer.
Keepaway is a challenging machine learning task for
several reasons:
• The state space is far too large to explore

exhaustively;
• Each agent has only partial state information;
• The action space is continuous;
• Multiple teammates need to learn

simultaneously;
• The keepers are relatively large when compared

to the playing area, which makes moving and
positioning difficult around the ball;

• The ball does not move much faster than the
players, which prevents the keepers from being
able to quickly make passes around the taker;

• The keepers do not possess any abilities for
handling the ball. They are modeled as simple
cylinders, and lack any way to “grab” the ball
and move with it. If they run into the ball, the
ball will bounce away.

For these reasons, the KeepAway game requires
complex behavior, ranging from the input data
processing about each keeper, the teammate – the
taker – and the ball, to the decision-making as to the
best course of action decided upon at each moment
of the game, and the acquisition of the ability needed
to carry it out.
In our implementation of KeepAway, each robot
receives noise-free sensory input describing
the current state of the game. All these inputs are
scaled to [-1, 1] and presented to each player in
relative coordinates.
Each robot is round, like the ball. A really simple
physics engine is used to allow the ball to bounce in
the players once it makes contact with them. As a
result, the only way in which the players can “kick”
the ball is to approach it in the precise direction and
at the proper speed so that the ball bounces or is
thrown in the right direction.
Figure 1 shows the region in which the game is
carried out. Here are three keepers, one of them has
the ball and the taker is placed in the center of the
field.

k k

k

t

k

t

Keeper

Taker

Ball

Figure 1. A game of Keepaway

3.1. Decomposition of the problem in simpler
subtasks
This game can be decomposed in four subtasks, each
of which will be commanded by a feedforward
neural network obtained by evolution and made up
of three layers: input, hidden, and output. In all the
cases, the hidden layer consists of two neurons:
• Intercept: The goal of this network is to get the

agent to the ball as quickly as possible. The
network has four inputs: two for the ball’s
current position and two for the ball’s current
velocity. Two output neurons are used, which
control the keeper’s heading and speed.

• Pass: The pass network is designed to kick the
ball away from the agent at a specified angle.
The difficulty of the learning lies in that the
angle with which the player kicks the ball
depends on its relative position to it. Hence, in
order to learn the proper behavior, the keeper
should approach the ball in the proper way. The
network has three inputs: two for the ball’s
current position and one for the target angle. It
makes use of two output neurons with the
keeper’s direction and speed.

• Pass Evaluate: This network allows the keeper
deciding to which teammate to pass. It has six
inputs: two for the position of the ball, two for
the taker’s position, and two for the teammate
whose potential as a receiver it is evaluating. It
has an only output neuron which allows
obtaining a real value between 0 and 1,
indicating its confidence that a pass to the given
teammate would succeed.

• Get open: The objective of this network is that
the agent should get to a good position where it
can receive a pass. It has three inputs: two for
the ball’s current position, two for the taker’s
current position, and one indicating how close
the agent is to the field’s bounding circle. It has
two output neurons which control the agent’s
heading and speed.

3.2. Layered Learning

Once the subdivision of tasks is carried out, a
dependence order is established among them, which
indicates the training sequence. Figure 2 shows these
dependencies for the KeepAway game.

 JCS&T Vol. 5 No. 4 December 2005

212

Each rectangle represents a subtask and the arrows
indicate the dependencies among them. A subtask
could be learnt once the rest of the subtasks on
which it depends have been learnt as well.

Get Open

Pass Evaluate

Pass

Intercept
Figure 2. A layered learning hierarchy for
the keepaway task. Each box represents a
layer and the arrows indicate dependencies
between layers.

This is called layered learning based on the
dependence existing in the order of the learning of
different subtasks. From another point of view, it
could be regarded as a structure having an initial
layer made up of those subtasks which do not need
others to be learnt. Then, in the following layer,
those subtasks that can be learnt from previous are
placed, and so on.

Notice that this learning does not show how to solve
the complete problem, but the way of learning to
carry out each of the expected subtasks.

3.3. Resolution of KeepAway

Once the networks are obtained, a decision tree is in
charge of selecting the network that should be used
at each instant. In this way, a controller for a
KeepAway player is obtained based on specific
controllers for each subtask. Figure 3 shows the
decision tree used by the keepers to solve the
KeepAway game.

The behaviors specified in the tree-leaves are carried
out by the neural networks proposed by this paper,
as well as the node “Teammate #1 Safer?”. The
remaining nodes have fixed behavior.

In each turn, keepers make use of the decision tree to
select the proper subcontroller for that moment. If a
keeper is less far from a certain length of the ball, it
tests which is the teammate that is more likely to
successfully receive the pass, and attempts to kick in
such direction. If it is beyond a certain distance, the
keeper tries to get the ball if it is directed to it, or
otherwise it tries to get open to a proper area for
future receptions.

Near Ball?

Teammate
#1 safer? Passed To?

Pass To
Teammate

#1
Intercept Get Open

Pass To
Teammate

#2

NoYes

NoNoYes Yes

Figure 3. A decision tree for controlling keepers in
the keepaway task.

The behaviors specified in the tree-leaves are carried
out by the neural networks proposed by this paper,
as well as the node “Teammate #1 Safer?”. The
remaining nodes have fixed behavior.

In each turn, keepers make use of the decision tree to
select the proper subcontroller for that moment. If a
keeper is less far from a certain length of the ball, it
tests which is the teammate that is more likely to
successfully receive the pass, and attempts to kick in
such direction. If it is beyond a certain distance, the
keeper tries to get the ball if it is directed to it, or
otherwise it tries to get open to a proper area for
future receptions.

It is worth to mention that the behavior of every
node could be controlled by neural networks, instead
of having a fixed, manually programmed behavior.
The decision tree could also be replaced by a neural
network capable of carrying out the same function,
i.e. selecting the most adequate subcontroller at each
instant. These options were not taken into account
for time reasons, since the additional, required
trainings for each new network would take much
more time.

Next, a new learning method – called cyclic
evolution – is presented, whose implementation
makes great use of the concepts previously
mentioned and grounds this paper. The method has
been created in order to improve the behavior of
controllers obtained by other learning methods,
layered learning, in particular.

4. CYCLIC EVOLUTION

This training mechanism proposes a strategy to
improve the performance of neural networks
controlling each subtask. These networks are
initially obtained conventionally using layer
evolution, each allowing the resolution of a part of
the problem [4]. For this, they are trained in the
resolution of simpler and more specific tasks. This
allows them to be part of the resolution of other
similar problems by just modifying the way they
interact.

The method is cyclic since it establishes an order in
the adaptation of each subtask, allowing –after the

 JCS&T Vol. 5 No. 4 December 2005

213

last one is trained – the evolution of the first one to
start once again, thus generating a continuing cycle.
During subtask learning, the networks controlling
the rest of the activities remain still. This allows
each network to improve its behavior and integration
with a set of already trained networks.

Let T = {t1,t2,t3,...,tn} be a set of subtasks, C =
{c1,c2,c3,...,cn} be a set of subcontrollers solving
each subtask ti, and E() be a function representing a
ci subcontroller training; then, figure 4 graphically
represents the proposed strategy in this paper.

E(c1) E(c2)

E(c3) E(c4)

Figure 4. A brief graphic representation
of cyclic evolution. Each oval represents
the training of a subcontroller and the
arrows making up the circle represent the
order in which the trainings are carried
out.

It is important to highlight that all the trainings are
carried out in the final domain, not existing an
environment specially prepared for each task, as it is
usually the case in the conventional methods. This
allows the networks to keep their training within the
domain in which they are finally solved.

Cyclic-Evolution Method Algorithm

 Begin { main program}
Let C={c1,c2,c3,..,cn} be the initial
subcontrollers set.
Let O be the final objective.
Let Z be the maximum cycle quantity to carry
out.
Let G be the maximum number of generations
per cycle.
Cycles = 0 {until now no cycle has been
carried out }
While (objective O is not accomplished)

 and (Cycles < Z)
For each subcontroller ci, with i of 1 a n.

 Evolve(C, i)
End For
Cycles = Cycles + 1;

End While
 End {main program}

The Evolve Process is in charge of improving the
performance of the i-th subcontroller. It has two
parameters: C representing the controller made up of
a set of neural networks, and i indicating the number

of subcontroller to be evolved. This process returns
the modified C controller since the i-th subcontroller
has been replaced by an improved version.

It is worth mentioning that in order to implement
this process, any type of evolving algorithm can be
used. In particular, this paper has made use of ESP
(Enforced Subpopulations). For a clear description
of this method, see [3].

Next, details of the algorithm used in this paper to
implement this process are presented.

 Process Evolve(C,i)
 {Evolves the i-th C subcontroller using ESP}
 Begin
 Repeat

Repeat
� Build ci’ selecting at random a

c/subpopulation hidden neuron.
� Evaluate the fitness of the controller

composed by
� {c1, c2, ...,ci’, ...,cn} in the domain of

the complete problem.
� Accumulate the fitness obtained in the

ci hidden neurons
Until (each neuron of each subpopulation
 has taken part in a 10 KeepAway test
 average)
Obtain the following neurochromosomes
generation for each population through
genetic operators.

Until (reaching a number of generations) or
 (until obtaining a ci’ optimum)

 {replace ci by the best ci’ found up to the
 moment }
 C = {c1, c2, ..., ci’,…, cn}
 End { evolve process }

5. IMPLEMENTATION ASPECTS
In order to obtain each of the neural networks
controlling the subtasks mentioned in section 2, the
following considerations have been taken into
account:
� In all the cases, feedforward networks with a

single hidden layer made up of two neurons
have been used. The decision of using two
neurons in the hidden layer is made by other
authors [4]. They have tested other
configurations, though the best results were
obtained with just two neurons.

� The training algorithm used in all the cases is
ESP [3] with two subpopulations of 100
individuals each, where the used stagnation
factor for delta coding is 20.

� For each of the networks, the training was
carried out in 100 generations.

For a detailed description of how the initial neural
networks controlling each subtask were obtained,
see [4].

 JCS&T Vol. 5 No. 4 December 2005

214

Each of these networks builds a controller according
to the tree shown in Figure 3, which will be
replicated in each keeper. For its application, we
have considered that:
a) The ball is close to the keeper if it is located not

farther than a D distance equivalent to the sum
of 3 player’s diameters.

b) The decision whether a keeper is receiver or not
depends on the result of the pass network of the
player keeping the ball. At the moment in which
a keeper decides to pass the ball to a teammate,
this last one “knows” he is the receiver.

As regards the taker’s behavior, even though it is
possible to use the neural network controlling the
Intercept subtask, it was awarded with the capacity
of getting to the ball at a determined speed. This
allows effectively measuring the improvement in the
keepers’ behavior.
Independently of the method used to improve this
initial method, all the measurements carried out have
taken into account the following aspects:
� They begin with the taker moving at some

percentage of the keepers’ speed. As the
evolution goes on, each time keepers complete
20 passes in an average of 3 KeepAway games,
the taker’s speed is increased in 5%. This
increase makes the controller, replicated in each
keeper, adapt itself in order to overcome this
difficulty.

� The fitness of each controller made up by the
neural network set is computed as the average
number of completed passes during 3 runs of
the KeepAway game.

6. RESULTS

In order to determine the efficiency and efficacy of
the Cyclic Evolution method, the following
comparisons have been carried out during N
generations:
a) Layered Evolution

This method has been used in [4] and allows
obtain the four initial networks trained
independently in specific environments
according to the dependency order indicated in
figure 2. Only the last subtask is trained in the
complete domain of the problem and evolved
during the successive generations while the
three first networks remain still.

b) Concurrent layered evolution of the different
networks making up the controller
This is the method proposed by [4][8]. Here, all
the networks composing the controller are
allowed to evolve simultaneously. In order to
keep the uniformity of the measuring process,
ESP has been employed in the evolution of each
network.

The sole difference found in the paper presented
in [4] lies in that the taker is not directly
controlled by the intercept neural network, but
has the capacity of getting directly to the ball.
This is justified in several observations in which
the keepers’ controller receives a high fitness,
not due to its good performance but for the lack
of the taker’s controller training. This is what
causes the difference in the results obtained in
this paper and those presented in [4]

c) Cyclic Evolution with a fixed quantity of
cycles carried out in N generations
The Cyclic Evolution method has been
measured for different quantities of cycles.
Given a number K of cycles to be applied in the
N generations, each of the four neural networks
controlling a subtask has been trained during
N/(4*K) generations respecting the dependency
order indicated in figure 2.

d) Cyclic Evolution with a variable quantity of
cycles carried out in N generations
In this method, each network training within a
cycle is carried out in a non-predefined quantity
of generations. The stage from the training of a
network to the next one is given by a stagnation
factor EF indicating that a network ends its
training if after EF generations it does not
improve its fitness.

Figure 5 shows the average of the results obtained
for 100 generations for methods a), b), c) y d) during
10 runs of the KeepAway game. In the case of
method c) N=100 and K=1.3 and 5. were used; and
for method d) EF=3. It is important to mention that
100 generations for each method have been used for
the coherence of the comparisons. In the case of
cyclic evolution, apart from the fact that cycles
increase, generations remain constant; all of which
means that there exist less generations per cycle as
the cycles increase.
This allows clearly showing that when using the
same quantity of generations, differences come to
light as the cycles are varied.
As can be observed in figure 5, the layered evolution
method, described in a) and used for obtaining the
initial controller of the remaining methods, is not
capable of improving itself from generation 40.
Even though this result is influenced by the behavior
of the first three networks, it does not count with the
capacity of the remaining methods to properly
evolve in the solution of the general problem.
From figure 5 we can also see that the Cyclic
Evolution method provides better results than the
Concurrent Layered Evolution method. Notice that
this relation is independent of the quantity of used
cycles. Moreover, the efficiency of the controller
improves as the quantity of cycles increases. Method
d) further proves that the quantity of cycles
improves the efficiency of the controller because, in

 JCS&T Vol. 5 No. 4 December 2005

215

this scheme, a greater quantity of cycles than in the
case of method c) - for the same quantity of
generations - is generally achieved.
Tests carried out with 150 and 200 generations show
that this relation is kept. Only from the 250
generations, the differences between the Cyclic
Evolution and the Concurrent Layered Evolution
start to be considerably reduced.

7. CONCLUSIONS AND FUTURE WORK
 A new strategy, called Cyclic Evolution, has been
presented. It allows improving the behavior of the
controllers obtained through Layered Evolution with
really successful results in the resolution of the
KeepAway game.

Figure 5. The graphic shows the improvements
obtained in the behavior of the taker’s
controllers through the different evolving
methods. As generations advances, these
improvements allow overcoming certain levels
of difficulty.

As it can be drawn from the previously mentioned
differences, the improvements in the controller
efficiency introduced by the Cyclic Evolution – even
though they vary with the size and quantity of cycles
used- outperform those provided by Concurrent
Layered Evolution allowing obtaining good
controllers in fewer generations.

Even though the cyclic evolution method bounds the
search space with respect to the concurrent layered
evolution method, it allows us to obtain local
improvements in the controller with less generations.
The concurrent layered method has the potential
capacity of finding good controllers; however, due

to the fact that the search space exponentially
increases, the task of finding an optimum controller
is more expensive in terms of computing time.
At present, works are being developed on the
definition of a mechanism allowing identifying the
efficiency degree of each network in the solution of
a subtask. This would allow emphasizing the
training of the most inefficient networks, reducing
the running time of the cyclic training.
At a further stage, we expect to apply the results of
this research into more complex domains, such as
the robot football game, an environment into which
a great part of what has been learnt as regards the
obtaining of KeepAway controllers could be applied.

REFERENCES

[1] Bruce, J. and Miikkulainnen, R. Evolving
Populations of Expert Neural Networks.
Department of Computer Sciences, The
University of Texas at Austin. Proceedings of
the Genetic and Evolutionary Computation
Conference. (GECCO-2001, San Francisco,
CA), (2001), pp. 251--257.

[2] Corbalán L., Osella Massa G., Lanzarini L., De
Giusti A. ANELAR. Arreglos Neuronales
Evolutivos de Longitud Adaptable Reducida. X
Congreso Argentino de Ciencias de la
Computación. CACIC 2004. Universidad
Nacional de La Matanza. Bs.As. Argentina.
Oct/04. ISBN 987-9495-58-6.

[3] Gomez, F. and Miikkulainen, R. Incremental
Evolution Of Complex General Behavior
Department of Computer Sciences, The
University of Texas at Austin. Adaptive
Behavior. Vol 5, (1997), pp.317-342.

[4] S. Whitson, N. Kohl, R. Miikkulainen, P. Stone.
Evolving. Soccer Keepaway Players through
Task Decompositions. Machine Learning, 59(1):
5-30, May 2005.

[5] Stone P., Veloso M. Multiagent Systems: A
survey from a Machine Learning Perspective.
Autonomous Robots. Vol.8, nro. 3, pp. 345-383.
2000.

[6] Stone, P. Layered Learning in Multiagent
Systems. PhD Thesis. CMU-CS-98-187. School
of Computer Science. Carnegie Melon
University. 1998

[7] Stone, P. and R. S. Sutton: 2002, ‘KeepAway
Soccer: a Machine Learning Tesbed’. In: A.
Birk, S. Coradeschi, and S. Tadokoro (eds.):
RoboCup-2001: Robot Soccer World Cup V.
Berlin: Springer Verlag, pp. 214-223.

 JCS&T Vol. 5 No. 4 December 2005

216

[8] Whiteson S., Stone P. Concurrent Layered
Learning. Second International Conference on
Autonomous Agents and Multiagent Systems -
AAMAS’03 pp 14-18.Julio 2003.

[9] Yao, X. and Liu, Y. Ensemble Structure of
Evolutionary Artificial Neural networks.
Computational intelligence Group, School of
Computer Science University College.
Australian Defense Force Academy, Canberra,
ACT, Australia 2600. 1996.

[10] Yao, X. Evolving Artificial Neural networks.
School of Computer Science The University of
Birmingham Edgbaston, Birmingham B15 2TT.
Proceedings of the IEEE. Vol.87, No.9,
(September 1999), pp.1423-1447

 JCS&T Vol. 5 No. 4 December 2005

217

