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Abstract

A method is presented for semi-automatic object
tracking in video sequences using multiple fea-
tures and a method for probabilistic relaxation
to improve the tracking results producing smooth
and accurate tracked borders. Starting from a
given initial position of the object in the first
frame the proposed method automatically tracks
the object in the sequence modelling the a pos-
teriori probabilities of a set of features such as
color, position and motion, depth, etc.
Keywords: signal processing, video, segmenta-
tion, objects, recognition.

1 Introduction

In the past, several authors have proposed to
solve the problem of object tracking and segmen-
tation using color, texture or motion information
alone [9]. It can be shown that no single visual
feature can be enough to successfully solve the
problem in the wide variety of real world scenes.
For example, the color of the object can be similar
to part of the background and spatial information
is needed to overcome this ambiguity. In addi-
tion, it is well known that not all features perform
uniformly in every situation: motion and texture
features are computed using neighborhood opera-
tions that tend to be unreliable at object bound-
aries. On the other hand, motion alone can dis-
criminate between regions of similar color under-
going different motion.

At the light of these observations, the combi-
nation of features emerged as a promising frame-
work. For instance, are referred the combination
of color and spatial information [3, 5, 13], color,
spatial and motion information [8, 2], color and
depth [6], etc. The use of multiple features not
only gives more information but more specifically,
it provides with some complementary informa-
tion. Khan and Shah [8] proposed to join optical
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flow, color and spatial information into a single
feature vector and then build a Gaussian Mixture
Model (cMM). To classify the pixels they com-
pute a weighted sum of individual feature likeli-
hoods. The problem with this approach is that
motion is very noisy and plays a minor role in
the final segmentation while adding noisy estima-
tions. In the present work position, color and mo-
tion information is separated. Parametric models
are applied to motion estimation, which are then
used to update the object position in the image.

Traditionally, probabilistic modelling has been
used in order to transform the segmentation prob-
lem into a classification one. The main goal is
to model the PDF of each feature and then apply
the maximum a posteriori (MAP) principle to clas-
sify individual pixels to the corresponding class.
Let assume that there are two possible classes
from the set {O, B} where O stands for the ob-
ject of interest and B for the background, and
a set of features {fi,..., fxv}. Then, if indepen-
dence is assumed, the a posteriori probabilities
P(x|f1,-.., fn) with x € {O, B} can be written
as:

N
1P (1)
i=1
That means that independent information is com-
bined via the product of individual a posteriori
probabilities for each feature. In other works
[8, 11, 7], instead of applying Eq. (1) the com-
bination is done using a weighted sum of the a
posteriori probabilities P(x|f;):

N
ZwiP(X|fi) (2)
i=1

This also allows us to introduce the confidence
of each measure in the weighting factors w;. In
[12] the authors studied the problem of classifier
combination by averaging and multiplying. They
concluded that the averaging classifier is to be
preferred in the case when posterior probabili-
ties contain errors. On the other hand, the pro-
duct rule outperforms averaging when the poste-
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rior probabilities are accurately estimated. The
underlying assumption is that averaging reduces
the estimation errors. In addition, the statisti-
cal dependence of the features must be consid-
ered. If the features are independent and com-
puted without errors, the product rule should be
used to take advantage of the independent repre-
sentations. In the case of noisy estimations, the
average rule should be preferred. Given that the
estimations from different features contain errors,
such as mismatch between the observed color and
the modelled ones, errors in the motion estima-
tion, etc., the average rule is used in this work.

The outline of the present paper is as follows:
section 2 presents a method for probability relax-
ation that will be used to smooth the posterior
probabilities, section 3 describes the method and
the features used in the tests. Section 4 presents
the results and finally section 5 presents the con-
clusions and future work.

2 Modified Vector Probability
Diffusion

In [10] a method for the diffusion of probability
vectors was introduced. Given a vector of proba-
bilities p(z) € P = {p € R™ : |p[1 = 1,p; > 0},
the anisotropic diffusion that minimizes the L
norm, [ ||[Vpl|, of this vector restricted to the

probability simplex P is:

i _y. (Vm) i=1,..

ot Vo
This evolution equation slows the diffusion at
points with high |[Vpl| = /S, Ve[ A
modification of Eq. (3) is presented in order
to stop the diffusion along a desired direction z
while allowing the diffusion in the normal direc-
tion. The main goal is to inhibit the diffusion
across the object borders while allowing the dif-
fusion along them.

Let z be a vector field with unit length and di-
rection normal the object borders. For each com-
ponent p; of the probability vector, the direction
of diffusion in Eq. (3) is Vp;!. Since the diffu-
sion is intended to stop across the object border,
the direction of diffusion is modified subtracting
the component across the border, i.e. the com-
ponent parallel to z. Hence, the new diffusion
direction is defined as: Vp; — (z, Vp;)z. To cor-
rect the strength of the diffusion the norm of the
gradient must be modified to suppress the con-
tribution of the derivative parallel to z. Taking
into account the previous modifications, the cor-
responding Modified Vector Probability Diffusion

(3)

,m

1This comes from the fact that the heat equation % =

V.(kVf) diffuses the heat f in the direction of V f with a
conduction coefficient k.

219

December 2005

(MVPD) equation becomes:
opi _ ( Vpi — (Vpi; 2)2 ) )
ot IVp = (2, Vp)2|

for ¢ = 1,...,m. To select the object borders z is

>, where u is

Ug Uy
VO FuZtu2’ (/o uZ+ul
the luminance component of the image and b is
a parameter that selects the relevant borders as
points with ||[Vu(zx,y)|| > b.
It can be easily shown that the Eq. (4) comes
from the minimization of the functional:

/||Vpi —(2,Vp;)z|| dz

Furthermore, it can be shown that the evolution
guarantees that the probability lives in the mani-
fold of vectors with components adding up to one
and its discrete version fulfills a maximum prin-
ciple and in this way the diffusion remains in the
probability simplex.

The numerical implementation of Eq. (4) can
be done using standard numerical methods tak-
ing forward differences for the gradients and back-
ward differences for the divergence operator. The
stopping time is automatically selected when the
L1 norm of the result is a fraction of the L; norm
of the initial condition.

set as z =

3 The method

This section presents the features used in this
work: color, position (updated via motion esti-
mation), and depth, and the posterior probability
estimation and combination.

Color Color is an interesting feature for de-
formable object tracking since it is robust against
different types of deformations. Color is repre-
sented in the L*a*b* color space and model ob-
ject and background color pdfs with a GMM:

Nec
Pfl) = 3 QfNi (g, 52)
i=1
where N (p;,%;) is a gaussian kernel with mean
w; and covariance ¥;.

Despite its robustness, color information alone
is generally not enough to completely resolve the
spatial localization and shape of the object. Some
authors proposed to include the (z,y) pixel posi-
tions in the feature vector [3, 5]. Including the
pixel position into the feature vector produces
compact clusters. However, when using GMM
these clusters are elliptical and restrict the type
of objects that can be modeled. Therefore, as
in [13], the spatial/position distribution is com-
puted separately using kernel methods. Motion
estimation is used to obtain an estimation of the
object shape.
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Motion Motion information is taken into ac-
count to estimate the object shape at frame t+1,
g(t—l—l), given the shape at frame ¢, S(¢). To track
the object shape deformation an optical flow tech-
nique is applied to obtain the affine motion of the
object [14]. The optical flow (vg(z,y), vy(x,y)) is
obtained as the linear least square solution of:

>

(z,y)€S(t)

[u(@ — vg,y — vyt + AL) — u(z, y; )]

(5)
Taking a first order approximation of Eq. (5) and
using:

[51=]

a system of linear equations is obtained for the
parameters {a1, as, as, b1, be,b3}. To add robust-
ness to the estimations, in the previous summa-
tions only the points in S(¢) where the gradient
can be computed with confidence are considered.
In the implementation are only considered points
(z,y) such that ||Vu(z,y)|| > 16.

a1 + a2x + asy
b1 + bQ’l} + bgy

Position The object position probability,
P(O|fs), is computed convolving the position
support of the object, S(t), with a Gaussian
kernel, and the background probability is then
P(BIf,) =1 - P(O|f.).

Depth In the case of the flowers sequence (in
figure 6) also is included the depth feature via the
disparity. The disparity for the i-th frame is cal-
culated using the algorithm proposed by Bobick
and Intille [1]; considering the i-th and (i + 1)-
th frames as the left and right images of a stereo
rig. Even though this sequence was not prepared
for stereo processing the apparent object motion
(front-parallel to the camera plane)? and the rel-
ative depth difference of the objects of interest,
allows the use of this algorithm to estimate the
disparity; which is verified with the experimental
disparity estimation (see figure 6).

To estimate a probability function for each
pixel given its disparity value, a histogram model
is used for the background and object updating
this model in each frame.

Posterior probabilities combination With
the a posteriori probabilities for each feature the
total posterior probabilities are estimated as3:

P(x) = ZwiP(lei) (6)

2Which guarantee that same rows of consecutive frames
are “closely” in epipolar correspondence.

3In the implementation weights are selected uniform
w; =1/N.
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Finally, contextual information is introduced ap-
plying MVPD to the vector of posterior probabili-
ties (P(0), P(B)), before pixel-wise MAP classifi-
cation. This helps to overcome errors during the
posterior probability estimation and adds coher-

ence to the results.

Algorithm The only input of the algorithm is
the initial object position, S(0). From it, the pos-
terior probabilities for each feature are computed.
In the case of color, the initial condition of the EM
algorithm is obtained with the fuzzy C-means al-
gorithm. The optimal number of components in
the GMM is automatically selected using the mod-
ified EM method proposed in [4]. Then, given
S(t), the algorithm proceed as follows:

1. Estimate the new object shape, S(t +1), us-
ing motion information.

2. Compute the posterior probabilities for the
selected features (shape, color, disparity,
etc.).

3. Obtain the posteriori probabilities (Eq. (6)).
4. Diffuse the posteriori probabilities (Eq. (4)).

5. Obtain the new object position using MAP
rule.

4 Results

In the first experiment the results of the proposed
algorithm using MVPD against the same algorithm
using VPD and the algorithm without probabilis-
tic relaxation (WOP) are compared. To assess the
quality of the results the number of false posi-
tives (FP) and false negatives (FN) (figure 2(a)
and 2(b) respectively) are computed with respect
to a sequence segmented by hand by an experi-
enced user.

Figures 2(c) and 2(d) summarize the results
from two representative frames. It is remarkable
how the results with diffusion reduce the num-
ber of FN due to the regularization at the borders
and a small increase of the Fp. In addition, it can
be observed that the results with MvPD reduce
even more the number of FN. That means that
with respect to the results expected by the expert
the algorithm improves via the use of probability
diffusion, particularly MVPD.

Figure 2(c) and 2(d) show the localization of Fp
(in black) and FN (in white) for MVPD and VPD.
To understand the increase of FP the following
facts must be considered. First, the user consis-
tently omitted the hair close to the neck while
the methods with diffusion (MvPD and vPD) in-
cluded it; these points constitute the FP close to



JCS&T Vol. 5 No. 4

the neck. This explains the almost constant dif-
ferences between the results with VPD or MVPD,
and WOP. Second, the hand-segmented results
have rugged borders and the results with diffu-
sion smooth ones.

The FN, mainly concentrated at the helmet,
are points with colors similar to the ones of the
background, and also weak borders (gradients).
That means that the hand segmented image has
a global subjective decision that is not taken into
account explicitly in the algorithm. Even though
these characteristics of the video sequence, the
algorithm successfully tracks the helmet border
across several frames.

Figure 3 shows that vPD and MVPD improve the
smoothness of the object borders whit respect to
WOP. MVPD smoothes even more while respect-
ing the borders. Since these improvements can
only be seen at the borders, the improvements
are small in terms of FN. To remark the differ-
ences between VPD and MVPD figure 1 show the
diffused P(O) for each method.

To conclude, qualitatively can be observed that
the results after MVPD are smooth and the num-
ber of FN decreases at the cost of a slightly in-
creasing of the FP while obtaining a stable seg-
mentation across several frames, up to frame 200.

In the second example in figures 4 and 5, the
results for the segmentation of sequences foreman
and carphone are presented. The results are sta-
ble and precise across several frames up to frame
300. In carphone the method successfully tracks
the object capturing the motion, deformation and
zooming. In frame 178 another object (the hand)
with similar features occludes the main object
(head) and for this reason the algorithm included
it as part of the object being segmented. These
kind of problems were not modelled in the pro-
posed method. Hence, the results were as ex-
pected. Later, when the hand disappears form
the scene the method segments only the head.

In the third example in figure 6, the results of
the disparity estimation and the segmentation re-
sults with the combination of color, position and
depth (disparity) are presented. The second row
presents the results using the method described
above. In the results for the frames 6 and 21
part of the background is included as part of the
object. This is due to the closeness of the color
and position features of background and object.
For the same reason in frame 38 the object in-
cludes the branches. In this case the result is
correct. The third column presents the results
using only depth and color features®*. Here the
depth corrects the problems commented before
but the algorithm used for the depth estimation

4Remember that always is used the motion feature for
the update of position.
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introduces other errors that deteriorate the seg-
mentation, see at the left of the tree at frames
21 and 38. Finally, in the last row, all the previ-
ously problems are solved integrating in the pro-
posed method color, position and depth features.
Although some problems remain present, the im-
provements achieved due the combination of sev-
eral features are presented.

Finally, the fourth example in figures 2(e)-2(h)
shows an example changing the weights of color
and position features. In figures 2(e) and 2(f), the
color and position have the same weight and the
chimney gets lost during the first frames because
the color model cannot discriminate between ob-
ject and background. Figures 2(g) and 2(h) shows
how this can be solved using different weights as-
signing more weight to the position then the color,
Wp > We.

5 Conclusions

This work presents an algorithm for semi-
automatic object tracking in video sequences us-
ing several features and a new probabilistic re-
laxation method (a modified version of an exist-
ing vpD). Although the results presented can be
improved with more sophisticated methods, it is
showed that a simple method together with MvPD
is able to track objects in long sequences produc-
ing smooth and accurate borders.

Even though the proposed method is a region-
based one and no constraints are imposed to the
boundary of the tracked regions, the borders are
smooth. The accuracy of the borders of the
tracked objects depend on the power of discrim-
ination of the selected features, and the appear-
ance of new objects and/or background. The al-
gorithm does not consider the latter. In order to
overcome some of these limitations is planed to
use snakes or other methods to further improve
the results.

The tracked objects in the examples are almost
rigid objects. For the case of non-rigid objects
the motion estimation must be improved to track
the deformations of the object. The solution
might be to apply the same motion estimation on
a region basis. For example, dividing the object
in small regions and then applying a grouping
principle.

The results and the full color images
can be obtained from this web site:
http://iie.fing.edu.uy/investigacion/grupos/gmm/.
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Figure 1: Results for the object probability P(O)
(from top to bottom) without diffusion with vPD
and with MVPD.
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False Positves. Red: MVPD, Blue: VPD, Green: WOP.

False Negatives. Red: MVPD, Blue: VPD, Green: WOP
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Figure 2: (a)-(b) FP and FN for frames 5, 10, 15, 50, 100 and 200. (c)-(d) FP (in black) and FN (in white)
for (¢) MvPD and (d) vpPD. (e)-(h) Example with different weights in Eq. 2.

Figure 3: Left: Results of wop. Middle: Results with vPD. Right: Results with MvPD. Up: frame 5.

Bottom: frame 100.

e

Figure 4: Results for foreman sequence with color, position and MvPD. Frames 2, 66, 111, 122, 191 and

286.
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Figure 5: Results for carphone sequence with color, position and MvPD. Frames 2, 89, 115, 178, 187 and
300.

Figure 6: From top to bottom: Disparity estimation. Results using color and position with MvVPD. Results
using position and depth with MvVPD. Results using position, depth and color with MvPD. Frames 6, 21
and 38.
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