
Cellular Memetic Algorithms
Enrique Alba1, Bernabé Dorronsoro1, and Hugo Alfonso2

1 Department of Computer Science, University of Málaga, Spain
2National University of La Pampa, General Pico, La Pampa, Argentina

E-mails: eat@lcc.uma.es; dorronsoro@uma.es; alfonsoh@ing.unlpam.edu.ar

ABSTRACT

This work is focussed on the development and analysis of a
new class of algorithms, called cellular memetic algorithms
(cMAs), which will be evaluated here on the satisfiability
problem (SAT). For describing a cMA, we study the effects of
adding specific knowledge of the problem to the fitness func-
tion, the crossover and mutation operators, and to the local
search step in a canonical cellular genetic algorithm (cGA).
Hence, the proposed cMAs are the result of including these
hybridization techniques in different structural ways into a
canonical cGA. We conclude that the performance of the cGA
is largely improved by these hybrid extensions. The accuracy
and efficiency of the resulting cMAs are even better than those
of the best existing heuristics for SAT in many cases.
Keywords: Cellular evolutionary algorithms, memetic algo-
rithms, SAT problem

1. INTRODUCTION

Evolutionary algorithms (EAs) are optimization techniques
that work on a set (population) of potential solutions (indi-
viduals) by applying stochastic operators on them in order
to search for an optimal solution. Most EAs use a single
population (panmixia) of individuals and apply operators
on them as a whole. In contrast, there exists also some
tradition in using structured EAs, where the population is
decentralized somehow. Among the many types of structured
EAs, distributed and cellular algorithms are two popular
optimization tools [1], [2] (see Fig. 1) . In many cases [3],
these decentralized algorithms provide a better sampling of
the search space, resulting in improved numerical behavior
with respect to an equivalent algorithm in panmixia.

(a) (b) (c)

Fig. 1. Panmictic (a), distributed (b) and cellular (c) EAs.

Memetic Algorithms (MAs) are techniques combining fea-
tures of different metaheuristics, such as population based
algorithms (EAs) and local search methods, and also restart
techniques and intensive hybridization with problem knowl-
edge. The main characterization of MAs is the trade-off
between exploration and exploitation of the search space that
they perform. This work is focussed on cellular MAs (cMAs),
a new class of algorithms we are introducing here, which
are essentially cellular genetic algorithms [4], [5] (cGAs)
wherein some knowledge of the problem is included in the

E. Alba and B. Dorronsoro acknowledge that this work has been
partially funded by the Spanish MCYT and FEDER under contract
TIN2005-08818-C04-01 (the OPLINK project).

recombination, mutation, local search, fitness function and/or
the representation of the problem. Therefore, we will focus
on cGAs in this paper, although the same methodology can
be extended to other EAs. For testing our algorithms we
have selected the satisfiability problem (SAT). This is a
hard combinatorial problem, well-known in the literature, and
having important practical applications, such as planning [6]
and image interpretation [7], among others.
In the field of evolutionary computation, the latest advances
clearly show that EAs can yield good results for SAT when
hybridizing them with additional techniques, e.g., adaptive
fitness functions, problem-specific operators, or local opti-
mization [8], [9], [10], [11], [12].
The motivation for this work is to study the behavior of differ-
ent hybrid cGAs having generic or specific fitness functions
and recombination, mutation, and local search operators. We
compare them against the basic local search heuristics them-
selves, and versus two canonical cGAs (without local search).
Additionally, two different ways of embedding local search
have been analyzed: (1) a computationally light local search
step applied to every individual, or (2) an in depth exploitation
local search step applied with a low probability. This work is
an extension to [13], including a preliminary study justifying
the algorithms used, and a comparison of our results versus
those of other well-known algorithms in the literature.
This paper is organized as follows. In Section 2 we define the
SAT problem. Section 3 introduces the studied algorithms, in-
cluding three simple heuristics (GRAD, Simulated Annealing
–SA– and WSAT), a basic cGA, and several cMAs, which are
the result of different combinations with the previous kinds
of algorithms. Our results are summarized in Section 4, and
the conclusions and future research directions are addressed
in Section 5.

2. SATISFIABILITY PROBLEMS

The satisfiability problem (SAT) has received many attention
from the scientific community since any NP problem can be
translated into an equivalent SAT problem in polynomial time
(Cook theorem) [14]; while the inverse transformation may
not always exist in polynomial time. This problem was the
first which was demonstrated to belong to the NP class of
problems.
The SAT problem consists in assigning values to a set of n
boolean variables �x = (x1, x2, . . . , xn) so that they satisfy
a given set of clauses c1(�x), c2(�x), . . . , cm(�x), where ci(�x)
is a disjunction of literals, and a literal is a variable or its
negation. Hence, we can define SAT as a function f : �n →
�, � = {0, 1} like:

fSAT(�x) = c1(�x) ∧ c2(�x) ∧ . . . ∧ cm(�x) . (1)

An instance of SAT, �x, is called satisfiable if fSAT(�x) = 1,
and unsatisfiable otherwise. A k-SAT instance is composed of

 JCS&T Vol. 5 No. 4 December 2005

257

clauses with length k, and when k ≥ 3 (the case we address
in this work) the problem is NP-complete [15].
The fitness function we use here is the stepwise adaptation
of weights (SAW) [11], described in Eq. 2. This adaptive
function weights the values of the clauses with wi ∈ � in
order to give more importance to those clauses which are still
not satisfied by the current best solution. These weights are
adjusted dynamically according to the formula wi = wi +
1 − ci(�x

∗), being �x∗ the current fittest individual.

fSAW(�x) = w1 · c1(�x) + . . . + wm · cm(�x) . (2)

There exist other known adaptive fitness functions for SAT,
such as the refining functions [16], but we do not include them
in this study because “. . . the use of refining functions does
not necessarily lead to improved performance when using
the bit string representation”, as it is concluded in [16]. Of
course, the used SAW function has repeatedly shown to be
much more suitable for SAT than just counting the number
of unsatisfied clauses [11], [16].

3. CANONICAL AND ADVANCED COMPONENTS
IN CELLULAR MAS

A detailed description of the algorithms used is given in
the current section. Specifically, we study three simple heuris-
tics for solving SAT, a basic cGA –called JCell–, and finally
the proposed cMAs.

Three Basic Local Search Techniques for SAT

In this subsection, we present the three local search proce-
dures (LS) used to illustrate how to construct a cMA and also
used for solving SAT. Two of them were specifically designed
for this problem: (i) a gradient algorithm (GRAD), based on
the flip heuristic, and especially developed for this work by
the authors, and (ii) the well-known WSAT algorithm. The
third procedure included is Simulated Annealing (SA), a well-
known metaheuristic.

GRAD: For this work, we have developed a new
local search algorithm (called GRAD) for SAT. GRAD is
an algorithm (based on the flip heuristic) that performs a
gradient search in the space of solutions (see Algorithm 1).
Basically, it consists in mutating the value of a variable
according to the number of clauses it does not satisfy: the
higher the number of unsatisfied clauses a variable belongs
to, the higher the probability for mutating (flipping) it. As it
can be seen in Algorithm 1, some noise is added to the search
(with probability 0.2) in order to enhance its exploration
capabilities. The main difference of GRAD with respect to the
flip heuristic consists in that the latter flips a variable (v) in
terms of the gain of that flip: v = {vi/ max(sat clauses(vi)−
sat clauses(vi))} (i = 1 to the number of variables), while
in GRAD the flip is made to every variable (v) satisfying
v = {vi/ max(unsat clauses(vi))} with equal probability
(independently of the gain). This difference makes GRAD
computationally lighter than the flip heuristic.
The workings of GRAD are simple. The algorithm starts by
randomly generating both the initial best solution and the
first individual (lines 2 and 4, respectively). After that, until
the final condition is met, the algorithm repeatedly generates
a new individual (offspring) from the current one (parent),
evaluates it, and replaces the best current solution with it if
it is better (higher fitness value). The offspring is created by
flipping the worst genes of the parent –those unsatisfying the

largest number of clauses– with equal probability (lines 9 and
10). With a preset probability some noise (20%) is introduced
in the search. In this case, the offspring is mutated by flipping
the value of a randomly chosen variable of the parent unsat-
isfying one or more clauses (lines 6 and 7). Then, the search
process is repeated for the offspring (lines 5 to 14). Every
MAX STEPS iterations the search is restarted –the current
individual is randomly generated– (line 4). We have set this
value to 10 times the number of variables. The algorithm stops
(line 3) when the optimal or the best-known solution is found
or after making 2 millions of fitness function evaluations.

Algorithm 1 Pseudocode of GRAD
1: GRAD(problem)
2: best ind = New Random Ind();
3: while ! Termination Condition() do
4: ind = New Random Ind();
5: for steps ← 0 to MAX STEPS do
6: if rand0to1() < prob noise then
7: Flip(ind,Random Variable Unsatisfying Any Clause());
8: else
9: vars to flip[]=Vars Unsatisfying Max Number Of Clauses();

10: Flip With Equal Probability(ind,vars to flip);
11: end if
12: Evaluate Fitness(ind);
13: best ind = Best(ind,best ind);
14: end for
15: end while

WSAT: The WSAT algorithm [17] is a greedy
heuristic specifically designed for SAT. Basically, it consists
in repeatedly selecting a non satisfied clause (randomly) and
flipping one of its variables (see Algorithm 2). There exist
several methods for selecting this variable [18]. Among them,
we have adopted the BEST strategy, which consists in flipping
a variable of the clause with a given probability (prob noise
= 0.5), and otherwise flips the variable that minimizes the
number of clauses that are true in the current state, but that
would become false if the flip were made. After a number
of steps (line 3), the search is “restarted” by replacing the
current individual by a randomly generated one (line 4). Like
in the case of GRAD, we “restart” every 10 times the number
of variables steps, and the best found solution so far is always
tracked.

Algorithm 2 Pseudocode of WSAT
1: WSAT(problem)
2: best ind = New Random Ind();
3: while ! Termination Condition() do
4: ind = New Random Ind();
5: for steps ← 0 to MAX STEPS do
6: clause = Random Unsatisfied Clause()
7: if rand0to1() < prob noise then
8: Flip(ind,clause[randomInt(long clause)]);
9: else

10: for i ← 0 to long clause do
11: lost clauses[i] = Broken Clauses After Flip(i);
12: end for
13: Flip(ind, clause[Index Of Min Value(lost clauses)]);
14: end if
15: Evaluate Fitness(ind);
16: best ind = Best(ind, best ind);
17: end for
18: end while

SA: Simulated Annealing [19] is probably one
of the first metaheuristics with an explicit strategy to escape
from local optima (see Algorithm 3 for a pseudocode). The
core idea is to allow some movements resulting in solutions of
worse quality in order to escape from local optima. For that,
a parameter called temperature (Temp) is used, such that it

 JCS&T Vol. 5 No. 4 December 2005

258

p(Temp, offspr, ind) = e
(Get Fit(offspr)−Get Fit(ind))·104

targetFitness·Temp (3)

decreases during the execution (line 19) in order to reduce
the probability for accepting movements with a loose in the
quality of the solution (computed as shown in Eq. 3). Temp
is initialized to a given upper bound Tmax (line 5), and new
individuals are computed while the current value of Temp is
larger than a given threshold Tmin (lines 6 to 20). If the new
individual is better (higher fitness value) than the best so far
one it is accepted as the new best one (lines 14 and 15) and,
otherwise, it replaces the best one with a given probability
(lines 16 and 17). After some experimental tests, we have set
values to Tmax = 10, Tmin = 1, and coolingRate = 0.8.

Algorithm 3 Pseudocode of SA
1: Simulated Annealing(problem, Tmax, coolingRate)
2: ind = New Random Ind();
3: best ind = ind;
4: while ! Termination Condition() do
5: Temp = Tmax;
6: while Temp > Tmin do
7: offspring = ind; // generate an offspring
8: for i ← 0 to problem.num vars do
9: if rand0to1() < 1/problem.num vars then

10: Flip(offspring, i);
11: end if
12: end for
13: Evaluate Fitness(offspring);
14: if Get Fit(offspring) >= Get Fit(ind) then
15: ind = offspring;
16: else if rando0to1() < p(Temp, offspring, ind) then
17: ind = offspring;
18: end if
19: Temp ∗ = coolingRate;
20: end while
21: best ind = Best(offspring, best ind);
22: end while

The Cellular GA

Cellular GAs are a class of GAs in which the population is
structured in a specified topology (usually a toroidal mesh
of dimensions d = 1, 2 or 3). In a cGA, the genetic
operations may only take place in a small neighborhood of
each individual (see Fig. 1.c). The pursued effect is to improve
on the diversity and exploration capabilities of the algorithm
(due to the presence of overlapped small neighborhoods)
while still admitting an easy combination with local search
at the level of each individual to improve on exploitation.

Algorithm 4 Pseudocode for a Canonical cGA
1: JCell(cga) //Algorithm parameters in ‘cga’
2: while ! Termination Condition() do
3: for individual ← 1 to cga.popSize do
4: n list←Get Neighborhood(cga,position(individual));
5: parents←Selection(n list);
6: offspring←Recombination(cga.Pc, parents);
7: offspring←Mutation(cga.Pm, offspring);
8: Evaluate Fitness(offspring);
9: Insert(position(individual), offspring, cga, aux pop);

10: end for
11: cga.pop←aux pop;
12: end while

In this section, a detailed description of JCell is presented
(see a pseudocode in Algorithm 4). In JCell, the popu-
lation is structured in a 2 dimensional toroidal grid, and
a neighborhood of 5 individuals (NEWS) is defined on it
(see Fig. 1.c). The algorithm iteratively considers as current
each individual in the grid (line 3). An individual may only
interact with individuals belonging to its neighborhood (line
4), so the parents are selected among the individuals of the

neighborhood (line 5) with a given criterion. Recombination
and mutation genetic operators are applied to the individuals
in lines 6 and 7, with probabilities Pc and Pm, respectively.
After that, the algorithm computes the fitness value of the
offspring (line 8), and inserts it on the equivalent place of the
current individual in the new (auxiliary) population (line 9)
following a given replacement policy.
After applying this reproductive cycle to all the individuals of
the population, the composed auxiliary population is assumed
to be the new population for the next generation (line 11) —
this is called synchronous update. This loop is repeated until
a termination condition is met (line 2): usually to reach the
optimum, to make a maximum number of fitness function
evaluations, or a combination of they two.

Cellular Memetic Algorithms

Memetic algorithms are search algorithms in which some
knowledge of the problem is used in one or more operators.
The objective is to improve the behavior of the original
algorithm. Not only local search, but also restart, structured
and intensive search is commonly considered in MAs [20]. In
this work, we implement some cellular memetic algorithms
(cMAs), obtained by hybridizing JCell with different combi-
nations of generic and specific recombination, mutation and
local search operators (see Table 1), as well as an adaptive
fitness function specifically designed for SAT, SAW (see
Section 2). In Algorithm 5 we show the pseudocode for
a canonical cMA. As it can be seen, the main difference
between the pseudocodes of the canonical cMA and cGA
is the local search step included in line 8 of the cMA.

Algorithm 5 Pseudocode for a Canonical cMA
1: cMA(cma) //Algorithm parameters in ‘cma’
2: while ! Termination Condition() do
3: for individual ← 1 to cma.popSize do
4: n list←Get Neighborhood(cma,position(individual));
5: parents←Selection(n list);
6: offspring←Recombination(cma.Pc, parents);
7: offspring←Mutation(cma.Pm, offspring);
8: offspring←Local Search(cma.PLS, offspring, {intensive|light});
9: Evaluate Fitness(offspring);

10: Insert(position(individual), offspring, cma, aux pop);
11: end for
12: cma.pop←aux pop;
13: end while

Table. 1. Operators used in JCell in this work for solving SAT.

Operator Generic Specific

Crossover DPX UCR
Mutation BM UCM
Local Search SA GRAD

WSAT

We use two specific genetic operators for recombination and
mutation which are called Unsatisfied Clauses Recombination
(UCR) and Unsatisfied Clauses Mutation (UCM), respec-
tively. The two operators focus on keeping constant the values
of the variables satisfying all the clauses they belong to. Our
UCR is exactly the same operator as the proposed CB in [16],
and UCM is the result of adding some noise to MB (also
proposed in [16]), as seen in Algorithm 6. We use two well-
known generic recombination and mutation operators: two
point recombination (DPX) and binary mutation (BM).
The three heuristics proposed hereinbefore have been adopted
as LS operators in JCell. As it can be seen in Section 4, some
different configurations of these local search methods have

 JCS&T Vol. 5 No. 4 December 2005

259

Algorithm 6 Pseudocode for UCM
1: UCM(Indiv, Noise)
2: if rand0to1() ≤ Noise then
3: Flip(Indiv, randomInt(Indiv.length));
4: else
5: MB(Indiv);
6: end if

been studied. These configurations differ on the probability
of applying the local search operator to the individuals and the
intensity of the local search step. The idea is to regulate the
overall computational effort to solve the problem in affordable
times with commodity computers.

4. COMPUTATIONAL ANALYSIS

In this section we analyze the results for our tests over the 12
hard instances (from n = 30 to 100 variables) composing the
suite 1 of the benchmark proposed in [10]. These instances
belong to the SAT phase transition of difficulty, where hardest
instances are located, since they verify that m = 4.3 ∗n [21]
(being m the number of clauses).
In the following subsections we present the results we
obtained in the studies for this paper. All the algorithms
have been tested in terms of efficiency –Average number of
Evaluations to Solution (AES)– and efficacy –Success Rate
(SR)– (see tables 2, 3, 5 and 6, and Fig. 2). The results
have been obtained after making 50 independent runs of the
algorithms for every instance. We have computed p-values by
performing ANOVA tests on our results in order to assess their
statistical significance. A 95% confidence level is considered,
and statistical significant differences are shown with symbol
‘+’ (‘•’ means non-significance) in tables 3, 5 and 6.
The Effects of Structuring the Population and Using SAW

In this section we justify the election of both the structured
(cellular) population and the use of the stepwise adaptation
of weights function (SAW) in our cMAs. With that purpose,
we study the behavior of JCell.DPX BM (a cGA using
SAW, and implementing generic recombination and mutation
operators –DPX and BM, respectively–), compared to its
generational version –non-structured population– (genGA),
and JCell.DPX BM using the most classic fitness function
for SAT (JCell.DPX BM cl), i.e., counting the number of
satisfied clauses by the potential solution.

Table. 2. The effects of structuring the population and using SAW.
Average evaluations to solution (AES).

Inst. genGA JCell.DPX BM cl JCell.DPX BM
size (n) #

30 1 49801.0 3415.7 7438.0
30 2 1135843.2 — 502208.4
30 3 440886.2 3024.0 80029.4
40 4 855286.3 31932.0 13829.8
40 5 66193.9 4861.4 9391.7
40 6 1603008.0 — 519868.8
50 7 473839.4 14356.8 13081.0
50 8 1076077.4 84088.8 95379.8
50 9 1333872.0 — 524164.1
100 10 — — 601488.0
100 11 — 223310.8 165484.8
100 12 — 245232.0 392871.8

Our results are given in Table 2, wherein we show for every
instance, its size, its identifier (#), and the average number
of evaluations needed to find the solution (AES) of the three
algorithms (best values are bolded). Additionally, the number
of runs in which the solution was found (success rate) is

displayed in Fig. 2. After applying ANOVA tests to the
results in Table 2, we obtained that there are statistically
significant differences in all the instances. One can see that
genGA is the algorithm reporting the worst AES results,
and JCell.DPX BM is worse than JCell.DPX BM cl with
statistical significance only in 2 instances (numbers 1 and 5).
In terms of SR (see Fig. 2), JCell.DPX BM is better than the
other two algorithms (higher efficacy) for the 12 instances.
Moreover, only JCell.DPX BM is able to find the optimal
solution for all the instances. Hence, from these results we can
conclude that JCell.DPX BM, the algorithm with structured
population and using SAW, is the best of the three compared
ones both in terms of efficacy (SR) and efficiency (AES).

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11 12

Instance

S
u

c
c

e
s

s
R

a
te

genGA JCell.DPX_BM_cl JCell.DPX_BM

Fig. 2. The effects of structuring the population and using SAW.
Success rate (SR).

From Table 2 and Fig. 2, it stands out that the tested cGA
markedly improve its results when using the SAW fitness
function. Because of that, all the algorithms studied in the fol-
lowing sections have been implemented using SAW. Although
the authors are aware that the use of SAW does not necessarily
improve the performance on other algorithms, the SAW
fitness function has been implemented in GRAD, SA, and
WSAT as also suggested in [13]. It is made in order to make
fair comparisons with the cMAs, since these algorithms are
hybridized with them, and the SAW fitness function is used.

Non Memetic Heuristics for SAT

In this section we study the behavior of GRAD, SA,
and WSAT. Additionally, we test the behavior of two dif-
ferent cGAs without local search: the previously studied
JCell.DPX BM, and JCell.UCR UCM, which is the result
of hybridizing the former with recombination and mutation
operators specifically designed for SAT (UCR and UCM).
The parameters used are those of Table 4, but in this case
PLS = 0.0 (there is no LS). In Table 3 we show our results.
The first issue we want to emphasize is that only WSAT is
able to solve the problem in every run for all the instances.
Conversely, in [9] WSAT only solved the problem in a 80%
of the runs in the case of the largest instances (with n = 100),
so we have a better implementation of WSAT here.
Comparing the three basic LS, it can be seen in Table 3
that SA obtains the worst results, both in terms of efficacy
and efficiency (with statistical confidence, except for instance
number 10). GRAD is similar to WSAT in efficacy, but
needs a larger number of fitness function evaluations to
find the solution (lower efficiency), except for instance 6
(significant values obtained in instances 3, 4, 7, 8, and 10
to 12). Hence, we can conclude that WSAT is the best of the
three heuristics for the studied test-suite, followed by GRAD.
We also conclude on the superiority of problem dependent
algorithms versus generic patterns of search like SA.

 JCS&T Vol. 5 No. 4 December 2005

260

Table. 3. Basic algorithms.

Inst. GRAD SA WSAT p-val JCell.DPX BM JCell.UCR UCM p-val
SR AES SR AES SR AES SR AES SR AES

1 1.00 203.56 1.00 685.22 1.00 143.64 + 1.00 7438.04 1.00 104100.48 +
±219.73 ±844.74 ±120.32 ±3234.60 ±121339.96

2 1.00 9681.06 1.00 63346.60 1.00 8575.66 + 0.86 502208.37 0.10 697564.80 •
±9483.55 ±93625.68 ±9244.08 ±491034.68 ±663741.62

3 1.00 8520.38 1.00 16833.44 1.00 3984.34 + 1.00 80029.44 0.98 269282.94 +
±7724.11 ±11002.84 ±4112.95 ±54664.78 ±223859.24

4 1.00 619.94 1.00 2173.62 1.00 199.56 + 1.00 13829.76 0.10 1364688.00 +
±584.88 ±2076.57 ±193.56 ±7801.37 ±500365.96

5 1.00 324.46 1.00 1202.86 1.00 103.66 + 1.00 9391.68 1.00 249137.28 +
±332.19 ±1045.82 ±88.02 ±2478.37 ±236218.19

6 1.00 14368.98 0.86 271701.47 1.00 14621.04 + 0.40 519868.80 0.00 — —
±13954.02 ±418129.55 ±18617.88 ±552312.72

7 1.00 496.58 1.00 1614.76 1.00 200.84 + 1.00 13080.96 0.10 1005494.40 +
±359.60 ±1252.34 ±154.81 ±3346.94 ±721439.61

8 1.00 1761.74 1.00 9512.84 1.00 793.38 + 1.00 95379.84 0.00 — —
±1989.06 ±10226.14 ±870.94 ±125768.68

9 1.00 82004.84 1.00 201612.46 1.00 77696.42 + 0.70 524164.11 0.00 — —
±63217.93 ±266218.97 ±75769.23 ±432005.51

10 0.94 726522.51 0.84 510006.12 1.00 189785.14 + 0.18 601488.00 0.00 — —
±525423.23 ±419781.41 ±198738.78 ±364655.49

11 1.00 5508.26 1.00 18123.00 1.00 1501.74 + 1.00 165484.80 0.00 — —
±5940.96 ±20635.35 ±1264.80 ±190927.59

12 1.00 8920.38 1.00 25539.84 1.00 1388.92 + 0.94 392871.83 0.00 — —
±9111.02 ±22393.45 ±1308.27 ±443791.69

With respect to the two cGAs, Table 3 states the oppo-
site result: the cGA with generic operators outperforms the
one including tailored mutation and recombination. This
is clear since JCell.UCR UCM reports a larger AES than
JCell.DPX BM (statistical confidence for all the instances,
except 2). Moreover, JCell.UCR UCM also performs a lower
hit rate (SR) than JCell.DPX BM in general. Moreover,
JCell.UCR UCM is not able to find the optimum in any of
the 50 runs made for 6 out of the 12 instances. Probably,
the reason for this poor behavior of JCell.UCR UCM with
respect to JCell.DPX BM is that both UCR and UCM perform
a too intensive exploitation of the search space, resulting in
an important and fast loss of diversity in the population, thus
making the algorithm to get stuck in local optima.
As a final conclusion, we can claim from Table 3 that the
results of the two cGAs without explicit LS are always
worse than those of the LS heuristics, both in terms of
efficiency and efficacy. The best results of the table are those
obtained by WSAT. Since we suspect that these results are
too linked to the instances (specially to their “small ” size)
we will enlarge the test set at the end of next subsection with
harder instances.

Cellular Memetic Algorithms

In this section we study the behavior of a large number of
cMAs with different parameterizations. As it can be seen
in Table 4 (wherein details of the cMAs are given) we
hybridize the two simple cGAs of the previous section with
three distinct local search methods (GRAD, SA, and WSAT).
These local search methods have been applied in two different
ways: (i) executing an intense local search step (10 × n
fitness function evaluations) to a percentage of the individuals
(called intensive), or (ii) applying a light local search step to
all the individuals, consisting in making 20 fitness function
evaluations (called light).
The results are shown in tables 5 and 6. Comparing them with
those of the cGAs of Table 3, we can see that the behavior
of the algorithm is generally improved both in efficiency and
efficacy, specially in the cases of using GRAD and WSAT.
Hence, the three local search methods used (generic and

specific) help the algorithm for getting out from local optima.
If we compare the studied cMAs in terms of the way the local
search method is applied (intensive or light), we conclude that
the intensive case always obtains better results than the other
when hybridizing the algorithm with one specific heuristic
(either GRAD or WSAT). Conversely, when using SA it is
not always true, since SA applied in an intensive way only
outperforms the other case in 9 out of the 24 tests. Hence,
the cGAs hybridized with specialized LS have a better perfor-
mance than the one using SA (generic). All these comparisons
are statistically significant in 58 out of the 65 cases in which
all the cMAs obtained the solution in almost 100% of the runs.
As an interesting exception, we want to remark the good be-
havior of JCell.UCR UCM+SA for instances 11 and 12 with
respect to JCell.UCR UCM hybridized with GRAD and
WSAT, since the two latter cMAs are not able to find the op-
timal solution in any run. The reason is probably a too high
intensification of GRAD and WSAT performed on the popula-
tion (remind that they are still merged with UCR and UCM),
guiding the algorithm towards a local optimum quickly.
We now proceed to compare the best algorithm of Ta-
ble 3, WSAT, with the best one of tables 5 and 6,
JCell.UCR UCM i+WSAT. These two algorithms are the
best out of all the studied ones in terms of efficiency
and efficacy. The two algorithms find the optimal solu-
tion in the 100% of the runs (SR=1.0 for every instance),
but JCell.UCR UCM i+WSAT obtains worse (higher) results
than WSAT in terms of AES (with statistically significant
differences). Although we expected a hard comparison against
the best algorithm in literature (WSAT), it was not the
case since we got similar accuracy and only slightly worse
efficiency in our tests. Since we suspected this holds only
in the smaller instances we decided to test these two algo-
rithms with larger instances in order to check if the cMA
is able to outperform the state of the art WSAT in harder
problems. For that, we have selected the 50 instances of
150 variables from the suite 2 of the same benchmark [10]
studied before. The results with the larger instances show that
JCell.UCR UCM i+WSAT solved the problem at least once
(of 50 executions) in 26 out of the 50 instances composing

 JCS&T Vol. 5 No. 4 December 2005

261

Table. 4. General parameterization for the studied cMAs.

JCell.DPX BM+ JCell.DPX BM i+ JCell.UCR UCM+ JCell.UCR UCM i+
{GRAD,SA,WSAT} {GRAD,SA,WSAT} {GRAD,SA,WSAT} {GRAD,SA,WSAT}

Local Search Light Intensive Light Intensive
PLS = 1.0 PLS = 1.0/popsize PLS = 1.0 PLS = 1.0/popsize

Mutation Bit-flip (Pbf = 1/n), Pm = 1.0 UCM, Pm = 1.0
Crossover DPX, Pc = 1.0 UCR, Pc

Pop. Size 144 Individuals
Selection Itself + Binary Tournament
Replacement Replace if Better
Stop Condition Find a solution or achieve 100.000 generations

Table. 5. Results for the proposed hybridizations to JCell.DPX BM.

JCell.DPX BM JCell.DPX BM i
Inst. + GRAD + SA + WSAT + GRAD + SA + WSAT

SR AES SR AES SR AES SR AES SR AES SR AES

1 1.00 3054.2 1.00 29474.5 1.00 2966.1 1.00 1072.8 1.00 9649.6 1.00 569.9
±392.2 ±583.4 ±19.2 ±1112.6 ±25809.9 ±302.8

2 1.00 33598.7 1.00 195397.6 1.00 32730.4 1.00 50886.2 0.90 559464.3 1.00 30885.5
±51766.6 ±295646.3 ±49353.2 ±44167.7 ±437996.2 ±22768.8

3 1.00 14761.2 1.00 33005.4 1.00 4104.5 1.00 20385.8 1.00 255902.5 1.00 9418.4
±24935.1 ±6306.3 ±3325.1 ±20115.7 ±275734.7 ±10239.6

4 1.00 5018.6 1.00 31618.8 1.00 3972.9 1.00 2573.4 1.00 49310.9 1.00 794.7
±2397.8 ±152.9 ±1343.8 ±2497.7 ±64714.9 ±693.7

5 1.00 3575.6 1.00 31052.9 1.00 3008.3 1.00 1586.0 1.00 13354.0 1.00 628.6
±1131.5 ±282.7 ±8.4 ±1757.9 ±36668.5 ±437.9

6 0.96 181863.6 0.96 434235.9 1.00 81966.1 1.00 94046.4 0.72 654160.4 1.00 41619.4
±343020.8 ±519011.4 ±114950.0 ±114105.9 ±476411.6 ±47466.8

7 1.00 5945.8 1.00 33621.6 1.00 4822.6 1.00 2342.6 1.00 37446.4 1.00 850.8
±2416.8 ±7313.2 ±1364.9 ±2972.9 ±70165.5 ±527.5

8 1.00 14930.8 1.00 47688.6 1.00 7138.3 1.00 5164.5 1.00 195816.2 1.00 2097.6
±7644.5 ±15925.1 ±3957.5 ±5786.7 ±155018.9 ±1886.8

9 0.80 787149.2 0.50 720491.5 1.00 600993.9 0.82 963177.2 0.34 883967.7 1.00 187814.5
±528237.4 ±597642.6 ±443475.3 ±585320.7 ±633307.9 ±148264.1

10 0.06 797880.3 0.04 1209394.0 0.06 1189559.7 0.04 1302489.0 0.10 1363627.4 0.80 792051.2
±824831.9 ±90058.5 ±374193.7 ±346149.9 ±368403.3 ±491548.4

11 1.00 58591.3 1.00 1039910.2 1.00 35571.0 1.00 12539.8 1.00 357207.9 1.00 2466.3
±18897.3 ±205127.9 ±9243.6 ±10851.1 ±422288.9 ±1846.4

12 0.96 70324.9 0.98 1051351.2 1.00 45950.2 1.00 20018.2 0.98 409492.6 1.00 3196.9
±32808.8 ±174510.4 ±19870.7 ±19674.3 ±425872.3 ±2938.3

Table. 6. Results for the proposed hybridizations to JCell.UCR UCM.

JCell.UCR UCM JCell.UCR UCM i
Inst. + GRAD + SA + WSAT + GRAD + SA + WSAT

SR AES SR AES SR AES SR AES SR AES SR AES

1 1.00 2981.2 1.00 29253.2 1.00 2953.1 1.00 1239.1 1.00 21710.7 1.00 748.8
±18.9 ±474.8 ±27.8 ±1467.1 ±46248.4 ±404.1

2 1.00 20294.7 1.00 187088.9 1.00 14879.6 1.00 58842.3 1.00 686104.1 1.00 31457.6
±23868.0 ±281719.9 ±18766.3 ±62944.9 ±527621.8 ±33033.8

3 1.00 4048.0 1.00 41269.5 1.00 3641.2 1.00 25086.8 1.00 280148.0 1.00 13614.9
±2832.1 ±58635.5 ±1861.2 ±24428.4 ±217802.8 ±13134.6

4 1.00 7853.8 1.00 31527.8 1.00 3472.5 1.00 2299.6 1.00 63190.8 1.00 779.4
±9207.1 ±187.2 ±1773.7 ±2937.4 ±110063.6 ±408.9

5 1.00 3466.3 1.00 30893.9 1.00 2976.1 1.00 1193.1 1.00 18722.7 1.00 624.7
±1781.8 ±246.8 ±19.9 ±1198.5 ±56165.8 ±369.2

6 1.00 379489.9 1.00 274977.7 1.00 162737.1 1.00 86780.6 0.94 849405.5 1.00 57997.9
±351593.1 ±389332.4 ±180706.5 ±71185.9 ±584901.9 ±48455.4

7 1.00 7335.1 1.00 31715.6 1.00 3532.0 1.00 1639.8 1.00 96672.3 1.00 678.2
±7980.3 ±134.0 ±1807.9 ±2297.5 ±158359.2 ±507.7

8 1.00 82967.7 1.00 46418.0 1.00 27090.5 1.00 6747.4 1.00 291700.2 1.00 1694.4
±76765.2 ±15867.9 ±30079.4 ±8070.6 ±225526.0 ±1619.9

9 0.42 1089600.1 0.64 1365366.8 0.56 694014.5 0.92 566331.3 0.48 1155717.8 1.00 305306.2
±642627.4 ±559506.2 ±548185.0 ±476381.3 ±529793.2 ±323215.9

10 0.00 — 0.00 — 0.00 — 0.76 885961.2 0.16 1099241.9 1.00 425377.6
±630092.4 ±768918.5 ±415069.5

11 0.00 — 0.64 1743364.38 0.00 — 1.00 10560.4 0.90 695508.1 1.00 2980.8
±190880.9 ±11327.4 ±855309.5 ±3334.6

12 0.00 — 0.40 1778928.5 0.00 — 1.00 16623.6 0.94 504324.6 1.00 3949.3
±200497.9 ±18137.9 ±770231.7 ±4646.0

the benchmark, while WSAT found the solution for the same
26 instances and 4 more ones (the optimum was found only
once in these 4 instances). Hence, WSAT is able to find the
optimum in a larger number of instances, with an average hit
rate of 38.24%, which is quite close to 36.52%, the value
obtained by JCell.UCR UCM i+WSAT.
Moreover, the average solution found for this benchmark
(the optimal solution is 645 for all the instances) is 644.20
for JCell.UCR UCM i+WSAT and 643.00 for WSAT, so the

cMA is more accurate than WSAT for this set of instances.
Finally, if we compute the average AES for the instances
solved (at least once) by the two algorithms we can see that
the cMA (AES = 364383.67) is in this case more efficient than
WSAT (AES = 372162.36). Hence, as we suspected, the cMA
outperforms WSAT for this set of larger and more difficult
problems. In fact, all these results represent the new state of
the art since “our” WSAT is better than the one reported in
the literature.

 JCS&T Vol. 5 No. 4 December 2005

262

Comparison Against Other Results in the Literature

In this section we compare some of our results with those of
the algorithms studied in [9], which were tested with the same
benchmark we used in this work. The comparison is shown in
Table 7, where only the efficacy of the algorithms is shown
because the efficiency is measured in [9] as the number of
bit flips to solution (AFS) instead of the number of function
evaluations (AES).

Table. 7. Efficacy (SR) of different algorithms evaluated on SAT.

Algorithm n = 30 n = 40 n = 50 n = 100

SAWEA 1.00 0.93 0.85 0.72
RFEA2 1.00 1.00 1.00 0.99
RFEA2+ 1.00 1.00 1.00 0.97
FlipGA 1.00 1.00 1.00 0.87
ASAP 1.00 1.00 1.00 1.00
WSAT [9] 1.00 1.00 1.00 0.80

GRAD 1.00 1.00 1.00 0.98
WSAT 1.00 1.00 1.00 1.00
JCell.DPX BM i+WSAT 1.00 1.00 1.00 0.93
JCell.UCR UCM i+WSAT 1.00 1.00 1.00 1.00

As it can be seen in Table 7, only ASAP [9], our implemen-
tation of WSAT, and JCell.UCR UCM i+WSAT are able to
find the solution in every run for all the instances. However,
most of the algorithms of the table have a very high efficacy
for the tested benchmark, usually with hit rates over 90%.
The difference in the behavior of our WSAT and that studied
in [9] are both the noise probability and the termination
condition. On the one hand, we use a noise probability of
0.5, while Gottlieb et al. do not specify in [9] the value
they use. On the other hand, our algorithm finishes when 2
million function evaluations are made, while the termination
condition in the algorithm of Gottlieb et al. is to reach
300000 flips. Although the number of evaluations made by
our algorithm is higher than the number of flips in our
implementation of WSAT (since we use SAW, the best stored
individual has to be re-evaluated) the obtained SR values
when setting the termination condition to 300000 evaluations
(less than 300000 flips should be made) are 1.0, 1.0, 0.99,
and 0.95 for the groups of instances with n = 30, 40, 50,
and 100, respectively. These values are still higher (larger
efficacy) than those obtained by Gottlieb el al.

5. CONCLUSIONS AND FURTHER WORK

In this work we have proposed several ways of creating cMAs
by analyzing the behavior of adding 3 LS methods, 2 basic
cGAs and 12 cMAs on the 3-SAT problem. These cMAs are
the result of hybridizing the two cGAs with the 3 LS, applied
with different parameterizations reinforcing diversification or
intensification. Two LS, WSAT and GRAD (this one specially
developed in this work), are specifically designed for SAT,
while SA is a generic one.
We have seen that the results of the proposed basic cGAs
(without local search) are far from those obtained by the three
studied LS methods. After hybridizing these basic cGAs with
a local search step, the resulting cMAs substantially improved
the behavior of the original cGAs. Thus, the hybridization step
helps the cMAs to avoid the local optima in which the simple
cGAs get stuck. For smaller instances, the best of the tested
cMAs (JCell.UCR UCM i+WSAT) is as accurate as the best
reported algorithm (WSAT) but slightly less efficient.
After these results, we studied the behavior of WSAT and
JCell.UCR UCM i+WSAT (the two best resulting algorithms)

with a harder set of larger instances. The results confirm
our suspicions, since the cMA is more accurate and efficient
than WSAT for these harder instances. However, our results
contrast with those of Gottlieb et al., who concluded in [9]
that “A preliminary experimental investigation of EAs for
constraint satisfaction problems using both an adaptive fitness
function (based on fSAW) and local search indicates that this
combination is not beneficial”. We found that this claim does
not hold for our structured algorithms solving large instances.
As a future works, it would be interesting to test some differ-
ent parameterizations on the cMAs in order to improve the
obtained results. Additionally, the hybridization of improved
models of cGAs (asynchronous, adaptive, . . .) could lead us
to better results. Finally, an interesting work should be testing
the algorithms with larger instances of the problem.

REFERENCES
[1] E. Cantú-Paz, Efficient and Accurate Parallel Genetic Algo-

rithms, vol. 1 of Book Series on GAs and EC, Kluwer, 2000.
[2] E. Alba and M. Tomassini, “Parallelism and evolutionary

algorithms,” IEEE TEC, vol. 6, no. 5, pp. 443–462, 2002.
[3] E. Alba and J.M. Troya, “Improving Flexibility and Efficiency

by Adding Parallelism to Genetic Algorithms,” Statistics and
Computing, vol. 12, no. 2, pp. 91–114, 2002.

[4] E. Alba and B. Dorronsoro, “The exploration/exploitation
tradeoff in dynamic cellular evolutionary algorithms,” IEEE
TEC, vol. 9, no. 2, pp. 126–142, April 2005.

[5] E. Alba, B. Dorronsoro, M. Giacobini, and M. Tomasini,
“Decentralized cellular evolutionary algorithms,” in Handbook
of Bioinspired Algorithms and Applications. 2005, CRC Press.

[6] H.A. Kautz and B. Selman, “Planning as satisfiability,” in
European Conf. on Artificial Intelligence, 1992, pp. 359–363.

[7] R. Reiter and A. Mackworth, “A logical framework for
depiction and image interpretation,” Artifitial Intelligence, vol.
41(3), pp. 123–155, 1989.

[8] K.A. De Jong and W.M. Spears, “Using genetic algorithm to
solve NP-complete problems,” in 3rd ICGA, James D. Schaffer,
Ed. 1989, pp. 124–132, Morgan Kaufmann.

[9] J. Gottlieb, E. Marchiori, and C. Rossi, “Evolutionary algo-
rithms for the satisfiability problem,” Evolutionary Computa-
tion, vol. 10, no. 2, pp. 35–50, Spring 2002.

[10] T. Bäck, A.E. Eiben, and M.E. Vink, “A superior evolutionary
algorithm for 3-SAT,” in 7th Conf. on Evolutionary Program-
ming. 1998, Vol. 1477 of LNCS, pp. 125–136, Springer.

[11] A.E. Eiben and J.K. van der Hauw, “Solving 3-SAT with
adaptive genetic algorithms,” in IEEE CEC97, 1997, pp. 81–86.

[12] G. Folino, C. Pizzuti, and G. Spezzano, “Combining cellular
genetic algorithms and local search for solving satisfiability
problems,” in IEEE Int. Conf. Tools with AI, 1998, pp. 192–198.

[13] E. Alba, B. Dorronsoro, and H. Alfonso, “Cellular memetic
algorithms evaluated on SAT,” in CACIC, 2005, vol. CD 1.

[14] S.A. Cook, “The complexity of theorem-proving procedures,”
ACM Symp. on the Theory of Computing, pp. 151–158, 1971.

[15] M. Garey and D. Johnson, Computers and Intractability: a
Guide to the Theory of NP-completeness, Freeman, 1979.

[16] J. Gottlieb and N. Voss, “Representations, fitness functions and
genetic operators for the satisfiability problem,” in Artificial
Evolution. 1998, LNCS, pp. 55–68, Springer.

[17] B. Selman, H. Kautz, and B. Cohen, “Noise strategies for
improving local search,” in 22th Nat. Conf. on Artificial
Intelligence, California, 1994, pp. 337–343, AAAI Press.

[18] D. McAllester, B. Selman, and H. Kautz, “Evidence for
invariants in local search,” in 14th Nat. Conf. on Artificial
Intelligence, Providence, RI, 1997, pp. 321–326.

[19] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 4598, pp. 671–680, 1983.

[20] P. Moscato, Handbook of Applied Optimization, chapter
Memetic Algorithms, Oxford University Press, 2000.

[21] D.G. Mitchell, B. Selman, and H.J. Levesque, “Hard and easy
distributions for SAT problems,” in 10th Nat. Conf. on Artificial
Intelligence, California, 1992, pp. 459–465.

 JCS&T Vol. 5 No. 4 December 2005

263

