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Convex operational models (COMs) are considered as great extrapolations to larger
settings of any statistical theory. In this article, we generalize the maximum en-
tropy principle (MaxEnt) of Jaynes’ to any COM. After expressing MaxEnt in a
geometrical and lattice theoretical setting, we are able to cast it for any COM.
This scope-amplification opens the door to a new systematization of the principle
and sheds light into its geometrical structure. C° 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4731769]

I. INTRODUCTION

The notion of using a small set of relevant expectation values so as to describe the main properties
of physical systems may be considered the leit-motiv of statistical mechanics.1 Developments based
upon Jaynes’ maximum entropy principle (MaxEnt) constitute a pillar of our present understanding
of the discipline.2, 3 This type of ideas has also been invoked for obtaining the probability distribution
associated with pure quantum states via MaxEnt (see, for instance, Ref. 4 and references therein).
Indeed, MaxEnt constitutes a very important physical viewpoint, on the one hand, and powerful
technique on the other one. This is true not only for physics, chemistry, astronomy, and engineering
but for a host of other disciplines as well.5 Thus, MaxEnt extensions that amplify its range of
applicability should be regarded as significant for all branches of science.

In this article, we wish to introduce the powerful convex operational models (COM) approach6–8

into the MaxEnt domain. COM is, in turn, intimately linked to convex sets of probability
measures.6–11 Among the several extant approaches to the study of convex sets of probability mea-
sures, the above cited references deal with the COM-technique, in which physical states (understood
as probability measures) and their convex structure play a key role, while other related quantities
emerge in rather natural fashion. There exist generalizations of quantum mechanics, including non-
linear versions, that are axiomatized using the convex structure of the set of states (see Refs. 12–14).
Using convex sets, one treats in geometrical fashion the statistical theory of systems and can also
include quantum and classical mechanics (indeed several other theories as well). Elementary (sharp)
tests in quantum mechanics are represented by projection operators that form the well-known von
Newmann’s lattice, an orthomodular one.15 Via the Born’s rule any projection operator defines prob-
abilities. These are linked to measures over the von Newmann’s lattice: using Gleason’s theorem,
it is possible to link in a bijective way density matrixes and probability measures on the lattice of
projections. But probability measures may also arise in quantum mechanics by means of positive
operator valued measures (POVMs), which are also known as generalized measures. POVMs are
also generalized easily to any COM. We will review these subjects in Sec. III.

We will in this effort cast Jaynes’s MaxEnt approach in lattice theoretical form, which allows
one to extend MaxEnt to any arbitrary convex operational model, which entails a considerable
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enlargement of its scope. Consequently, this extension provides a reformulation of the maximum
entropy principle within the framework of the COM approach, which yields a novel perspective on
the subject. One of the advantages of this extension/reformulation is that it is done in such a way that
it allows to include conditions on POVMs, that is, to extend MaxEnt to generalized measurements, an
important quantum mechanics’ issue. Our generalization is performed in Secs. IV and V and should
undoubtedly be of interest to thousands of MaxEnt practitioners. Since COMs constitute important
extrapolations to larger settings of arbitrary statistical theories, casting MaxEnt for any COM, after
expressing Jaynes’ principle in a geometrical and lattice theoretical scenario, will hopefully open
the door to a new systematization of the principle while shedding light into its geometrical structure.

II. MAXIMUM ENTROPY PRINCIPLE

Statistical mechanics and thereby thermodynamics can be formulated on the basis of information
theory if the density distribution ρ(x) is obtained by recourse to MaxEnt.2, 3 Jaynes’ stance asserts
that assuming that your prior knowledge about the system is given by the values of n expectation
values of physical quantities Rj, i.e., hR1i, . . . , hRni, then the most adequate choice for the probability
distribution ρ(x) of our system is uniquely fixed by extremizing Shannon’s logarithmic entropy S
subject to the n constraint

hRi i = ri ; for all i. (1)

This brings into the game n Lagrange multipliers λi. In the process of employing the MaxEnt
procedure, one discovers that the information quantifier S can be identified with the equilibrium
entropy of thermodynamics if our prior knowledge hR1i, . . . , hRni refers to extensive quantities.2

S(maximal), once determined, yields complete thermodynamical information with respect to the
system of interest.2 The MaxEnt probability distribution function, associated with Boltzmann-
Gibbs-Shannon’s logarithmic entropy S, is given by2, 3

ρmax = exp [(−λ01 − λ1 R1 − · · · − λn Rn)], (2)

where the λ’s are Lagrange multipliers guaranteeing that

ri = − ∂

∂λi
ln Z , (3)

while the partition function reads

Z (λ1 · · · λn) = exp−λ1 R1−···−λn Rn , (4)

and the normalization condition

λ0 = ln Z . (5)

Such simple-looking algorithm constitutes one of the most powerful ones in physics’ arsenal.
In a quantum setting, of course, the R’s are operators on a Hilbert space H, while ρ is a density
matrix (operator).

III. COM-PRELIMINARIES

We recapitulate here essential aspects of convex operational models. P(H) will denote the
set of all closed subspaces of H, which are in a one-to-one correspondence with the projection
operators. Because of the one-to-one link, one usually employs the notions of “closed subspace”
and “projector” in interchangeable fashion. The bounded operators on H will be denoted by B(H).
We begin the present task with reference to classical probabilities. Given a set Ä, let us consider a
σ -algebra 6 ⊆ P(Ä). Then, a probability measure will be given by a function

μ : 6 → [0, 1], (6)
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which satisfies the well-known axioms of Kolmogorov.16 We remind that in the traditional formula-
tion of quantum mechanics, states may be defined as functions of the form17, 18

s : P(H) → [0; 1], (7)

such that

1. s(0) = 0 (0 is the null subspace);
2. S(P⊥) = 1 − s(P);
3. For any pairwise orthogonal denumerable family of projections Pj one has s(

P
jPj) = P

js(Pj).

For a reference on the distinction between classical and quantum probabilities the reader is
referred to Chap 2 of Ref. 11. Relatively, recent discussions about the nature of probabilities in
quantum mechanics clearly demonstrate that relevant features can be derived in an operational
setting which is closer in spirit to standard probability theory and Boolean logic.19, 20 This is done by
postulating that to any process one is to (i) associate a pair of real numbers (a quite natural assumption
inspired by the principle of complementarity) and then (ii) use a method first developed by Cox
(Refs. 21 and 22) –in which the probability calculus can be regarded a generalization of the Boolean
logic of propositions– to derive Feyman’s rules.19 In this article, the above mentioned distinction
plays no special role, since we are only concerned with the geometrical and formal structure of
the space of quantum states given by (7). In order to review its main geometrical features, let us
remind that Gleason’s theorem23, 24 asserts that if dim(H) ≥ 3, then the set of all measures of the
form (7) can be put into a one-to-one correspondence with the set C of by all positive, hermitian,
and trace-class (normalized to unity) operators in B(H). If P ∈ P(H), the correspondence between
ρ ∈ C and its induced probability measure is given by

sρ(P) = tr(ρ P), (8)

where tr(···) stands for the trace operator in B(H), i.e., the sum of all the eigenvalues. Equation (8)
is essentially Born’s rule. Any ρ ∈ C may be written as

ρ =
X

i

pi Pψi , (9)

where the Pψi are one-dimensional projection operators on the rays (subspaces of dimension one)
generated by the vectors ψ i and

P
ipi = 1 (pi ≥ 0). Thus, it is clear that C is a convex set. If the sum

in (9) is finite, then ρ is said to be of finite range. Remark that in the infinite-dimensional case the
sum in (9) may be infinite in a non-trivial sense. C is then a set of non-Boolean probability measures,
closed by convexity, that is also closed in the norm of H. Let us remind the reader that a lattice
is a partially ordered set (also called a poset) in which any two elements have a unique supremum
(the elements’ least upper bound; called their join) and an infimum (greatest lower bound; called
their meet). Lattices can also be characterized as algebraic structures satisfying certain axiomatic
identities. Since the two definitions are equivalent, lattice theory draws on both order theory and
universal algebra. Semilattices include lattices, which in turn include Heyting and Boolean algebras.
These “lattice-like” structures all admit order-theoretic as well as algebraic descriptions.28

A very important notion for our purposes is that of LC , the set of all convex subsets of C. Any
element ofLC will be itself a “probability space,” in the sense that it is a set of non-Boolean probability
measures closed under convex combinations (not to be confused with the usual mathematical notion
of sample space).25 It can be shown that LC is endowed with a canonical lattice theoretical structure
that can be related to quantum entanglement and positive maps.26 The meet operation is given by set
intersection, the join by convex hull and the partial order by set inclusion. We will use this lattice in
order to express the MaxEnt protocol in a different (but equivalent) form. It should be also clear that
the lattice operations mentioned above may be trivially defined in any COM and this will be used in
Sec. V.

A general (pure) state can be written as

ρ = |ψihψ |, (10)
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and we denote the set of all pure states by

P(C) := {ρ ∈ C | ρ2 = ρ}. (11)

This set is in correspondence with the rays of H via the association

F : CP (H) → C | [|ψi] 7→ |ψihψ |, (12)

where CP (H) is the projective space of H and [|ψi] is the class defined by the vector |ψi (|ϕi
∼ |ψi ←→ |ϕi = λ|ψi, λ 6= 0). If M represents an observable, its mean value hMi is given by

tr(ρM) = hMi. (13)

Notice that the set of positive operators has the shape of a cone, while the set of trace class
operators (of trace one) that of a hiperplane. Thus, C is the intersection of a cone and a hiperplane,
embbeded in A. Such structure (or geometrical convex setting) is susceptible of considerable gen-
eralization (see Refs. 6–8 for an excellent overview). In modeling probabilistic operational theories,
one associates to any probabilistic system a triplet (X, 6, p), where 6 represents the set of states
of the system, X is the set of possible measurement outcomes, and p : X × 6 7→ [0, 1] assigns,
to each outcome x ∈ X and state s ∈ 6, a probability p(x, s) of x to occur if the system is in the
state s. If we fix s we obtain the mapping s 7→ p(···, s) from 6 → [0, 1]X. We then identify in this
way all the states of 6 with maps of such a form. Focusing now attention upon their closed convex
hull we obtain the set Ä of possible probabilistic mixtures (represented mathematically by convex
combinations) of states in 6. One appreciates that we also obtain, for any outcome x ∈ X, an affine
evaluation-functional fx : Ä → [0, 1], given by fx(α) = α(x) for all α ∈ Ä. More generally, any affine
functional f : Ä → [0, 1] may be regarded as representing a measurement outcome and thus use f(α)
to represent the probability for that outcome in state α.

A. Effects

In the special case of quantum mechanics, the set of all affine functionals so-defined is called
the set of effects. They form an algebra (known as the effect algebra) and represent generalized
measurements (unsharp, as opposed to sharp measures defined by projection valued measures).
Effect algebras have important applications in the foundations of quantum mechanics29 and in
fuzzy probability theory.30 The specifical form of an effect in quantum mechanics is as follows. A
generalized observable or POVM (Refs. 31–33) will be represented by a mapping E : B(R) → B(H)
such that

1. E(R) = 1;
2. E(B) ≥ 0, for any B ∈ B(R);
3. E(∪j(Bj)) = P

jE(Bj), for any disjoint family Bj.

The first condition means that E is normalized to unity, the second one that E maps any Borel
set B to a positive operator, and the third one that E is σ -additive with respect to the weak operator
topology. In this way, a POVM can be used to define a family of affine functionals on the state space
C (which corresponds to Ä in the general probabilistic setting) of quantum mechanics, as follows:

E(B) : C → [0, 1]
ρ 7→ tr(Eρ). (14)

Effects are then positive operators E(B) which satisfy 0 ≤ E ≤ 1 (Refs. 10 and 34). Let us denote by
E(H) to the set of all effects in the quantum theory. We appeal to effects below in order to define a
special example of elements of LC , and also as a generalization of conditions imposed in the MaxEnt
protocol. Returning now to the general model of probability states we may consider the convex set
Ä as the basis of a positive cone V+(Ä) of the linear space V (Ä). Thus, every affine linear functional
can be extended to a linear functional in V (Ä)∗ (the dual linear space). It can be shown that there
is a unique unity functional such that uÄ(α) = 1 for all α ∈ Ä (in quantum mechanics, this unit
functional is the trace function). Thus, the COM approach speaks of a triplet (A, A], uA), where A is
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a space endowed with a strictly positive linear functional uA and A] is a weak-* dense subspace of
A*, ordered by a chosen regular cone A]

+ ⊆ A∗
+ containing uA. Effects will be functionals f in A]

+
such that f ≤ uA.

IV. A GEOMETRICAL EXPRESSION FOR MAXENT

Our idea is to rediscuss MaxEnt in terms of elements of LC associated with conditions on given
sets of observables or effects. The main difference between the approach presented here and the
original formulation of Jaynes’ lies in the fact that we are recasting MaxEnt in the more general
geometrical setting of the COM approach, which allows for a purely geometrical reformulation of
the principle, extensible to any statistical theory. As we shall see below, our reformulation also allows
for establishing an interesting connection between MaxEnt and a lattice theoretical approach26, 27

and also provides a generalization of the MaxEnt protocol for generalized measurements. In the rest
of this work, we restrict ourselves to the finite dimensional case. If E is an effect and λ a real number
in the interval [0,1], consider the set

C(E,λ) := {ρ ∈ C | tr(ρE) = λ}. (15)

Here C(E, λ) is a convex set, and so, an element of LC . C(E, λ), represents all the states for which the
probability of having the effect E is equal to λ. Furthermore, there exists S, a R-subspace of A (the
set of bounded self adjoint operators), such that

C(E,λ) = S ∩ C (16)

and thus, C(E, λ) is also an element of L, the lattice induced by the intersection of all closed subspaces
of A and C.26, 27 More generally, if

hRi = r, (17)

then the above equation may be considered as represented by the set of density matrices which serve
as a solution of it. The ensuing set is obtained as the intersection of the Kernel of the functional
FR(ρ) := tr(Rρ) − rtr(ρ) and C. Accordingly, each equation of the form (17) (understood as an
equation to be solved) can be represented as an element C ∈ L, and also as an element of LC . C
is also a closed set, because it is the intersection of the kernel of a functional (which is a closed
subspace) and C.26

With such materials at hand, we can now re-express the maximum entropy principle2, 3 in lattice
theoretical form. Our point here is that the set of conditions (1) can be expressed in an explicit
lattice theoretical form as follows. Using a similar procedure as in (17), we conclude that each of
the equations in (1) can be represented as a convex (and closed) sets CRi . In this way, we can now
express conditions (1) with the lattice theoretical expression

Cmax−ent :=
\

i

CRi =
^

i

CRi . (18)

Now, Cmax − ent is also an element of LC (but not necessarily of L) and we must maximize
entropy on Cmax − ent. We have thus encountered a MaxEnt-lattice theoretical expression: given a set
of conditions represented generally by convex subsets Ci, one should maximize the entropy in the set
Cmax−ent = V

i Ci .

V. GENERALIZATION

A (generalized) observable in a test space Ä will be given by a function F : x 7→ Fx from subsets
of a given outcome set E into A(Ä) satisfying

1. Fx ≥ 0;
2.

P
x ∈ EFx = u.

This is the natural extension of the notion of POVM to any COM (extension which in-
cludes the more restricted case of projection operator valued measures for the quantum case).
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If ω ∈ Ä, we can construct the probability function pω, F(x) = Fx(ω), and this pulls back a map
F* : Ä → 1(E), with F*(ω) = pω, F. With this at hand, we can easily generalize probabilities (and
so, when they appear, mean values) as linear conditions. With this procedure we will obtain convex
sets and proceed similarly as in Sec. IV. For example, suppose that the outcomes of our observable
F are represented by the discrete set of real numbers { fi }i∈N . Then we can write the mean value of
F in the state ω as

hFiω =
X

i

fi F fi (ω). (19)

The probability functions Ffi (·) are linear operators defined on A taking values in the interval [0, 1]
when restricted to states. As they are linear, we can define the functional

hFi : A → R | hFi(a) 7→
X

i

fi F fi (a). (20)

If r is a real number, consider the new functional

hFir : A → R | hFir (a) 7→
X

i

fi F fi (a) − ru(a) (21)

then, the Kernel of hFir will be a linear subspace of A, call it Sr,F . If we now restrict to the elements
of Ä (and any ω ∈ Ä satisfies u(ω) = 1), we will have that solutions of Eq. (19) can be represented
with the convex set

Cr,F := Sr,F ∩ Ä. (22)

More generally, even if our measurement outcomes are just labeled by an index set and we are not
interested on mean values but only on probabilities (as is generally the case for many POVM’s),
conditions will have the form

pω,F (x) = Fx (ω) = α (23)

and following an analogous reasoning line as above, it can also be put in the form Sα,F ∩ Ä, with
Sα,F a subspace which depends on the real number α and the observable F.

In any case, the construction given above provides the path for generalization of the procedure
outlined in Sec. IV to any COM. If Ei represent observables and the brackets h · i are meant to express
either conditions of the form of Eqs. (19) or (23), suppose as given a set of conditions of the form

hEi i = ei ; for all i. (24)

Then, because of the above discussion, the set of conditions (24) may be expressed as a collection of
convex subsets of the form Cei = Sei ∩ Ä. And the Jaynes method tells us that we must maximize
entropy on the convex set

CMax Ent =
^

i

(Sei ∩ Ä). (25)

It is important to remark here that our construction does not only restricts to projective measure-
ments, but it includes the possibility of imposing conditions on POVMs. Thus, we provide here a
generalization of the MaxEnt protocol for generalized measurements.

We notice that the specific form of the entropy to maximize depends on the specifical COM
which is being used. For example, for the particular cases of the quantum theory and a classical
model, von Newmann and Shannon entropies are used, respectively, in a natural way. The election
of the particular function to maximize on CMaxEnt, does not depend on the general formulation but
in the specifical characteristics of the model. An interesting question would be to set up general
conditions for entropies in any model, but the existence of such conditions is hard to believe, because
of the proliferation of entropies and contexts.
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VI. CONCLUSIONS

In this work, we reviewed the celebrated Jaynes’ MaxEnt principle and studied its generalizations
of arbitrary probabilistic models via the COM approach. In Sec. IV, we provided new clothing to
the maximum entropy principle in the form of lattice theory in terms of convex sets (taking the
maximum at set theoretical intersections, i.e., lattice conjunctions). In Sec. V, we used the key fact
that a probability function of COM preserves convexity in order to link the COM approach with
the results of Sec. IV, this giving MaxEnt a considerable scope-generalization that also includes a
protocol for conditions on POVMs in any COM. This kind of generalization may be useful to extend
the powerful MaxEnt approach to more general theories, also shedding light onto its mathematical
and geometrical structure/background.
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