

1Full Time Co-Chair Professor School of Computer Science, UNLP. ldgiusti@lidi.info.unlp.edu.ar.
2Full Time Co-Chair Professor School of Computer Science, UNLP. francoch@lidi.info.unlp.edu.ar.
3Full Time Chair Professor School of Computer Science, UNLP. mnaiouf@lidi.info.unlp.edu.ar.
4CONICET Senior Researcher. Full Time Chair Professor School of Computer Science, UNLP. degiusti@lidi.info.unlp.edu.ar.
* This research has the financial support of the CIC ,the YPF Foundation, and the CyTEDGrid Project

Robustness Analysis for the Method of Assignment MATEHa
*

Laura De Giusti

1
, Franco Chichizola

2
, Marcelo Naiouf

3
, Armando De Giusti

4

Instituto de Investigación en Informática (III-LIDI) – Facultad de Informática – UNLP

ABSTRACT

The TTIGHa model has been developed to model

and predict the performance of parallel applications

run over heterogeneous architectures.

In addition, the task assignment algorithm was

implemented to MATEHa processors based on the

TTIGHa model.

This paper analyzes the assignment algorithm

robustness before different variations which the

model parameters may undergo (basically,

communication and processing times).

Keywords: Parallel Systems. Cluster and Multi-

cluster Architectures. Performance prediction

models. Tasks to processors mapping.

Heterogeneous Processors. Robustness.

1. INTRODUCTION

In Computer Science, models are used to describe

real entities such as the processing architectures and

to obtain an ―abstract‖ or simplified version of the

physical machine, capturing crucial characteristics

and disregarding minor details of the

implementation [1]. A model does not necessarily

represent a given real computer, but allows studying

classes of problems over classes of architectures

represented by their essential components. In this

way, a real application can be studied over the

architecture model, allowing us to get a significant

description of the algorithm, draw a detailed analysis

of its execution, and even predict the performance

[2].

In the case of parallel systems, the most currently

used architectures – due to their cost/performance

relation - are clusters and multiclusters; for this

reason, it is really important to develop a model that

fits the characteristics of these platforms. An

essential element to be considered is the potential

heterogeneity of processors and communications

among them, which adds complexity to the

modeling [3][4].

When developing a model for this type of systems,

we aim at:

▪ Minimizing the conceptual gap between the

model and real physical architecture.

▪ Simplicity of use.

▪ Possibility of determining the correction of an

algorithm over the model, and whether this

determination is valid independently of the real

physical architecture.

▪ Capacity for predicting performance.

In these requirements, it is clear that the central

objective of parallel computing models is to achieve

a performance prediction that fits the real

performance of the used multiprocessor architecture.

At present, there exist different graph-based models

to characterize the behavior of parallel applications

in distributed architectures [5][6]. Among these

models, we can mention TIG (Task Interaction

Graph), TPG (Task Precedence Graph), and TTIG

(Task Temporal Interaction Graph) [7].

But these models suppose an homogeneous

supporting architecture, and it is not the general case

with clusters and multiclusters. The TTIGHa model

consider heterogeneity of processors and

communication network [8].

Once the graph modeling the application has been

defined, the "mapping" problem is solved by an

algorithm that establishes an automatic mechanism

to carry out the task-to-processor assignment,

searching for the optimization of some running

parameter (usually, time) [9][10][11]. This is a NP-

complete problem, due to the number of factors to

be considered, which affects the application running

time, directly or indirectly. In general, static

mapping algorithms can be of two types:

▪ Optimal: all the possible ways to assign the tasks

onto the processors are evaluated. This kind of

solutions is feasible only when the quantity of

configurations is very small. Otherwise, we can

not obtain the optimal solution because of the

combinatorial explosion for the number of

possible solutions.

JCS&T Vol. 8 No. 1 April 2008

1

▪ Heurístic: they are based in approximation

techniques that use ―realistic‖ assumptions for

the algorithm and the parallel system. They

produce sub-optimal solutions but with

acceptable response times.

Naturally, an important topic is that of robustness of

the mapping automatic algorithm that is being

developed. A robust solution will allow reducing the

error in the task-to-processor assignment due to

errors in the application parameters (processing

times, communication times) [12][13].

In this work, the robustness of MATEHa (the

assignment algorithm developed for the TTIGHa

model) is analysed. For this, different experimental

tests wer carried out considering the algorithm’s

behaviour when the input parameters (execution and

communication times between tasks) are not known

exactly.

2. TTIGHa MODEL

The TTIGHa model is based on the construction of a

graph G(V,E) to represent the application to be

modeled [8]. For the construction of such graph, we

use, apart from the application information,

parameters allowing the characterization of the

architecture (Tp,Tc), where Tp is the set of

processors and Tc represents the set of

communication classes. The elements making up the

graph are:

▪ V, is the set of nodes. Each of them represents a

task Ti of the parallel program.

▪ E, is the set of edges representing the

communication among the graph nodes.

2.1. Details of the Model Parameters

Tp involves the set of processors. As the architecture

can be heterogeneous, we have a set of different

types of processors, and each element of the Tp set

should specify to which type it belongs.

Tc represents the set of communication classes. Each

class of the set is characterized by the startup time

and the bit transmission time.

In the first parameter of graph (V), each node Ni

represents a task Ti. In Ni, the running time

corresponding to Ti in each processor type is stored:

Wi(s) is the time necessary to run task Ti in processor

s.

In the second parameter of graph (E), the edges

represent each communication existing between

each task pair. In this set, an edge A between two

tasks Ti and Tj keeps a matrix C of dimension [mxm]

(m: quantity of the architecture processors), where

Cij(s,d) is the communication time between task Ti

located in processor s and task Tj located in

processor d. It is important to notice that the

communication cost depends on the processors

being communicated because the interconnection

network is considered as heterogeneous. In addition,

the edge A keeps the ―degree of concurrence‖

between task Ti and task Tj.

The ―degree of concurrence‖ (DoC) is a matrix Hij

of dimension [mxm], where Hij(s,d) represents the

degree of concurrence between task Ti in processor s

and task Tj in processor d. This index is normalized

between 0 and 1. For two tasks, Ti and Tj, being

communicated from Ti to Tj, DoC is defined as the

maximum percentage of Tj computing time that can

be performed in parallel with Ti, taking into account

their mutual dependences arising from the

communications existing between both tasks, and

disregarding the communication cost associated to

them (this generates a value independent of the data

to be transmitted). Eq. (1) shows the degree of

concurrence (DoC) between tasks Ti and Tj being

executed in processor s and d respectively.

)1(
)(

),(
),(

dW

TTTP
dsH

j

jisd
ij

where TPsd(Ti,Tj) is the maximum joint running time

between both tasks in the corresponding processors.

3. MATEHa ALGORITHM

MATEHa is a static prediction algorithm that allows

determining the assignment of tasks to the

processors of the architecture to be used, aiming at

the minimization of the application running time on

such architecture. MATEHa considers an

architecture with a bounded number of processors,

which can be heterogeneous in terms of their

computing power and of the interconnection

network [8].

MATEHa strategy consists in determining, for each

of the tasks of graph G made up by the TTIGHa

model, to which processor it should be assigned in

order to achieve the highest performance of the

application in the used architecture. Such assignment

makes use of the values generated in the graph

construction: a task computing time in each

processor, communication time with its adjacent

(which also depends on where the tasks have been

assigned) and, finally, the degree of parallelism

among tasks. This last value is useful for assigning

to the same processor those tasks with lesser degree

of parallelism, and to different processors, those

with higher degree of parallelism.

The mapping algorithm extracts the previously

mentioned values of the TTIGHa model, on which

the algorithm assignment heuristics is based. In first

place, for each graph node of the TTIGHa model,

the level that will be used to make the graph task

JCS&T Vol. 8 No. 1 April 2008

2

assignment is defined with certain priority.

In second place, for each level n of the graph

(beginning by level 0), the assignment of all of its

tasks to the processors is carried out. For this, in

each step, the task not yet assigned and belonging to

level n is chosen, which generates the maximum

gain by assigning such task to a processor. The gain

of a task Ti is obtained as the difference between the

cost of running Ti in the ―worst processor‖ and the

execution of Ti in the ―best processor‖ (this does not

imply that the best/worst processor is the

fastest/slowest, respectively).

In order to compute the cost c of running task Ti in a

processor p, two actions are computed. The first add

to the time accumulated in p (this time is the sum of

the running times of the tasks already assigned to it)

the time required to run Ti in p. In the second, for

each task Ta adjacent to Ti, which has already been

assigned to a processor q (different to p), the

communication time between Ti and Ta in both

directions (Ci,a(p,q) and Ca,i(q,p)) and the time in

which Ti and Ta cannot be run jointly - i.e., the

percentage in which they are not concurrently run (1

– Hia(p,q)) multiplied by the time of running Ta in q

- are accumulated to cost c.

4. MATEHa ALGORITHM ROBUSTNESS

An algorithm’s robustness is related to the variation

sensitivity in estimating the model input parameters.

For the used model, the parameters that can be

inexact at the moment of computing the assignment

are: each task running time in each different type of

processor and communication times on the network

used for the same task.

The MATEHa algorithm sensitivity considering the

variations of the previously mentioned parameters

was experimentally measured. Values near zero

mean that the MATEHa algorithm assigns in a

proper manner, despite the included variations.

In order to analyze the robustness of the MATEHa

algorithm, different experimental tests were carried

out. The architecture configuration for the tests and

the set of applications to be evaluated were chosen.

Then an assignment using the MATEHa algorithm

was generated and the robustness of the assignment

was tested.

4.1. Choosing the Architecture for the Tests.

The heterogeneous architecture used is made up by

two clusters interconnected by a switch. The first

(cluster 1) is composed by 20 processors (P IV

2,4Ghz, 1Gb Ram) and the second (cluster 2) by 10

processors, (Celeron, 2 GHz, 128Mb Ram). The

connection is made through an Ethernet network of

100 Mbits. This architecture was chosen so that the

clusters making it up are of different characteristics

in terms of the processors´ computing power.

For the tests, different subsets of processors of each

cluster were chosen, making up four configurations

(Cf1 – Cf4): Cf1:4 processors belonging to cluster 1;

Cf2: 3 processors belonging to cluster 1 and 1

belonging to cluster 2; Cf3: 2 processors belonging

to cluster 1 and 2 processors belonging to cluster 2;

Cf4: 1 processor belonging to cluster 1 and 3

processors belonging to cluster 2.

4.2. Choosing the Set of Applications to be

Evaluated

A set of applications was chosen, in which each of

them varied in terms of: application task quantity,

task size, quantity of subtasks making up a task, and

communication volume among subtasks. All of these

characteristics should be configured for each

application. In all the applications, the total

computing time exceeds that of communications.

In each of the tests carried out for the different

applications, the configuration of the architecture to

be used should be first indicated. Once the

architecture is chosen, we should specify the

different types of processors, the quantity of

processors for each of these types, the different types

of communication, the startup and transference times

for each of these types, and, finally, the

communication type used between each pair of

processors. Once this information is specified, graph

G is created - generated from the TTIGHa model.

4.3. Generating Assignments with MATEHa

For each of the graphs generated in each test

explained in point (4.2), the assignment is computed

by the MATEHa algorithm. Then, after this

assignment, the application is run over the real

architecture in order to obtain the response time. As

last step, in order to determine the MATEHa

algorithm efficiency, the time obtained using the

assignment generated by MATEHa is compared to

the time obtained by the optimal assignment (that

which minimizes the application response time).

In order to compute the optimal assignment, all the

possible assignments of each application task to each

processor of the architecture should be evaluated.

Since this computation is highly costly in time, the

chosen configurations have four processors. For the

tests described above, in a previous work we show

that the difference with the optimal assignment is

less than 12% [8]

4.4. Testing the Algorithm Robustness

In order to conclude over the MATEHa algorithm

robustness degree, its sensitivity with respect to the

task running times and to the different

communication times is analyzed.

JCS&T Vol. 8 No. 1 April 2008

3

For each of the applications defined in point (4.2),

tests are carried out adding different percentages of

variations in the computing and/or communication

time. Each considered variation is a random value

between 0 and a maximum percentage (different,

according to computing or communication). The

values for the maximum percentage taken into

account are of 0 to 100 % at intervals of 10%. In

order to obtain a most significant sample, 10 runs

are generated for each of these variations. In each

test, the following steps are carried out:

a. For the application to be run, the TTIGHa model

is run.

b. The assignment is obtained (by means of the

MATEHa mapping algorithm) for that

application according to the times indicated in

the test.

c. The new computing and/or communication times

are computed, adding to them the corresponding

variation percentage.

d. With the assignment obtained in (4.4.b) and the

new times computed in (4.4.c), the simulation of

the application execution is generated in order to

obtain the final time.

e. With the times obtained in (4.4.b), the

assignment is obtained also using MATEHa, and

then the simulation for such assignment is

carried out.

f. The final times obtained by simulations of points

(4.4.d) and (4.4.e) are compared. The closest

such times are, it means that the achieved

assignment by the MATEHa algorithm is slightly

affected by the variations in the model times.

5. RESULTS

In order to analyze the results obtained, for each of

the different variation percentages (0..100%), the

following is computed:

▪ Percentage of tests in which there existed an

error, i.e., in which the final time obtained in

points (4.4.d) and (4.4.e) was different (% Test

with Error).

▪ Average error. The error in a test is given by the

difference in the times obtained in (4.4.d) and

(4.4.e) with respect to the time obtained in (4.4.e)

(General Average Error).

▪ Average error of the tests that obtained different

results in (4.4.d) and (4.4.e); this value is

computed in order to carry out a more detailed

analysis of the error influence in the results

(Trimmed Average Error).

Table 1 shows the results for the tests with

variations only for computing times, and Table 2 for

different values only in the communications

variations.

% Variations
% of Test

with Error

General

Avg. Error

Trimmed

Avg. Error

10 7,968 0,003 0,042

20 11,718 0,003 0,026

30 19,296 0,006 0,034

40 21,640 0,009 0,042

50 27,343 0,012 0,046

60 28,750 0,013 0,047

70 30,078 0,015 0,052

80 36,093 0,017 0,048

90 37,421 0,018 0,050

100 39,765 0,022 0,056

Table 1. Results obtained for the different values in the

computing variations.

% Variations
% of Test

with Error

General

Avg. Error

Trimmed

Avg. Error

10 10,237 0,003 0,037

20 9,687 0,002 0,028

30 9,765 0,002 0,029

40 9,609 0,003 0,032

50 12,031 0,003 0,029

60 11,015 0,003 0,033

70 11,718 0,004 0,034

80 10,703 0,003 0,031

90 11,875 0,004 0,039

100 13,828 0,004 0,032

Table 2. Results obtained for the different values in the
communication variations.

The Figure 1 shows the % of Test with Error

obtained for the different values in the computing

and communication variations. It can be noticed

that, when increasing the variation percentage in

computing, this generates an increase of the

percentage of tests with error; however, this does not

happen in the same way as when varying the

communication values alone.

0

5

10

15

20

25

30

35

40

45

10 20 30 40 50 60 70 80 90 100

%
 o

f
T

e
st

 w
it

h
 E

rr
o

r

% Variation
Only Computing variations Only Communication Variations

Fig. 1. % of test with error in test with computing and

communication variations.

As previously described, the error average was also

analyzed. The Figure 2 and 3 shows the General

and Trimmed Average Error respectively obtained

for the different values in the computing and

communication variations.

JCS&T Vol. 8 No. 1 April 2008

4

0

0,005

0,01

0,015

0,02

0,025

10 20 30 40 50 60 70 80 90 100

G
e
n

e
ra

l
A

v
e
ra

g
e
 E

rr
o

r

% Variation
Only Computing variations Only Communication Variations

Fig. 2. General Average Error in test with computing and

communication variations.

In them, we can see that, for all the variations, the

trimmed error percentage does not exceed the 6%,

whereas the general error percentage does not

exceed the 2.5%.

0

0,01

0,02

0,03

0,04

0,05

0,06

10 20 30 40 50 60 70 80 90 100

T
ri

m
m

e
d

 A
v

e
ra

g
e
 E

rr
o

r

% Variation
Only Computing variations Only Communication Variations

Fig. 3. Trimmed Average Error in test with computing and

communication variations.

The Table 3 shows some of the results obtained in

which different variations both in computing and in

communications have been carried out. The

complete group of results is in [14]

The Figure 4 show the % Test with Error obtained

for some test in which different variations both in

computing and in communications have been carried

out.

When combining the variations both in the

computing times and those of communications, we

can notice that, with respect to the percentages of

tests in which errors were detected, it keeps the

features found when analyzing the variations in the

computing, though with a slight increase. This same

relation is kept in all the tests carried out, which are

presented in more detailed in [14].

 % Variations

Comp – Comm

% of Test

with Error

General

Avg. Error

Trimmed

Avg. Error

10-10 16,95 0,005 0,032

10-20 17,97 0,006 0,033

10-30 19,77 0,006 0,032

10-40 15,78 0,005 0,036

10-50 16,02 0,006 0,042

10-60 18,28 0,007 0,038

10-70 18,05 0,005 0,031

10-80 18,44 0,005 0,028

10-90 17,89 0,005 0,031

10-100 18,59 0,006 0,036

40-10 27,34 0,011 0,043

40-20 29,14 0,010 0,034

40-30 31,33 0,011 0,035

40-40 30,08 0,011 0,037

40-50 30,00 0,012 0,040

40-60 29,92 0,012 0,041

40-70 30,39 0,010 0,033

40-80 32,42 0,012 0,038

40-90 29,30 0,010 0,034

40-100 29,45 0,010 0,034

60-10 34,77 0,016 0,048

60-20 35,47 0,015 0,043

60-30 32,42 0,014 0,045

60-40 33,83 0,015 0,044

60-50 36,88 0,015 0,042

60-60 35,94 0,015 0,043

60-70 34,61 0,015 0,043

60-80 35,16 0,015 0,044

60-90 33,91 0,013 0,039

60-100 33,75 0,012 0,037

100-10 40,23 0,022 0,056

100-20 42,50 0,021 0,051

100-30 38,44 0,020 0,052

100-40 42,42 0,021 0,049

100-50 43,91 0,023 0,052

100-60 43,20 0,024 0,056

100-70 41,33 0,022 0,055

100-80 41,25 0,023 0,056

100-90 43,83 0,018 0,043

100-100 45,39 0,023 0,052

Table 3. Results obtained for some combinations of values of
computing and communications variations.

The Figure 5 and 6 shows the General and Trimmed

Average Error respectively obtained in which

different variations both in computing and in

communications have been carried out.

Like with the percentage of tests with error, when

combining the variations both in computing and

communications times, we can observe that both the

general average error and the trimmed one keep the

form found when analyzing only variations in the

computation, i.e., they increase as the % in the

computing time variation increases. This same

relation is kept for the remaining tests, which are not

shown.

0

5

10

15

20

25

30

35

40

45

50

10 20 30 40 50 60 70 80 90 100

%
 o

f
T

e
st

 w
it

h
 E

rr
o

r

% Variation in Communication

10% 40% 60% 100%

Fig. 4. %Tests with Error obtained for the different values in the

communication variations with 10%, 40%, 60% and 100 % of
variation in computing.

JCS&T Vol. 8 No. 1 April 2008

5

0

0,005

0,01

0,015

0,02

0,025

0,03

10 20 30 40 50 60 70 80 90 100

G
e
n

e
ra

l
A

v
e
ra

g
e
 E

rr
o

r

% Variation in Communication

10% 40% 60% 100%

Fig. 5. General Average Error obtained for the different values in

the communication variations with 10%, 40%, 60% and 100 % of

variation in computing.

0

0,01

0,02

0,03

0,04

0,05

0,06

10 20 30 40 50 60 70 80 90 100

T
ri

m
m

e
d

 A
v

e
ra

g
e
 E

rr
o

r

% Variation in Communication

10% 40% 60% 100%

Fig. 5. Trimmed Average Error obtained for the different values

in the communication variations with 10%, 40%, 60% and 100 %

of variation in computing.

6. ANALYSIS OF RESULTS AND

CONCLUSIONS

As regards robustness, we can say that for the tests

carried out, in which only a variation in the

computation is made, it can be noticed that, by using

a variation of up to the 60%, the percentage of tests

with error does not exceed the 30%. In the tests

carried out only with variations in the

communication times, we could see that the error

percentage with respect to the optimal mapping does

not exceed the 14%, even making variations of the

100%. In addition, the error is practically kept

constant.-

Similarly, in the tests in which variations were made

both in computing and communication times, we can

see that the percentage of tests with error keeps the

form found when only varying the computing time,

though with a slight, relatively constant increase

caused by varying the communication time. In this

case, we get a 37% of error when using a variation

of the 60% in the computing time.

As regards the trimmed average error, we can see a

slight increase as the variation in the computing time

increases; however, in no case does it exceed the

6%. Finally, it happens the same in the general

average error, without exceeding the 2.5%.

These results allows us to conclude that the

MATEHa algorithm presents a high degree of

robustness, since it is able to carry out a good

assignment, without the need of using exact

parameters in terms of computing and

communication times.

7. FUTURE WORK

This study of the MATEHa mapping algorithm with

the aim of obtaining a speedup and a reachable load

balance optimization will be continued. Particular

emphasis will be put in studying the cases in which

the multi-cluster involves several communication

stages.

Also we’re extending experimental work to check

MATEHa results with optimal assignment results for

increasing number of processors (8, 12 and 16).

Improvements will be done in the MATEHa

algorithm in order to determine the optimal

automatic architecture, and from that datum we will

try to achieve an allocation that increases the

application efficiency without increasing its final

time.

8. REFERENCES

[1] Grama A., Gupta A., Karypis G., Kumar V.: An

Introduction to Parallel Computing. Design and

Analysis of Algorithms. 2nd Edition. Pearson

Addison Wesley (2003).

[2] Attiya H., Welch J.: Distributed Computing:

Fundamentals, Simulations, and Advanced Topics.

2nd Edition. Wiley-IEEE, New Jersey (2004).

[3] Leopold C.: Parallel and Distributed Computing. A

survey of Models, Paradigms, and Approaches.

Wiley, New York (2001).

[4] Kalinov A., Klimov S.: Optimal Mapping of a

Parallel Application Processes onto Heterogeneous

Platform. In: Proceeding of 19th IEEE International

Parallel and Distributed Processing Symposium

(IPDPS’05). IEEE CS Press (2005).

[5] Roig C., Ripoll A., Senar M.A., Guirado F., Luque

E.: Modelling Message-Passing Programas for Static

Mapping. In: Euromicro Workshop on Parallel and

Distributed Processing (PDP’00), pp. 229--236,

IEEE CS Press, USA (1999).

[6] Hwang J.J., Chow Y.C., Anger F.D., Lee C.Y.:

Scheduling Precedence Graphs in Systems with

Interprocessor Communication Times. SIAM

Journal of Computing, 18(2), 244—257 (1989).

[7] Roig C.: Algoritmos de asignación basados en un

nuevo modelo de representación de programas

paralelos. Tesis Doctoral, Universidad Autónoma de

Barcelona (2002).

[8] De Giusti L., Chichizola F., Naiouf M., Ripoll A.,

De Giusti A.: A Model for the Automatic Mapping

of Task to Proccessors in Heterogeneous

JCS&T Vol. 8 No. 1 April 2008

6

Multicluster Architecture. Journal of Computer

Science and Technology 7(1), 39--44 (2007).

[9] Cuenca J., Gimenez D., Martinez J.: Heuristics for

Work Distribution of a Homogeneous Parallel

Dynamic Programming Scheme on Heterogeneous

Systems. In: Proc. of the 3rd International Workshop

on Algorithms, Models and Tools for Parallel

Computing on Heterogeneous Networks

(HeteroPar’04). IEEE CS Press (2004).

[10] Cunha J.C., Kacsuk P., Winter S.: Parallel Program

development for cluster computing: methodology,

tools and integrated environments. Nova Science

Pub., New York (2001).

[11] Roig C., Ripoll A., Senar M., Guirado F., Luque E.:

Exploiting knowledge of temporal behavior in

parallel programs for improving distributed

mapping. In: Euro-Par 2000. LNCS, vol. 1900, pp.

262--71. Springer, Heidelberg (2000).

[12] England D., Weissman J., Sadagopan J.: A New

Metric for Robustness with Application to Job

Scheduling. In: Proceeding of International

Symposium on High Performance Distributed

Computing 2005 (HPDC-14), pp. 135--143. IEEE

Press (2005).

[13] Ali, S., Maciejewski, A.A., Siegel, H.J., Kim,

J.-K.: Definition of a robustness metric for

resource allocation. In: Proceedings of the 17th

IEEE International Parallel and Distributed

Processing Symposium (IPDPS’03). IEEE CS

Press (2003).

[14] Chichizola F., De Giusti L.: Algoritmo

MATEHa/modelo TTIGHa. Pruebas experimentales

variando parámetros de procesamiento y

comunicación. Technical Report 2007.

JCS&T Vol. 8 No. 1 April 2008

7

	invited: Invited Paper:

